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Multi Criteria Decision Making

Analytic Hierarchy Process (Saaty, 1977)

Criterion tree

Pairwise comparison matrix
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The aim of multiple criteria decision analysis

The aim is to select the overall best one from a finite set
of alternatives, with respect to a finite set of attributes
(criteria) ,
or,
to rank the alternatives,
or,
to classify the alternatives.
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Properties of multiple criteria decision problems

criteria contradict each other

there is not a single best solution, that is optimal with
respect to each criterion

subjective factors influence the decision

contradictive individual opinions have to be aggregated
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Properties of multiple criteria decision problems

criteria contradict each other

there is not a single best solution, that is optimal with
respect to each criterion

subjective factors influence the decision

contradictive individual opinions have to be aggregated

Examples of multi criteria decision problems

tenders, public procurements, privatizations

evaluation of applications

environmental studies

ranking, classification
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Main tasks in multi criteria decision problems

to assign weights of importance to the criteria

to evaluate the alternatives

to aggregate the evaluations with the weights of criteria

sensitivity analysis
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Decomposition of the goal: tree of criteria

main criterion 1
criterion 1.1
criterion 1.2
criterion 1.3
criterion 1.4
criterion 1.5

main criterion 2
criterion 2.1
criterion 2.2

main criterion 3
criterion 3.1

subcriterion 3.1.1
subcriterion 3.1.2

criterion 3.2
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Estimating weights from pairwise comparisons

’How many times criterion 1 is more important than criterion
2?’

A =

















1 a12 a13 . . . a1n

a21 1 a23 . . . a2n

a31 a32 1 . . . a3n

...
...

... . . . ...
an1 an2 an3 . . . 1

















,

is given, where for any i, j = 1, . . . , n indices
aij > 0, aij = 1

aji
.

The aim is to find the w = (w1, w2, . . . , wn)⊤ ∈ R
n
+ weight

vector such that ratios wi

wj
are close enough to aijs.
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Evaluation of the alternatives

Alternatives are evaluated directly, or by using a function, or
by pairwise comparisons as before.

’How many times alternative 1 is better than alternative 2
with respect to criterion 1.1?’

B =

















1 b12 b13 . . . b1m

b21 1 b23 . . . b2m

b31 b32 1 . . . b3m

...
...

... . . . ...
bm1 bm2 bm3 . . . 1
















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Aggregation of the evaluations

total scores are calculated as a weighted sum of the
evaluations with respect to leaf nodes of the criteria tree
(bottom up);

partial sums are informative
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Weighting methods

Eigenvector Method (Saaty): Aw = λmaxw.

Logarithmic Least Squares Method (LLSM):

min

n
∑

i=1

n
∑

j=1

(

log aij − log
wi

wj

)

2

n
∑

i=1

wi = 1, wi > 0, i = 1, 2, . . . , n.
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incomplete pairwise comparison matrix

A =





















1 a12 a14 a15 a16

a21 1 a23

a32 1 a34

a41 a43 1 a45

a51 a54 1

a61 1




















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incomplete pairwise comparison matrix and its graph

A =





















1 a12 a14 a15 a16

a21 1 a23

a32 1 a34

a41 a43 1 a45

a51 a54 1

a61 1




















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The Logarithmic Least Squares (LLS) problem

min
∑

i, j :

aij is known

[

log aij − log

(

wi

wj

)]2

wi > 0, i = 1, 2, . . . , n.

The most common normalizations are
n
∑

i=1
wi = 1,

n
∏

i=1
wi = 1

and w1 = 1.
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Theorem (Bozóki, Fülöp, Rónyai, 2010): Let A be an
incomplete or complete pairwise comparison matrix such
that its associated graph G is connected. Then the optimal
solution w = expy of the logarithmic least squares problem
is the unique solution of the following system of linear
equations:

(Ly)i =
∑

k:e(i,k)∈E(G)

log aik for all i = 1, 2, . . . , n,

y1 = 0

where L denotes the Laplacian matrix of G (ℓii is the degree
of node i and ℓij = −1 if nodes i and j are adjacent).
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example




















1 a12 a14 a15 a16

a21 1 a23

a32 1 a34

a41 a43 1 a45

a51 a54 1

a61 1









































4 −1 0 −1 −1 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

−1 0 −1 3 −1 0

−1 0 0 −1 2 0

−1 0 0 0 0 1









































y1(= 0)

y2

y3

y4

y5

y6





















=





















log(a12 a14 a15 a16)

log(a21 a23)

log(a32 a34)

log(a41 a43 a45)

log(a51 a54)

log a61




















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The spanning tree approach (Tsyganok, 2000, 2010)




















1 a12 a14 a15 a16

a21 1 a23

a32 1 a34

a41 a43 1 a45

a51 a54 1

a61 1




















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The spanning tree approach (Tsyganok, 2000, 2010)




















1 a12 a14 a15 a16

a21 1 a23

a32 1 a34

a41 a43 1 a45

a51 a54 1

a61 1









































1 a12 a14 a15 a16

a21 1 a23

a32 1

a41 1

a51 1

a61 1




















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The spanning tree approach

Every spanning tree induces a weight vector.

Natural ways of aggregation: arithmetic mean, geometric
mean etc.
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Theorem (Lundy, Siraj, Greco, 2017): The geometric mean
of weight vectors calculated from all spanning trees is
logarithmic least squares optimal in case of complete
pairwise comparison matrices.
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Theorem (Lundy, Siraj, Greco, 2017): The geometric mean
of weight vectors calculated from all spanning trees is
logarithmic least squares optimal in case of complete
pairwise comparison matrices.

Theorem (Bozóki, Tsyganok): Let A be an incomplete or
complete pairwise comparison matrix such that its
associated graph is connected. Then the optimal solution of
the logarithmic least squares problem is equal, up to a
scalar multiplier, to the geometric mean of weight vectors
calculated from all spanning trees.
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proof
Let G be the connected graph associated to the
(in)complete pairwise comparison matrix A and let E(G)
denote the set of edges. The edge between nodes i and j

is denoted by e(i, j).

The Laplacian matrix of graph G is denoted by L. Let
T 1, T 2, . . . , T s, . . . , TS denote the spanning trees of G, where
S denotes the number of spanning trees. E(T s) denotes the
set of edges in T s.

Let ws, s = 1, 2, . . . , S, denote the weight vector calculated
from spanning tree T s. Weight vector ws is unique up to a
scalar multiplication. Assume without loss of generality that
ws

1 = 1.

Let ys := log ws, s = 1, 2, . . . , S, where the logarithm is taken
element-wise.
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proof

Let wLLS denote the optimal solution to the incomplete
Logarithmic Least Squares problem (normalized by
wLLS

1 = 1) and yLLS := log wLLS, then
(

LyLLS
)

i
=

∑

k:e(i,k)∈E(G)

bik for all i = 1, 2, . . . , n,

where bik = log aik for all (i, k) ∈ E(G).

bik = −bki for all (i, k) ∈ E(G).

In order to prove the theorem, it is sufficient to show that
(

L
1

S

S
∑

s=1

ys

)

i

=
∑

k:e(i,k)∈E(G)

bik for all i = 1, 2, . . . , n.
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proof
Challenge: the Laplacian matrices of the spanning trees
are different from the Laplacian of G.

Consider an arbitrary spanning tree T s. Then ws
i

ws
j

= aij for all

e(i, j) ∈ E(T s).
Introduce the incomplete pairwise comparison matrix As by
as

ij := aij for all e(i, j) ∈ E(T s) and as
ij := ws

i

ws
j

for all

e(i, j) ∈ E(G)\E(T s). Again, bs
ij := log as

ij(= ys
i − ys

j ).
Note that the Laplacian matrices of A and As are the same
(L).
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proof




















1 a12 a14 a15 a16

a21 1 a23

a32 1 a32a21a14

a41 a41a12a23 1 a41a15

a51 a51a14 1

a61 1









































1 a12 a14 a15 a16

a21 1 a23

a32 1 a32a21a14

a41 a41a12a23 1 a41a15

a51 a51a14 1

a61 1




















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proof

Consider an arbitrary spanning tree T s. Then ws
i

ws
j

= aij for all

e(i, j) ∈ E(T s). Introduce the incomplete pairwise
comparison matrix As by as

ij := aij for all e(i, j) ∈ E(T s) and

as
ij := ws

i

ws
j

for all e(i, j) ∈ E(G)\E(T s). Again,

bs
ij := log as

ij(= ys
i − ys

j ).
Note that the Laplacian matrices of A and As are the same
(L).
Since weight vector ws is generated by the matrix elements
belonging to spanning tree T s, it is the optimal solution of
the LLS problem regarding As, too. Equivalently, the
following system of linear equations holds.

(Lys)i =
∑

k:e(i,k)∈E(T s)

bik+
∑

k:e(i,k)∈E(G)\E(T s)

bs
ik for all i = 1, . . . , n
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proof

Lemma

S
∑

s=1





∑

k:e(i,k)∈E(T s)

bik +
∑

k:e(i,k)∈E(G)\E(T s)

bs
ik



 = S
∑

k:e(i,k)∈E(G)

bik
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proof of the lemma
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proof of the lemma
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proof of the lemma
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

– p. 33/46



proof of the lemma

b1
12 = b15 + b54 + b43 + b32
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45

b1
12 + b4

15 = b12 + b15
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45

b1
12 + b4

15 = b12 + b15
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45

b1
12 + b4

15 = b12 + b15

– p. 39/46



proof

Finally, to complete the proof, take the sum of equations

(Lys)i =
∑

k:e(i,k)∈E(T s)

bik+
∑

k:e(i,k)∈E(G)\E(T s)

bs
ik for all i = 1, . . . , n

for all s = 1, 2, . . . , S and apply the lemma

S
∑

s=1





∑

k:e(i,k)∈E(T s)

bik +
∑

k:e(i,k)∈E(G)\E(T s)

bs
ik



 = S
∑

k:e(i,k)∈E(G)

bik

to conclude that yLLS = 1
S

S
∑

s=1
ys.
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Remark. Complete pairwise comparison matrices
(S = nn−2) are included in our theorem as a special case,
and our proof can also be considered as a second, and
shorter proof of the theorem of Lundy, Siraj and Greco
(2017).
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Conclusions

The equivalence of two fundamental weighting methods
has been shown.

The advantages of two approaches have been united.
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Thank you for attention.
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