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Options
• A way of behaving for a period of time

Models of options
• A predictive model of the outcome of following the option
• What state will you be in?
• Will you still control the ball?
• What will be the value of some feature?
• Will your teammate receive the pass?
• What will be the expected total reward along the way?
• How long can you keep control of the ball? 

Dribble Keepaway Pass

Options for soccer players could be

Options in a 2D world

The red and blue options 

are mostly executed.  

Surely we should be able 

to learn about them from 

this experience!

Experienced

trajectory

Off-policy learning
• Learning about one policy while behaving according to another
• Needed for RL w/exploration (as in Q-learning)
• Needed for learning abstract models of dynamical systems 

(representing world knowledge)
• Enables efficient exploration
• Enables learning about many ways of behaving at the same time 

(learning models of options)

! a policy
! a stopping condition

Non-sequential example

Problem formulation w/o recognizers

Problem formulation with recognizers

• One state

• Continuous action a ∈ [0, 1]

• Outcomes zi = ai

• Given samples from policy b : [0, 1] → #+

• Would like to estimate the mean outcome for a sub-region of the

action space, here a ∈ [0.7, 0.9]

Target policy π : [0, 1] → "+ is uniform within the region of interest

(see dashed line in figure below). The estimator is:

m̂π =
1
n

n
X

i=1

π(ai)

b(ai)
zi.

Theorem 1 Let A = {a1, . . . ak} ⊆ A be a subset of all the

possible actions. Consider a fixed behavior policy b and let πA be

the class of policies that only choose actions from A, i.e., if
π(a) > 0 then a ∈ A. Then the policy induced by b and the binary
recognizer cA is the policy with minimum-variance one-step

importance sampling corrections, among those in πA:

π as given by (1) = arg min
p∈πA

Eb

"

„

π(ai)

b(ai)

«2
#

(2)

Proof: Using Lagrange multipliers

Theorem 2 Consider two binary recognizers c1 and c2, such that

µ1 > µ2. Then the importance sampling corrections for c1 have

lower variance than the importance sampling corrections for c2.

Off-policy learning

Let the importance sampling ratio at time step t be:

ρt =
π(st, at)

b(st, at)

The truncated n-step return, R
(n)
t , satisfies:

R
(n)
t = ρt[rt+1 + (1 − βt+1)R

(n−1)
t+1 ].

The update to the parameter vector is proportional to:

∆θt =
h

Rλ
t − yt

i

∇θytρ0(1 − β1) · · · ρt−1(1 − βt).

Theorem 3 For every time step t ≥ 0 and any initial state s,

Eb[∆θt|s] = Eπ[∆θ̄t|s].

Proof: By induction on n we show that

Eb{R
(n)
t |s} = Eπ{R̄

(n)
t |s}

which implies that Eb{R
λ
t |s} = Eπ(R̄λ

t |s}. The rest of the proof is
algebraic manipulations (see paper).

Implementation of off-policy learning for options

In order to avoid∆θ → 0, we use a restart function g : S → [0, 1]
(like in the PSD algorithm). The forward algorithm becomes:

∆θt = (Rλ
t − yt)∇θyt

t
X

i=0

giρi...ρt−1(1 − βi+1)...(1 − βt),

where gt is the extent of restarting in state st.

The incremental learning algorithm is the following:

• Initialize κ0 = g0, e0 = κ0∇θy0

• At every time step t:

δt = ρt (rt+1 + (1 − βt+1)yt+1) − yt

θt+1 = θt + αδtet

κt+1 = ρtκt(1 − βt+1) + gt+1

et+1 = λρt(1 − βt+1)et + κt+1∇θyt+1
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Off-policy learning is tricky

• The Bermuda triangle

! Temporal-difference learning
! Function approximation (e.g., linear)
! Off-policy

• Leads to divergence of iterative algorithms
! Q-learning diverges with linear FA
! Dynamic programming diverges with linear FA

Baird's Counterexample
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Precup, Sutton & Dasgupta (PSD) algorithm

• Uses importance sampling to convert off-policy case to on-policy case
• Convergence assured by theorem of Tsitsiklis & Van Roy (1997)
• Survives the Bermuda triangle!

BUT!

• Variance can be high, even infinite (slow learning)
• Difficult to use with continuous or large action spaces
• Requires explicit representation of behavior policy (probability distribution) 

Option formalism

An option is defined as a triple o = 〈I,π, β〉

• I ⊆ S is the set of states in which the option can be initiated

• π is the internal policy of the option

• β : S → [0, 1] is a stochastic termination condition

We want to compute the reward model of option o:

Eo{R(s)} = E{r1 + r2 + . . . + rT |s0 = s, π, β}

We assume that linear function approximation is used to represent

the model:

Eo{R(s)} ≈ θT φs = y
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Theorem 4 If the following assumptions hold:

• The function approximator used to represent the model is a

state aggregrator

• The recognizer behaves consistently with the function

approximator, i.e., c(s, a) = c(p, a), ∀s ∈ p

• The recognition probability for each partition, µ̂(p) is estimated
using maximum likelihood:

µ̂(p) =
N(p, c = 1)

N(p)

Then there exists a policy π̂ such that the off-policy learning

algorithm converges to the same model as the on-policy algorithm

using π̂.

Proof: In the limit, w.p.1, µ̂ converges to
P

s db(s|p)
P

a c(p, a)b(s, a) where db(s|p) is the probability of
visiting state s from partition p under the stationary distribution of b.

Let π̂ be defined to be the same for all states in a partition p:

π̂(p, a) = ρ̂(p, a)
X

s

db(s|p)b(s, a)

π̂ is well-defined, in the sense that
P

a π̂(s, a) = 1. Using Theorem
3, off-policy updates using importance sampling corrections ρ̂ will
have the same expected value as on-policy updates using π̂.

The authors gratefully acknowledge the ideas and encouragement

they have received in this work from Eddie Rafols, Mark Ring,

Lihong Li and other members of the rlai.net group. We thank Csaba

Szepesvari and the reviewers of the paper for constructive

comments. This research was supported in part by iCore, NSERC,

Alberta Ingenuity, and CFI.

The target policy π is induced by a recognizer function

c : [0, 1] !→ #+:

π(a) =
c(a)b(a)

P

x c(x)b(x)
=

c(a)b(a)
µ

(1)

(see blue line below). The estimator is:

m̂π =
1
n

n
X

i=1

zi
π(ai)
b(ai)

=
1
n

n
X

i=1

zi
c(ai)b(ai)

µ

1
b(ai)

=
1
n

n
X

i=1

zi
c(ai)

µ
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The importance sampling corrections are:

ρ(s, a) =
π(s, a)
b(s, a)

=
c(s, a)
µ(s)

where µ(s) depends on the behavior policy b. If b is unknown,
instead of µ we will use a maximum likelihood estimate

µ̂ : S → [0, 1], and importance sampling corrections will be defined
as:

ρ̂(s, a) =
c(s, a)

µ̂(s)

On-policy learning

If π is used to generate behavior, then the reward model of an
option can be learned using TD-learning.

The n-step truncated return is:

R̄
(n)
t = rt+1 + (1 − βt+1)R̄

(n−1)
t+1 .

The λ-return is defined as usual:

R̄λ
t = (1 − λ)

∞
X

n=1

λn−1R̄
(n)
t .

The parameters of the function approximator are updated on every

step proportionally to:

∆θ̄t =
h

R̄λ
t − yt

i

∇θyt(1 − β1) · · · (1 − βt).

• Recognizers reduce variance

• First off-policy learning algorithm for option models

• Off-policy learning without knowledge of the behavior

distribution

• Observations

– Options are a natural way to reduce the variance of

importance sampling algorithms (because of the termination

condition)

– Recognizers are a natural way to define options, especially

for large or continuous action spaces.
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Options
• A way of behaving for a period of time

Models of options
• A predictive model of the outcome of following the option
• What state will you be in?
• Will you still control the ball?
• What will be the value of some feature?
• Will your teammate receive the pass?
• What will be the expected total reward along the way?
• How long can you keep control of the ball? 

Dribble Keepaway Pass

Options for soccer players could be

Options in a 2D world

The red and blue options 

are mostly executed.  

Surely we should be able 

to learn about them from 

this experience!

Experienced

trajectory

Off-policy learning
• Learning about one policy while behaving according to another
• Needed for RL w/exploration (as in Q-learning)
• Needed for learning abstract models of dynamical systems 

(representing world knowledge)
• Enables efficient exploration
• Enables learning about many ways of behaving at the same time 

(learning models of options)

! a policy
! a stopping condition

Non-sequential example

Problem formulation w/o recognizers

Problem formulation with recognizers

• One state

• Continuous action a ∈ [0, 1]

• Outcomes zi = ai

• Given samples from policy b : [0, 1] → #+

• Would like to estimate the mean outcome for a sub-region of the

action space, here a ∈ [0.7, 0.9]

Target policy π : [0, 1] → "+ is uniform within the region of interest

(see dashed line in figure below). The estimator is:

m̂π =
1
n

n
X

i=1

π(ai)

b(ai)
zi.

Theorem 1 Let A = {a1, . . . ak} ⊆ A be a subset of all the

possible actions. Consider a fixed behavior policy b and let πA be

the class of policies that only choose actions from A, i.e., if
π(a) > 0 then a ∈ A. Then the policy induced by b and the binary
recognizer cA is the policy with minimum-variance one-step

importance sampling corrections, among those in πA:

π as given by (1) = arg min
p∈πA

Eb

"

„

π(ai)

b(ai)

«2
#

(2)

Proof: Using Lagrange multipliers

Theorem 2 Consider two binary recognizers c1 and c2, such that

µ1 > µ2. Then the importance sampling corrections for c1 have

lower variance than the importance sampling corrections for c2.

Off-policy learning

Let the importance sampling ratio at time step t be:

ρt =
π(st, at)

b(st, at)

The truncated n-step return, R
(n)
t , satisfies:

R
(n)
t = ρt[rt+1 + (1 − βt+1)R

(n−1)
t+1 ].

The update to the parameter vector is proportional to:

∆θt =
h

Rλ
t − yt

i

∇θytρ0(1 − β1) · · · ρt−1(1 − βt).

Theorem 3 For every time step t ≥ 0 and any initial state s,

Eb[∆θt|s] = Eπ[∆θ̄t|s].

Proof: By induction on n we show that

Eb{R
(n)
t |s} = Eπ{R̄

(n)
t |s}

which implies that Eb{R
λ
t |s} = Eπ(R̄λ

t |s}. The rest of the proof is
algebraic manipulations (see paper).

Implementation of off-policy learning for options

In order to avoid∆θ → 0, we use a restart function g : S → [0, 1]
(like in the PSD algorithm). The forward algorithm becomes:

∆θt = (Rλ
t − yt)∇θyt

t
X

i=0

giρi...ρt−1(1 − βi+1)...(1 − βt),

where gt is the extent of restarting in state st.

The incremental learning algorithm is the following:

• Initialize κ0 = g0, e0 = κ0∇θy0

• At every time step t:

δt = ρt (rt+1 + (1 − βt+1)yt+1) − yt

θt+1 = θt + αδtet

κt+1 = ρtκt(1 − βt+1) + gt+1

et+1 = λρt(1 − βt+1)et + κt+1∇θyt+1
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Off-policy learning is tricky

• The Bermuda triangle

! Temporal-difference learning
! Function approximation (e.g., linear)
! Off-policy

• Leads to divergence of iterative algorithms
! Q-learning diverges with linear FA
! Dynamic programming diverges with linear FA

Baird's Counterexample
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Precup, Sutton & Dasgupta (PSD) algorithm

• Uses importance sampling to convert off-policy case to on-policy case
• Convergence assured by theorem of Tsitsiklis & Van Roy (1997)
• Survives the Bermuda triangle!

BUT!

• Variance can be high, even infinite (slow learning)
• Difficult to use with continuous or large action spaces
• Requires explicit representation of behavior policy (probability distribution) 

Option formalism

An option is defined as a triple o = 〈I,π, β〉

• I ⊆ S is the set of states in which the option can be initiated

• π is the internal policy of the option

• β : S → [0, 1] is a stochastic termination condition

We want to compute the reward model of option o:

Eo{R(s)} = E{r1 + r2 + . . . + rT |s0 = s, π, β}

We assume that linear function approximation is used to represent

the model:

Eo{R(s)} ≈ θT φs = y
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Theorem 4 If the following assumptions hold:

• The function approximator used to represent the model is a

state aggregrator

• The recognizer behaves consistently with the function

approximator, i.e., c(s, a) = c(p, a), ∀s ∈ p

• The recognition probability for each partition, µ̂(p) is estimated
using maximum likelihood:

µ̂(p) =
N(p, c = 1)

N(p)

Then there exists a policy π̂ such that the off-policy learning

algorithm converges to the same model as the on-policy algorithm

using π̂.

Proof: In the limit, w.p.1, µ̂ converges to
P

s db(s|p)
P

a c(p, a)b(s, a) where db(s|p) is the probability of
visiting state s from partition p under the stationary distribution of b.

Let π̂ be defined to be the same for all states in a partition p:

π̂(p, a) = ρ̂(p, a)
X

s

db(s|p)b(s, a)

π̂ is well-defined, in the sense that
P

a π̂(s, a) = 1. Using Theorem
3, off-policy updates using importance sampling corrections ρ̂ will
have the same expected value as on-policy updates using π̂.
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The target policy π is induced by a recognizer function

c : [0, 1] !→ #+:

π(a) =
c(a)b(a)

P

x c(x)b(x)
=

c(a)b(a)
µ

(1)

(see blue line below). The estimator is:

m̂π =
1
n

n
X

i=1

zi
π(ai)
b(ai)

=
1
n

n
X

i=1

zi
c(ai)b(ai)

µ

1
b(ai)

=
1
n

n
X

i=1
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c(ai)

µ
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The importance sampling corrections are:

ρ(s, a) =
π(s, a)
b(s, a)

=
c(s, a)
µ(s)

where µ(s) depends on the behavior policy b. If b is unknown,
instead of µ we will use a maximum likelihood estimate

µ̂ : S → [0, 1], and importance sampling corrections will be defined
as:

ρ̂(s, a) =
c(s, a)

µ̂(s)

On-policy learning

If π is used to generate behavior, then the reward model of an
option can be learned using TD-learning.

The n-step truncated return is:

R̄
(n)
t = rt+1 + (1 − βt+1)R̄

(n−1)
t+1 .

The λ-return is defined as usual:

R̄λ
t = (1 − λ)

∞
X

n=1

λn−1R̄
(n)
t .

The parameters of the function approximator are updated on every

step proportionally to:

∆θ̄t =
h

R̄λ
t − yt

i

∇θyt(1 − β1) · · · (1 − βt).

• Recognizers reduce variance

• First off-policy learning algorithm for option models

• Off-policy learning without knowledge of the behavior

distribution

• Observations

– Options are a natural way to reduce the variance of

importance sampling algorithms (because of the termination

condition)

– Recognizers are a natural way to define options, especially

for large or continuous action spaces.
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Reinforcement learning

  

Reward

State

Action

SystemSystem

ControllerController
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The structure of the tutorial

Markov decision processes
I Generalizes shortest path computations
I Stochasticity, state, action, reward, value functions, policies
I Bellman (optimality) equations, operators, fixed-points
I Value iteration, policy iteration

Value prediction
I Temporal difference learning unifies Monte-Carlo and bootstrapping
I Function approximation to deal with large spaces
I New gradient based methods
I Least-squares methods

Control
I Closed-loop interactive learning: exploration vs. exploitation
I Q-learning
I SARSA
I Policy gradient, natural actor-critic
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How to get to Atlanta?
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How to get to Atlanta?
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Value iteration

function VALUEITERATION(x∗)
1: for x ∈ X do V[x]← 0
2: V ′ ← V
3: repeat
4: for x ∈ X \ {x∗} do
5: V[x]← 1 + miny∈N (x) V(y)
6: end for
7: until V 6= V ′

8: return V

function BESTNEXTNODE(x,V)
1: return arg miny∈N (x) V(y)
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Rewarding excursions

function VALUEITERATION

1: for x ∈ X do V[x]← 0
2: V ′ ← V
3: repeat
4: for x ∈ X \ {x∗} do
5: V[x]← max

a∈A(x)
{ r(x, a) + γ V( f (x, a)) }

6: end for
7: until V 6= V ′

8: return V

function BESTACTION(x,V)
1: return argmax

a∈A(x)
{ r(x, a) + γ V( f (x, a)) }
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Uncertainty

“Uncertainty is the only certainty there is, and
knowing how to live with insecurity is the only
security.” (John Allen Paulos, 1945–)

Next state might be uncertain
The reward detto
Advantage: Richer model, robustness
A transition from X after taking action A:

Y = f (X,A,D),

R = g(X,A,D)

D – random variable; “disturbance”
f – transition function
g – reward function
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Power management
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Computer usage data

Sheet1

Page 1

Home
Gaming 4
Music entertainment 4
Transcode multitasking 3
Internet content creation 4
Broad based productivity 36
Media playback multitasking 4
Windows idle 44

Office
Transcode multitasking 2
Internet content creation 3
Broad based productivity 53
Video content creation 1
Image content creation 2
Windows idle 39

http://www.amd.com/us/Documents/43029A_Brochure_PFD.pdf

Sheet1

Page 1

Home
Gaming 4
Music entertainment 4
Transcode multitasking 3
Internet content creation 4
Broad based productivity 36
Media playback multitasking 4
Windows idle 44

Office
Transcode multitasking 2
Internet content creation 3
Broad based productivity 53
Video content creation 1
Image content creation 2
Windows idle 39

http://www.amd.com/us/Documents/43029A_Brochure_PFD.pdf
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Power management

Advanced Configuration and Power Interface (ACPI)
First released in December 1996, last release in June 2010
Platform-independent interfaces for hardware discovery,
configuration, power management and monitoring
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Power mgmt – Power states

G0 (S0): Working
G1, Sleeping subdivides into the four states S1 through S4

I S1: All processor caches are flushed, and the CPU(s) stop
executing instructions. Power to the CPU(s) and RAM is
maintained; devices that do not indicate they must remain on may
be powered down

I S2: CPU powered off
I S3: Commonly referred to as Standby, Sleep, or Suspend to RAM.

RAM remains powered
I S4: Hibernation or Suspend to Disk. All content of main memory is

saved to non-volatile memory such as a hard drive, and is powered
down

G2 (S5), Soft Off: G2 is almost the same as G3 Mechanical Off,
but some components remain powered so the computer can
”wake” from input from the keyboard, clock, modem, LAN, or USB
device.
G3, Mechanical Off: The computer’s power consumption
approaches close to zero, to the point that the power cord can be
removed and the system is safe for dis-assembly (typically, only
the real-time clock is running off its own small battery).

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 16 / 51



Power mgmt – Device, processor, performance states
Device states

I D0 Fully-On is the operating state
I D1 and D2 are intermediate power-states whose definition varies

by device.
I D3 Off has the device powered off and unresponsive to its bus.

Processor states
I C0 is the operating state.
I C1 (often known as Halt) is a state where the processor is not

executing instructions, but can return to an executing state
essentially instantaneously. All ACPI-conformant processors must
support this power state. Some processors, such as the Pentium 4,
also support an Enhanced C1 state (C1E or Enhanced Halt State)
for lower power consumption.

I C2 (often known as Stop-Clock) is a state where the processor
maintains all software-visible state, but may take longer to wake up.
This processor state is optional.

I C3 (often known as Sleep) is a state where the processor does not
need to keep its cache coherent, but maintains other state. Some
processors have variations on the C3 state (Deep Sleep, Deeper
Sleep, etc.) that differ in how long it takes to wake the processor.
This processor state is optional.

Performance states: While a device or processor operates (D0
and C0, respectively), it can be in one of several
power-performance states. These states are
implementation-dependent, but P0 is always the
highest-performance state, with P1 to Pn being successively
lower-performance states, up to an implementation-specific limit of
n no greater than 16.
P-states have become known as SpeedStep in Intel processors,
as PowerNow! or Cool’n’Quiet in AMD processors, and as
PowerSaver in VIA processors.

I P0 max power and frequency
I P1 less than P0, voltage/frequency scaled
I Pn less than P(n-1), voltage/frequency scaled
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An oversimplified model

Note
The transitions can be represented as

Y = f (x, a,D),

R = g(x, a,D).
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Value iteration

function VALUEITERATION

1: for x ∈ X do V[x]← 0
2: V ′ ← V
3: repeat
4: for x ∈ X \ {x∗} do
5: V[x]← max

a∈A(x)
E [g(x, a,D) + γ V( f (x, a,D)) ]

6: end for
7: until V 6= V ′

8: return V

function BESTACTION(x,V)
1: return argmax

a∈A(x)
E [g(x, a,D) + γ V( f (x, a,D)) ]
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How to gamble if you must?

The safest way to double your money is to fold it over once
and put it in your pocket. (“Kin” Hubbard, 1868–1930)

State Xt ≡ wealth of gambler at step t, Xt ≥ 0

Action: At ∈ [0, 1]: the fraction of Xt put at stake
St ∈ {−1,+1}, P (St+1 = 1) = p, p ∈ [0, 1], i.i.d., random variables
Fortune at next time step:

Xt+1 = (1 + St+1At)Xt.

Goal: maximize the probability that the wealth reaches w∗.
How to put this into our framework?
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How to gamble if you must? – Solution

Xt ∈ X = [0,w∗], A = [0, 1]

Let f : X ×A× {−1,+1} → X be

f (x, a, s) =

{
(1 + s a)x ∧ w∗, if x < w∗;
w∗, otherwise.

Let g : X ×A× {−1,+1} → X be

g(x, a, s) =

{
1, if (1 + s a)x ≥ w∗ and x < w∗;
0, otherwise.

What is the optimal policy?
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Inventory control

19:00

7:00

14:00

X = {0, 1, . . . ,M}; Xt size of the inventory in the evening of day t

A = {0, 1, . . . ,M}; At number of items ordered in the evening of day t

Dynamics:
Xt+1 = ((Xt + At) ∧M − Dt+1)

+.

Reward:

Rt+1 = −K I{At>0} − c ((Xt + At) ∧M − Xt)
+

− h Xt + p ((Xt + At) ∧M − Xt+1)
+.
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Other examples

Engineering, operations research
I Process control

F Chemical
F Electronic
F Mechanical systems ⇒ ROBOTS

I Supply chain management
Information theory

I optimal coding
I channel allocation
I sensing, sensor networks

Finance
I portfolio management
I option pricing

Artificial intelligence
I The whole problem of acting under uncertainty
I Search
I Games
I Vision: Gaze control
I Information retrieval
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Controlled Markov processes

Xt+1 = f (Xt,At,Dt+1) State dynamics
Rt+1 = g(Xt,At,Dt+1) Reward

t = 0, 1, . . . .

Xt ∈ X – state at time t

X – set of states
At ∈ A – action at time t

A – set of actions
Sometimes, A(x): admissible actions
Rt+1 ∈ R – reward⇒ R
Dt ∈ D – disturbance; i.i.d. sequence
D – disturbance space
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Return

Definition (Return)
Return, or total discounted return is:

R =

∞∑
t=0

γtRt+1,

where 0 ≤ γ ≤ 1 is the so-called discount factor. The return depends
on how we act!
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The goal of control

Goal
Maximize the expected total discounted reward, or expected return,
irrespective of the initial state:

E

[ ∞∑
t=0

γtRt+1 |X0 = x

]
→ max!, x ∈ X .
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Alternate definition

Definition (Markov decision process)
Triplet: (X ,A,P0), where
X – set of states
A – set of actions
P0 – state and reward kernel
P0(U|x, a) is the probability that (Xt+1,Rt+1) lands in U ⊂ X × R
given that Xt = x, At = a
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Connection to previous definition

Assume that

Xt+1 = f (Xt,At,Dt+1)

Rt+1 = g(Xt,At,Dt+1)

t = 0, 1, . . . .

Then
P0(U| x, a) = P ( [ f (x, a,D), g(x, a,D)] ∈ U ) ,

Here, D has the same distribution as D1,D2, . . ..
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“Classical form”

Finite MDP (as is often seen in AI publications):

(X ,A,P, r)

X ,A are finite.
P(x, a, y) is the probability of landing at state y given that action a
was chosen in state x

r(x, a, y) is the expected reward received when making this
transition.
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Policies, values

Note
From now on we assume that A is countable.

Definition (General policy)
Maps each history to a distribution over A.
Deterministic policy: π = (π0, π1, . . .), where π0 : X → A and
πt : (X ×A× R)t−1 ×X → A, t = 1, 2, . . ..
Following the policy: At = πt(X0,A0,R1, . . . ,Xt−1,At−1,Rt,Xt).
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Stationary policies

Definition (Stationary policy)
The map depends on the last state only.

Deterministic policy: π = (π0, π0, . . .).
Following the policy: At = π0(Xt).
Stochastic policy: π = (π0, π0, . . .), π0 : X → M1(A).
Following the policy: At ∼ π0(·|Xt).
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The value of a policy

Definition (Value of a state under π)
The expected return given that the policy is started in state x:

Vπ(x) = E [Rπ|X0 = x] .

Vπ – value function of π.

Definition (Action-value of a state-action pair under π)
The expected return given that the process is started from state x, the
first action is a after which the policy π is followed:

Qπ(x, a) = E [Rπ|X0 = x,A0 = a] .

Qπ – action-value function of π
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Optimal values

Definition (Optimal values)
The optimal value of a state is the value of the best possible expected
return that can be obtained from that state:

V∗(x) = sup
π

Vπ(x).

Similarly, the optimal value of a state-action pair is
Q∗(x, a) = supπ Qπ(x, a).

Definition (Optimal policy)
A policy π is called optimal if Vπ(x) = V∗(x) holds for all states x ∈ X .
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The fundamental theorem and the Bellman (optimality) operator

Theorem
Assume that |A| < +∞. Then the optimal value function satisfies

V∗(x) = max
a∈A

r(x, a) + γ
∑
y∈X
P(x, a, y)V∗(y)

 , x ∈ X .

and if policy π is such that in each state x it selects an action that maximizes
the r.h.s. then π is an optimal policy.

A shorter way to write this is
V∗ = T∗V∗,

(T∗V)(x) = max
a∈A

r(x, a) + γ
∑
y∈X
P(x, a, y)V(y)

 , x ∈ X .
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Action evaluation operator

Definition (Action evaluation operator)
Let a ∈ A and define

(TaV)(x) = r(x, a) + γ
∑
y∈X
P(x, a, y)V(y), x ∈ X .

Comment

T∗V [x] = max
a∈A

TaV [x].
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Policy evaluation operator

Definition (Policy evaluation operator)
Let π be a stochastic stationary policy. Define

(TπV)(x) =
∑
a∈A

π(a|x)

r(x, a) + γ
∑
y∈X
P(x, a, y)V(y)


=

∑
a∈A

π(a|x)TaV(x), x ∈ X .

Corollary
Tπ is a contraction, and Vπ is the unique fixed point of Tπ.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 40 / 51



Greedy policy

Definition (Greedy policy)
Policy π is greedy w.r.t. V if

TπV = T∗V,

or

∑
a∈A

π(a|x)

r(x, a) + γ
∑
y∈X
P(x, a, y)V(y)

 =

maxa∈A

{
r(x, a) + γ

∑
y∈X P(x, a, y)V(y)

}
holds for all states x.
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A restatement of the main theorem

Theorem
Assume that |A| < +∞. Then the optimal value function satisfies the
fixed-point equation V∗ = T∗V∗ and any greedy policy w.r.t. V∗ is
optimal.
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Action-value functions

Corollary
Let Q∗ be the optimal action-value function. Then,

Q∗ = T∗Q∗

and if π is a policy such that∑
a∈A

π(a|x)Q∗(x, a) = max
a∈A

Q∗(x, a)

then π is optimal. Here,

T∗Q (x, a) = r(x, a) + γ
∑
y∈X
P(x, a, y)max

a′∈A
Q(y, a′), x ∈ X , a ∈ A.
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Finding the action-value functions of policies

Theorem
Let π be a stationary policy, Tπ be defined by

TπQ (x, a) = r(x, a) + γ
∑
y∈X
P(x, a, y)

∑
a′∈A

π(a′|y)Q(y, a′), x ∈ X , a ∈ A.

Then Qπ is the unique solution of

TπQπ = Qπ.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 44 / 51



Value iteration – a second look

function VALUEITERATION

1: for x ∈ X do V[x]← 0
2: V ′ ← V
3: repeat
4: for x ∈ X \ {x∗} do
5: V[x]← T∗V [x]
6: end for
7: until V 6= V ′

8: return V

function BESTACTION(x,V)
1: return argmax

a∈A(x)
TaV [x]
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Value iteration

Note
If Vt is the value-function computed in the tth iteration of value
iteration then

Vt+1 = T∗Vt.

The key is that T∗ is a contraction in the supremum norm and
Banach’s fixed-point theorem gives the key to the proof the
theorem mentioned before.

Note
One can also use Qt+1 = T∗Qt, or value functions with post-decision
states. What is the advantage?
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Policy iteration

function POLICYITERATION(π)
1: repeat
2: π′ ← π
3: V ← GETVALUEFUNCTION(π′)
4: π ← GETGREEDYPOLICY(V)
5: until π 6= π′

6: return π
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What if we stop early?

Theorem (e.g., Corollary 2 of Singh and Yee 1994)
Fix an action-value function Q and let π be a greedy policy w.r.t. Q.
Then the value of policy π can be lower bounded as follows:

Vπ(x) ≥ V∗(x)− 2
1− γ

‖Q− Q∗‖∞, x ∈ X .
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Books

Bertsekas and Shreve (1978)
Puterman (1994)
Bertsekas (2007a,b)
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%\embedfile{SplitShowIcon.png}
\newcommand{\emptynote}{\note{\mbox{}}}
\input{tutorial01}

% Doc: http://sourceforge.net/apps/mediawiki/skim-app/index.php?title=Tips_and_Tricks

% SKIM!! You need to open up the PDF of your presentation, as well as a second PDF of accompanying notes as the 'Synchronized Notes Document', containing exactly the same number of pages as the presentation. Then, in the presentation PDF, go to 'View' > 'Presentation Options', and in the dropdown for 'Synchronized Notes Document' you will see as an option the filename of the other PDF containing the notes for the presentation. Select that, then make sure you have the window of the presentation PDF on the 'public' monitor (eg a projector, as you would usually do) and the window of the notes document on your private monitor, such as your own laptop. Then simply put the PDF in presentation mode, and the notes PDF will scroll along as you change pages on the presentations PDF. 

