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Multi Criteria Decision Making

Analytic Hierarchy Process (Saaty, 1977)

Criterion tree

Pairwise comparison matrix

—p. 3/46



The aim of multiple criteria decision analysis

The aim Is to select the overall best one from a finite set
of alternatives, with respect to a finite set of attributes
(criteria) ,

or,

to rank the alternatives,

or,

to classify the alternatives.
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Properties of multiple criteria decision problems

® criteria contradict each other

# there is not a single best solution, that is optimal with
respect to each criterion

°

subjective factors influence the decision
# contradictive individual opinions have to be aggregated
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Properties of multiple criteria decision problems

® criteria contradict each other

# there is not a single best solution, that is optimal with
respect to each criterion

# subjective factors influence the decision
# contradictive individual opinions have to be aggregated

Examples of multi criteria decision problems

# tenders, public procurements, privatizations
# evaluation of applications

# environmental studies

# ranking, classification
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Main tasks in multi criteria decision problems

to assign weights of importance to the criteria
to evaluate the alternatives

r
r
# to aggregate the evaluations with the weights of criteria
r

sensitivity analysis
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Decomposition of the goal: tree of criteria

® main criterion 1

>

e o o

>

criterion 1.1
criterion 1.2
criterion 1.3
criterion 1.4
criterion 1.5

® main criterion 2

N

>

criterion 2.1
criterion 2.2

® main criterion 3

N

>

criterion 3.1
s Subcriterion 3.1.1
s Subcriterion 3.1.2

criterion 3.2
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Estimating weights from pairwise comparisons

'How many times criterion 1 is more important than criterion

27’
( 1 a2 aijz ... aln\
aa 1 azsz ... Qa2n
A= 1]a31 a3y 1 ... azpy 7

\anl an2 ap3 ... 1 )
IS given, where forany :,j5 = 1,...,n Indices

ij > 0, jj = C%”
The aim is to find the w = (wy,wa,...,w,)" € R? weight

vector such that ratios = are close enough to a;;s.
J
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Evaluation of the alternatives

Alternatives are evaluated directly, or by using a function, or
by pairwise comparisons as before.

'How many times alternative 1 is better than alternative 2

with respect to criterion 1.17?’

[ 1
bo1

b12

b13
bo3

blm\
b2m

b3m

Y
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Aggregation of the evaluations

# total scores are calculated as a weighted sum of the
evaluations with respect to leaf nodes of the criteria tree
(bottom up);

# partial sums are informative
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Weighting methods

Eigenvector Method (Saaty): Aw = A\, W.

Logarithmic Least Squares Method (LLSM):

min Z Z (log a;; — log —)

1=1 j=1

Zwizl, w; >0, i=1,2...,n
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Incomplete pairwise comparison matrix

( 1
a1

a41
as1

\ a1

a43

ai4 ais a16\

a34
1 ays
ass 1
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Incomplete pairwise comparison matrix and its graph

(1 a12 ai4  a15 a16\
a1

a41
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The Logarithmic Least Squares (LLS) problem

2
. Wy
min loga;; — log | —
2 [ 5 g(UJ)]
1,7 :
a;; Is known

w; > 0, 1=1,2,...,n.

n n

The most common normalizations are > w; =1, ] w; =1
1=1 1=1

and w; = 1.
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Theorem (Bozoki, Fulop, Ronyai, 2010): Let A be an
Incomplete or complete pairwise comparison matrix such
that its associated graph G Is connected. Then the optimal
solution w = expy of the logarithmic least squares problem
IS the unique solution of the following system of linear
equations:

(Ly); = >  logay foralli=1,2,.... n,
k:e(i,k)eE(G)

y1 =0

where L denotes the Laplacian matrix of G (¢;; Is the degree
of node 7 and ¢;; = —1 If nodes ¢ and j are adjacent).
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example

( 1
a1

a41
as1

\ a6

a12
1

a32

a23

a43

a14 dis a16\

34
I ags
as4 1

L)
—1 -1 —1)
0 0 O
~1 0 0
3 -1 0
-1 2 0
0 0 1}

(log(az a14 ars are) \
10g(a21 agg)
log(as2 azs)

log(as1 a43 ass)
log(a51 CL54)

\ log ae1 )
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The spanning tree approach (Tsyganok, 2000, 2010)

( 1
aai

a12 a4 ais a16\
1 a3
aza 1 as
as3 1 ays
ass 1

1)
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The spanning tree approach (Tsyganok, 2000, 2010)

(1 a12 a4 ais a16\ T :
as1 1 a3

aze 1 a3 G
a41 ass 1 ags
as1 ass 1
\as1 L/

(5) 4

(1 12 a4 ais a16\ : 2
ao1 1 a3

as9 1
a4 1
asq 1
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The spanning tree approach

Every spanning tree induces a weight vector.

Natural ways of aggregation: arithmetic mean, geometric
mean etc.
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Theorem (Lundy, Siraj, Greco, 2017): The geometric mean
of weight vectors calculated from all spanning trees is

logarithmic least squares optimal in case of complete
pairwise comparison matrices.
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Theorem (Lundy, Siraj, Greco, 2017): The geometric mean
of weight vectors calculated from all spanning trees is
logarithmic least squares optimal in case of complete
pairwise comparison matrices.

Theorem (Bozoki, Tsyganok): Let A be an incomplete or
complete pairwise comparison matrix such that its
associated graph is connected. Then the optimal solution of
the logarithmic least squares problem is equal, up to a
scalar multiplier, to the geometric mean of weight vectors
calculated from all spanning trees.
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proof

Let G be the connected graph associated to the
(in)complete pairwise comparison matrix A and let £(G)
denote the set of edges. The edge between nodes ; and j
IS denoted by (4, 7).

The Laplacian matrix of graph G is denoted by L. Let

T, 7%, ...,7%, ..., T° denote the spanning trees of G, where
S denotes the number of spanning trees. E(7°) denotes the
set of edges in 7.

Let w®, s =1,2,...,5, denote the weight vector calculated
from spanning tree 7. Weight vector w* Is unique up to a
scalar multiplication. Assume without loss of generality that
wi = 1.

Lety® :=logw®, s=1,2,...,5, where the logarithm is taken
element-wise.

— p. 24/46



proof

Let wX5 denote the optimal solution to the incomplete
Logarithmic Least Squares problem (normalized by

wiS = 1) and y™5 .= log w'?, then
(LyLLS). = > b foralli=1,2,....n,
" k(i k)eE(Q)
where b;, = loga;, for all (i, k) € E(G).
bir = —by; forall (i, k) € E(G).

In order to prove the theorem, it is sufficient to show that

S
< %Z ) > b foralli=1,2,...,n
—1 ee

e(i,k)eE(G)
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proof

Challenge: the Laplacian matrices of the spanning trees
are different from the Laplacian of G.

Consider an arbitrary spanning tree 7%. Then 5— = q;; for all
e(i, ) € E(T?). j

Introduce the incomplete pairwise comparison matrix A* by
ai; == a;; for all e(i, j) € E(T*) and af; := % for all

e(i,j) € E(G)\E(T?). Again, bj; := logaj;(= y; — y3).

Note that the Laplacian matrices of A and A® are the same

(L).
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proof
Consider an arbitrary spanning tree 7°*. Then z— = q;; for all

J

e(i,g) € E(T?). Introduce the incomplete pairwise
comparison matrix A® by a}; := a;; for all e(z, j) € E(7*) and

aj; == 5—3 for all e(i, j) € E(G)\E(T?). Again,
bj; = log afj(: P — yj)

Note that the Laplacian matrices of A and A® are the same
(L).

Since weight vector w* Is generated by the matrix elements
belonging to spanning tree 7%, it is the optimal solution of
the LLS problem regarding A%, too. Equivalently, the

following system of linear equations holds.

(Ly®); = Y byt > s foralli=1,...,n

kee(i,k)EE(T?) kee(i,k)EE(G)\E(T*)
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proof of the lemma
1
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proof of the lemma
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proof of the lemma
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proof of the lemma

biy = b15 + bsa + bag + b3o
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proof of the lemma

7!
biy = b15 + bsa + bag + b3o

(5) 4

1 2
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proof of the lemma

biy = b15 + bsa + bag + b3o

Pﬂ
N

bis = bia + bag + b3g + bys
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proof of the lemma

biy = b15 + bsa + bag + b3o

Pﬂ
N

bis = bia + bag + b3g + bys
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proof of the lemma

biy = b15 + bsa + bag + b3o

bis = bia + bag + b3g + bys

bio + bis = b1z + b1
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proof of the lemma

@_----.&)@

biy = b15 + bsa + bag + b3o

bis = bia + bag + b3g + bys

biy + bis = b2 + b1s
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proof of the lemma

@_----.&@@

biy = b15 + bsa + bag + b3o

bis = bia + bag + b3g + bys

biy + bis = b2 + b1s
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proof

Finally, to complete the proof, take the sum of equations

(Ly®); = Y byt > s foralli=1,...,n

k:e(i,k)eE(T?) k:e(i,k)eE(G)\E(T#)
forall s =1,2,...,5 and apply the lemma
S
S OX e Y m)=s Yo
s=1 \k:e(i,k)eE(T?) k:e(i,k)eE(G)\E(T?) k:e(i,k)eE(G)

S
to conclude that y“2% = £ 3~ y*. ]
s=1

— p. 40/46



Remark. Complete pairwise comparison matrices

(S = n™?) are included in our theorem as a special case,
and our proof can also be considered as a second, and
shorter proof of the theorem of Lundy, Siraj and Greco

(2017).
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Conclusions

The equivalence of two fundamental weighting methods
has been shown.

The advantages of two approaches have been united.
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Thank you for attention.

bozoki.sandor@sztaki.mta.hu

http://www.sztaki.mta.hu/~bozoki
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