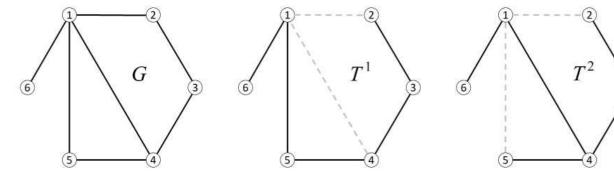
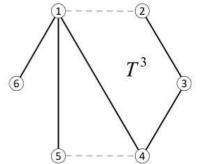
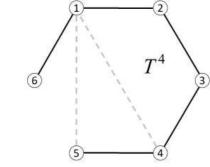
Spanning trees and logarithmic least squares optimality for complete and incomplete pairwise comparison matrices

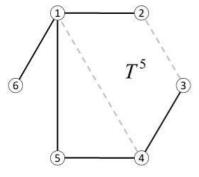
Sándor Bozóki

Institute for Computer Science and Control Hungarian Academy of Sciences (MTA SZTAKI);

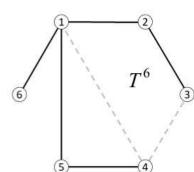

Corvinus University of Budapest

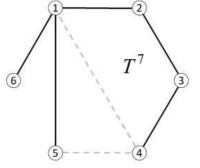

Vitaliy Tsyganok


Laboratory for Decision Support Systems, The Institute for Information Recording of National Academy of Sciences of Ukraine;

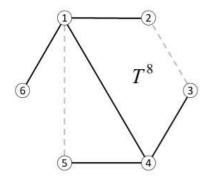

Department of System Analysis, State University of Telecommunications

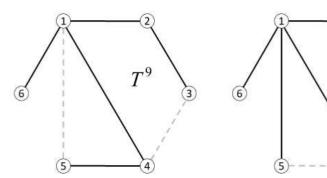
May 24, 2017

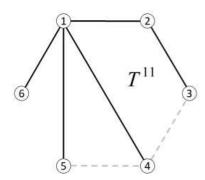




3






 T^{10}

4

(3)

Multi Criteria Decision Making

Analytic Hierarchy Process (Saaty, 1977)

Criterion tree

Pairwise comparison matrix

The aim of multiple criteria decision analysis

The aim is **to select the overall best one** from a finite set of *alternatives*, with respect to a finite set of **attributes (criteria)**,

or,

to rank the alternatives,

or,

to classify the alternatives.

Properties of multiple criteria decision problems

- criteria contradict each other
- there is not a single best solution, that is optimal with respect to each criterion
- subjective factors influence the decision
- contradictive individual opinions have to be aggregated

Properties of multiple criteria decision problems

- criteria contradict each other
- there is not a single best solution, that is optimal with respect to each criterion
- subjective factors influence the decision
- contradictive individual opinions have to be aggregated

Examples of multi criteria decision problems

- tenders, public procurements, privatizations
- evaluation of applications
- environmental studies
- ranking, classification

Main tasks in multi criteria decision problems

- to assign weights of importance to the criteria
- to evaluate the alternatives
- to aggregate the evaluations with the weights of criteria
- sensitivity analysis

Decomposition of the goal: tree of criteria

- main criterion 1
 - criterion 1.1
 - criterion 1.2
 - criterion 1.3
 - criterion 1.4
 - criterion 1.5
- main criterion 2
 - criterion 2.1
 - criterion 2.2
- main criterion 3
 - criterion 3.1
 - subcriterion 3.1.1
 - subcriterion 3.1.2
 - criterion 3.2

Estimating weights from pairwise comparisons

'How many times criterion 1 is more important than criterion 2?'

$$\mathbf{A} = \begin{pmatrix} 1 & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & 1 & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & 1 & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & 1 \end{pmatrix},$$

is given, where for any i, j = 1, ..., n indices $a_{ij} > 0, \qquad a_{ij} = \frac{1}{a_{ji}}.$

The aim is to find the $\mathbf{w} = (w_1, w_2, \dots, w_n)^\top \in \mathbb{R}^n_+$ weight vector such that ratios $\frac{w_i}{w_j}$ are *close enough* to a_{ij} s.

Evaluation of the alternatives

Alternatives are evaluated directly, or by using a function, or by pairwise comparisons as before.

'How many times alternative 1 is better than alternative 2 with respect to criterion 1.1?'

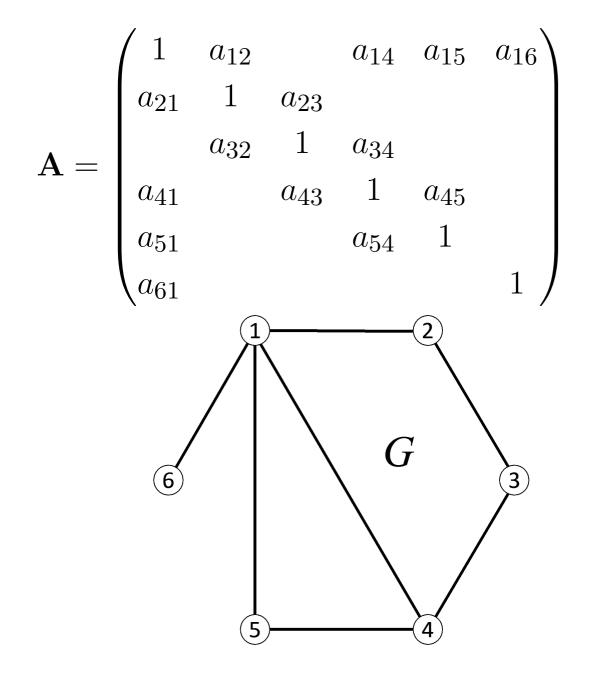
$$\mathbf{B} = \begin{pmatrix} 1 & b_{12} & b_{13} & \dots & b_{1m} \\ b_{21} & 1 & b_{23} & \dots & b_{2m} \\ b_{31} & b_{32} & 1 & \dots & b_{3m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & 1 \end{pmatrix}$$

Aggregation of the evaluations

- total scores are calculated as a weighted sum of the evaluations with respect to leaf nodes of the criteria tree (bottom up);
- partial sums are informative

Weighting methods

Eigenvector Method (Saaty): $Aw = \lambda_{max}w$.


Logarithmic Least Squares Method (LLSM):

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\log a_{ij} - \log \frac{w_i}{w_j} \right)^2$$
$$\sum_{i=1}^{n} w_i = 1, \qquad w_i > 0, \quad i = 1, 2, \dots, n.$$

incomplete pairwise comparison matrix

$$\mathbf{A} = \begin{pmatrix} 1 & a_{12} & a_{14} & a_{15} & a_{16} \\ a_{21} & 1 & a_{23} & & & \\ & a_{32} & 1 & a_{34} & & \\ a_{41} & & a_{43} & 1 & a_{45} & \\ & a_{51} & & & a_{54} & 1 & \\ & & & & & 1 \end{pmatrix}$$

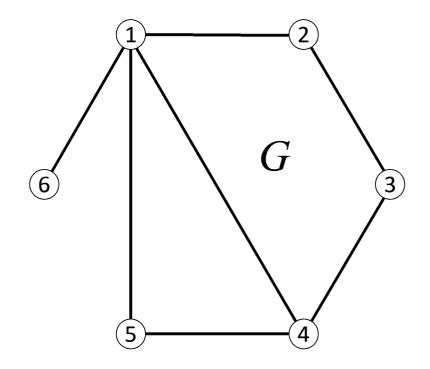
incomplete pairwise comparison matrix and its graph

The Logarithmic Least Squares (LLS) problem

$$\min \sum_{\substack{i, j: \\ a_{ij} \text{ is known}}} \left[\log a_{ij} - \log \left(\frac{w_i}{w_j} \right) \right]^2$$

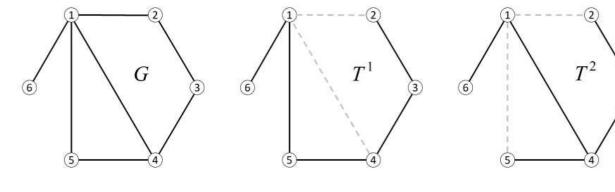
The most common normalizations are $\sum_{i=1}^{n} w_i = 1$, $\prod_{i=1}^{n} w_i = 1$ and $w_1 = 1$. **Theorem** (Bozóki, Fülöp, Rónyai, 2010): Let A be an incomplete or complete pairwise comparison matrix such that its associated graph *G* is connected. Then the optimal solution $\mathbf{w} = \exp \mathbf{y}$ of the logarithmic least squares problem is the unique solution of the following system of linear equations:

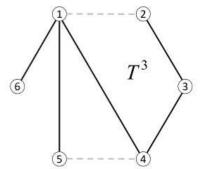
$$(\mathbf{Ly})_i = \sum_{k:e(i,k)\in E(G)} \log a_{ik}$$
 for all $i = 1, 2, ..., n$,
 $y_1 = 0$

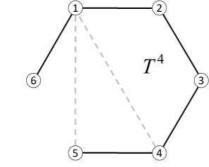

where L denotes the Laplacian matrix of G (ℓ_{ii} is the degree of node *i* and $\ell_{ij} = -1$ if nodes *i* and *j* are adjacent).

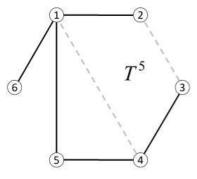
example

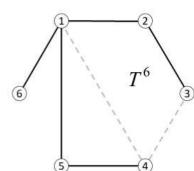
$\int 1$	a_{12}		a_{14}	a_{15}	a_{16}	$\begin{array}{c} (1) \\ (1) \\ (2) \\ (2) \\ (3) \\$
a_{21}	1	a_{23}				
	a_{32}	1	a_{34}			G
a_{41}		a_{43}	1	a_{45}		
a_{51}			a_{54}	1		
a_{61}					1 /	
						5 4
(4	-1	0	-1	-1	-1	$(y_1(=0))$ $(\log(a_{12} a_{14} a_{15} a_{16}))$
-1	2	-1	0	0	0	$ \begin{array}{c c} y_{2} \\ y_{2$
0	-1	2	-1	0	0	$y_3 \qquad \log(a_{32} a_{34})$
-1	0	-1	3	-1	0	$y_4 = \log(a_{41} a_{43} a_{45})$
-1	0	0	-1	2	0	$y_5 \qquad \log(a_{51} a_{54})$
$\sqrt{-1}$	0	0	0	0	1	$\left(\begin{array}{c} y_6 \end{array} \right) \left(\begin{array}{c} \log a_{61} \end{array} \right)$

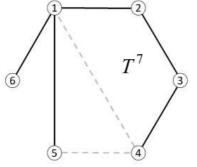

The spanning tree approach (Tsyganok, 2000, 2010)

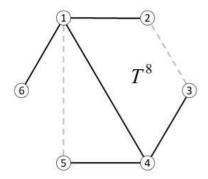

$\left(1 \right)$	a_{12}		a_{14}	a_{15}	a_{16}
a_{21}	1	a_{23}			
	a_{32}	1	a_{34}		
a_{41}		a_{43}	1	a_{45}	
a_{51}			a_{54}	1	
a_{61}					1

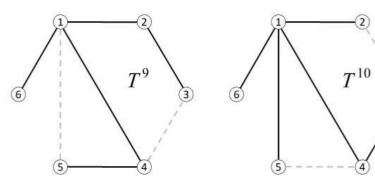


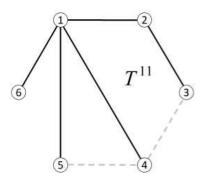

The spanning tree approach (Tsyganok, 2000, 2010)


$\begin{pmatrix} 1\\ a_{21} \end{pmatrix}$		$a_{23} \\ 1$	a_{14} a_{34}	a_{15}	a_{16}	
a_{41}		a_{43}	1	a_{45}		$\begin{array}{c c} 6 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 3 \\ 3 \\ \hline \end{array} \\ \end{array}$
a_{51}			a_{54}	1		
a_{61}					1 /	5 4
$\begin{pmatrix} 1\\ a_{21} \end{pmatrix}$		a_{23}	a_{14}	a_{15}	a_{16}	
a_{41}	a_{32}	1	1			6
a_{51}				1		
a_{61}					1 /	









The spanning tree approach

Every spanning tree induces a weight vector.

Natural ways of aggregation: arithmetic mean, geometric mean etc.

Theorem (Lundy, Siraj, Greco, 2017): The geometric mean of weight vectors calculated from all spanning trees is logarithmic least squares optimal in case of complete pairwise comparison matrices. **Theorem** (Lundy, Siraj, Greco, 2017): The geometric mean of weight vectors calculated from all spanning trees is logarithmic least squares optimal in case of complete pairwise comparison matrices.

Theorem (Bozóki, Tsyganok): Let A be an incomplete or complete pairwise comparison matrix such that its associated graph is connected. Then the optimal solution of the logarithmic least squares problem is equal, up to a scalar multiplier, to the geometric mean of weight vectors calculated from all spanning trees.

Let *G* be the connected graph associated to the (in)complete pairwise comparison matrix A and let E(G) denote the set of edges. The edge between nodes *i* and *j* is denoted by e(i, j).

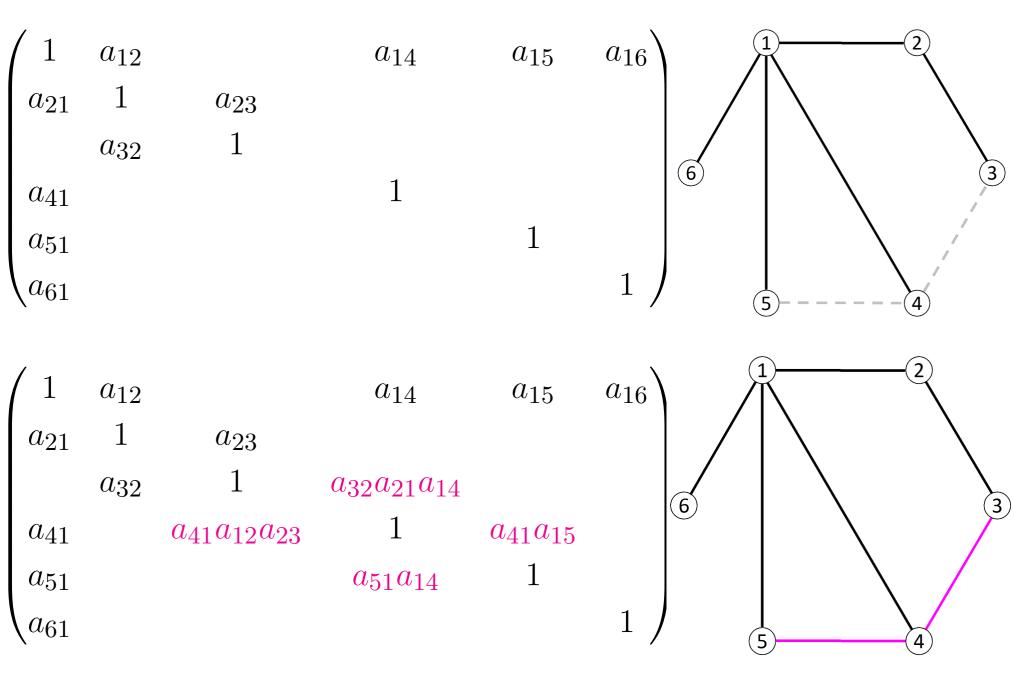
The Laplacian matrix of graph G is denoted by L. Let $T^1, T^2, \ldots, T^s, \ldots, T^S$ denote the spanning trees of G, where S denotes the number of spanning trees. $E(T^s)$ denotes the set of edges in T^s .

Let $\mathbf{w}^s, s = 1, 2, ..., S$, denote the weight vector calculated from spanning tree T^s . Weight vector \mathbf{w}^s is unique up to a scalar multiplication. Assume without loss of generality that $w_1^s = 1$.

Let $\mathbf{y}^s := \log \mathbf{w}^s, s = 1, 2, \dots, S$, where the logarithm is taken element-wise.

Let \mathbf{w}^{LLS} denote the optimal solution to the incomplete Logarithmic Least Squares problem (normalized by $w_1^{LLS} = 1$) and $\mathbf{y}^{LLS} := \log \mathbf{w}^{LLS}$, then

$$\left(\mathbf{L}\mathbf{y}^{LLS}\right)_i = \sum_{k:e(i,k)\in E(G)} b_{ik}$$
 for all $i = 1, 2, \dots, n$,


where $b_{ik} = \log a_{ik}$ for all $(i, k) \in E(G)$. $b_{ik} = -b_{ki}$ for all $(i, k) \in E(G)$.

In order to prove the theorem, it is sufficient to show that

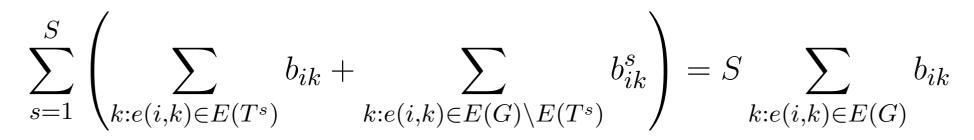
$$\left(\mathbf{L}\frac{1}{S}\sum_{s=1}^{S}\mathbf{y}^{s}\right)_{i} = \sum_{k:e(i,k)\in E(G)} b_{ik} \quad \text{for all } i = 1, 2, \dots, n.$$

Challenge: the Laplacian matrices of the spanning trees are different from the Laplacian of *G*.

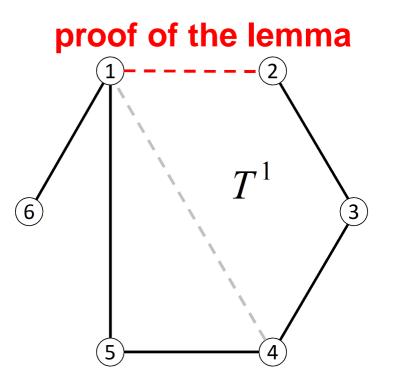
Consider an arbitrary spanning tree T^s . Then $\frac{w_i^s}{w_j^s} = a_{ij}$ for all $e(i, j) \in E(T^s)$. Introduce the incomplete pairwise comparison matrix \mathbf{A}^s by $a_{ij}^s := a_{ij}$ for all $e(i, j) \in E(T^s)$ and $a_{ij}^s := \frac{w_i^s}{w_j^s}$ for all $e(i, j) \in E(G) \setminus E(T^s)$. Again, $b_{ij}^s := \log a_{ij}^s (= y_i^s - y_j^s)$. Note that the Laplacian matrices of \mathbf{A} and \mathbf{A}^s are the same (L).

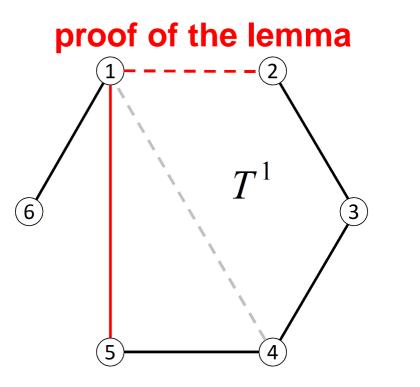
Consider an arbitrary spanning tree T^s . Then $\frac{w_i^s}{w_j^s} = a_{ij}$ for all $e(i, j) \in E(T^s)$. Introduce the incomplete pairwise comparison matrix \mathbf{A}^s by $a_{ij}^s := a_{ij}$ for all $e(i, j) \in E(T^s)$ and

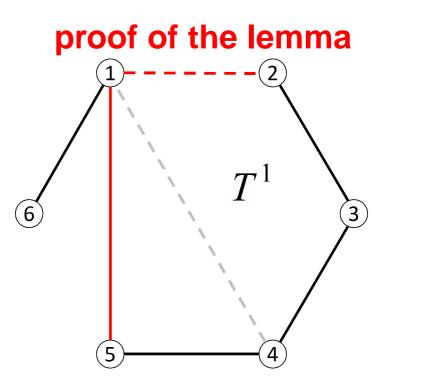
$$a_{ij}^s := \frac{w_i^s}{w_j^s}$$
 for all $e(i, j) \in E(G) \setminus E(T^s)$. Again,

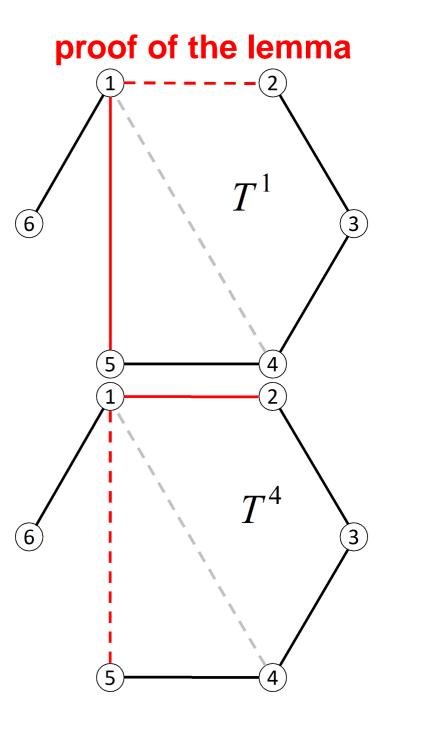

$$b_{ij}^s := \log a_{ij}^s (= y_i^s - y_j^s).$$

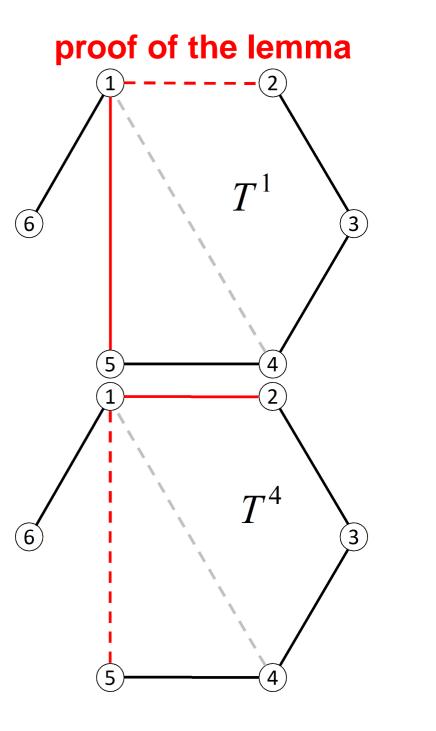
Note that the Laplacian matrices of A and A^s are the same (L).


Since weight vector \mathbf{w}^s is generated by the matrix elements belonging to spanning tree T^s , it is the optimal solution of the *LLS* problem regarding \mathbf{A}^s , too. Equivalently, the following system of linear equations holds.

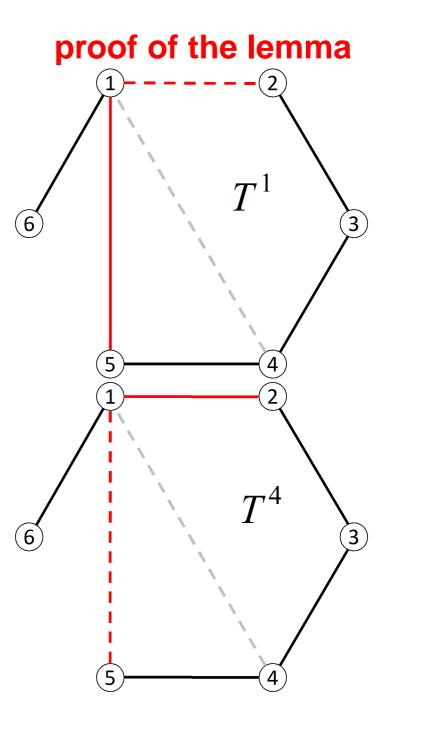

$$(\mathbf{L}\mathbf{y}^s)_i = \sum_{k:e(i,k)\in E(T^s)} b_{ik} + \sum_{k:e(i,k)\in E(G)\setminus E(T^s)} b_{ik}^s \text{ for all } i = 1,\dots, n$$


Lemma

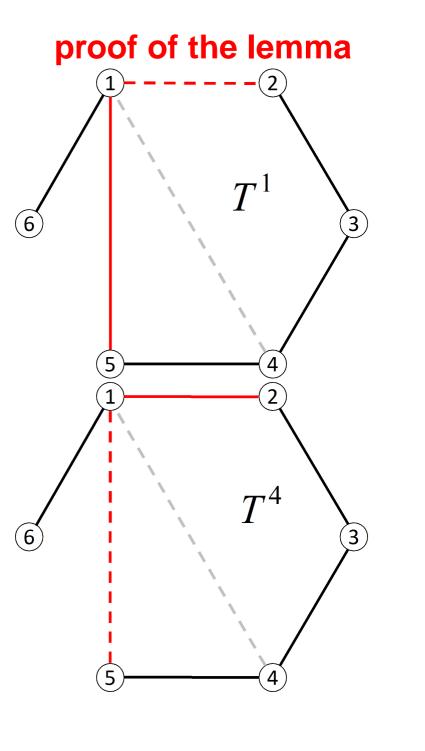

$\begin{array}{c} \text{proof of the lemma} \\ 1 \\ 6 \\ 7 \\ 7 \\ 3 \\ 5 \\ 4 \end{array}$



 $b_{12}^1 = b_{15} + b_{54} + b_{43} + b_{32}$

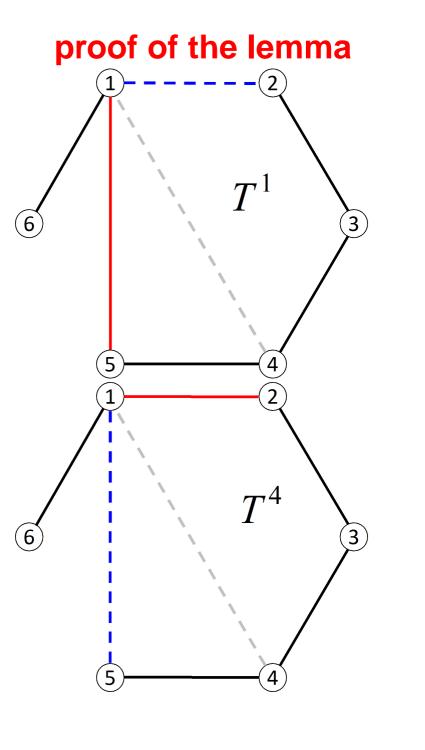


 $b_{12}^1 = b_{15} + b_{54} + b_{43} + b_{32}$


$$b_{12}^1 = b_{15} + b_{54} + b_{43} + b_{32}$$

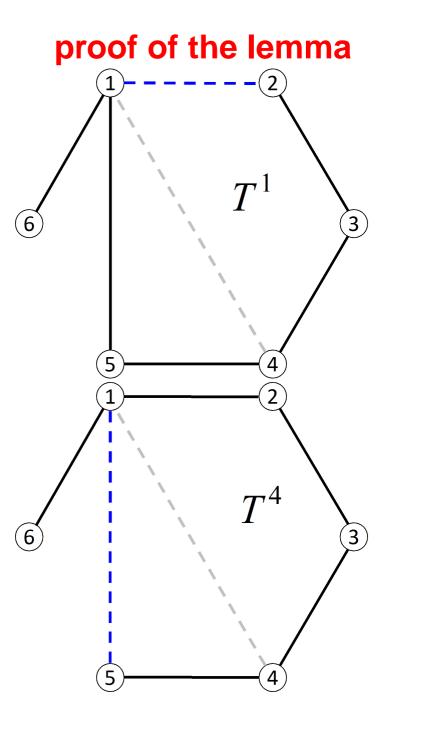
$$b_{15}^4 = b_{12} + b_{23} + b_{34} + b_{45}$$

$$b_{12}^1 = b_{15} + b_{54} + b_{43} + b_{32}$$


$$b_{15}^4 = b_{12} + b_{23} + b_{34} + b_{45}$$

$$b_{12}^1 = b_{15} + b_{54} + b_{43} + b_{32}$$

$$b_{15}^4 = b_{12} + b_{23} + b_{34} + b_{45}$$


$$b_{12}^1 + b_{15}^4 = b_{12} + b_{15}$$

$$b_{12}^1 = b_{15} + b_{54} + b_{43} + b_{32}$$

$$b_{15}^4 = b_{12} + b_{23} + b_{34} + b_{45}$$

$$b_{12}^1 + b_{15}^4 = b_{12} + b_{15}$$

$$b_{12}^1 = b_{15} + b_{54} + b_{43} + b_{32}$$

$$b_{15}^4 = b_{12} + b_{23} + b_{34} + b_{45}$$

$$b_{12}^1 + b_{15}^4 = b_{12} + b_{15}$$

Finally, to complete the proof, take the sum of equations

$$(\mathbf{L}\mathbf{y}^s)_i = \sum_{k:e(i,k)\in E(T^s)} b_{ik} + \sum_{k:e(i,k)\in E(G)\setminus E(T^s)} b_{ik}^s \text{ for all } i = 1, \dots, n$$

for all $s = 1, 2, \ldots, S$ and apply the lemma

$$\sum_{s=1}^{S} \left(\sum_{k:e(i,k)\in E(T^s)} b_{ik} + \sum_{k:e(i,k)\in E(G)\setminus E(T^s)} b_{ik}^s \right) = S \sum_{k:e(i,k)\in E(G)} b_{ik}$$

to conclude that
$$\mathbf{y}^{LLS} = \frac{1}{S} \sum_{s=1}^{S} \mathbf{y}^{s}$$
.

Remark. Complete pairwise comparison matrices $(S = n^{n-2})$ are included in our theorem as a special case, and our proof can also be considered as a second, and shorter proof of the theorem of Lundy, Siraj and Greco (2017).

Conclusions

The equivalence of two fundamental weighting methods has been shown.

The advantages of two approaches have been united.

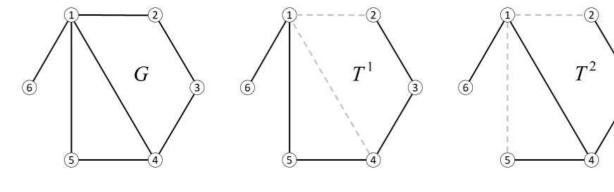
Main references in historical order 1/2

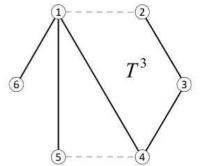
Tsyganok, V. (2000): Combinatorial method of pairwise comparisons with feedback, Data Recording, Storage & Processing 2:92–102 (in Ukrainian).

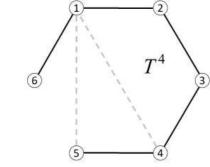
Tsyganok, V. (2010): Investigation of the aggregation effectiveness of expert estimates obtained by the pairwise comparison method, Mathematical and Computer Modelling, 52(3-4) 538–54

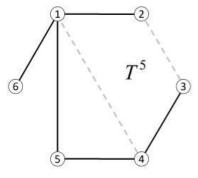
Siraj, S., Mikhailov, L., Keane, J.A. (2012): Enumerating all spanning trees for pairwise comparisons, Computers & Operations Research, 39(2) 191–199

Siraj, S., Mikhailov, L., Keane, J.A. (2012): Corrigendum to "Enumerating all spanning trees for pairwise comparisons [Comput. Oper. Res. 39(2012) 191-199]", Computers & Operations Research, 39(9) page 2265

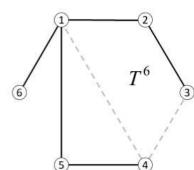

Main references in historical order 2/2

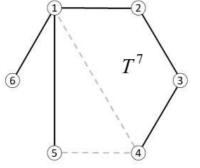

Lundy, M., Siraj, S., Greco, S. (2017): The mathematical equivalence of the "spanning tree" and row geometric mean preference vectors and its implications for preference analysis, European Journal of Operational Research 257(1) 197–208

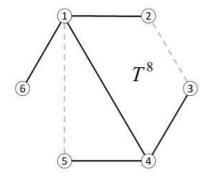

Bozóki, S., Tsyganok, V. (\geq 2017) The logarithmic least squares optimality of the geometric mean of weight vectors calculated from all spanning trees for (in)complete pairwise comparison matrices. Under review, https://arxiv.org/abs/1701.04265 Thank you for attention.

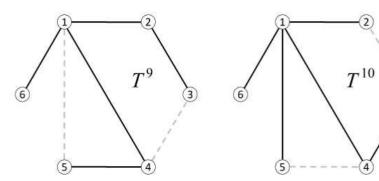

bozoki.sandor@sztaki.mta.hu

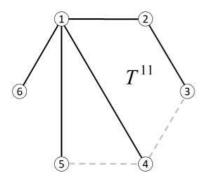
http://www.sztaki.mta.hu/~bozoki






3





(3)

4

