Reinforcement Learning Algorithms in Markov Decision Processes AAAI-10 Tutorial

Part II: Learning to predict values

Csaba Szepesvári Richard S. Sutton

University of Alberta

E-mails: \{szepesva,rsutton\}@.ualberta.ca
Atlanta, July 11, 2010

Outline

(1) Introduction
(2) Simple learning techniques

- Learning the mean
- Learning values with Monte-Carlo
- Learning values with temporal differences
- Monte-Carlo or TD?
- Resolution
(3) Function approximation
(4) Methods
- Stochastic gradient descent
- TD (λ) with linear function approximation
- Gradient temporal difference learning
- LSTD and friends
- Comparing least-squares and TD-like methods
(5) How to choose the function approximation method?

6 Bibliography

The problem

How to learn the value function of a policy over a large state space?

Why learn?

- Avoid the "curses of modeling"
- Complex models are hard to deal with
- Avoids modelling errors
- Adaptation to changes

Why learn value functions?

- Applications:
- Failure probabilities in a large power grid
- Taxi-out times of flights on airports
- Generally: Estimating a long term expected value associated with a Markov process
- Building block

Learning the mean of a distribution

- Assume R_{1}, R_{2}, \ldots are i.i.d., $\exists V=\mathbb{E}\left[R_{t}\right]$.
- Estimating the expected value by the sample mean:

$$
V_{t}=\frac{1}{t} \sum_{s=0}^{t-1} R_{s+1} .
$$

- Recursive update:

$$
V_{t}=V_{t-1}+\frac{1}{t}(\underbrace{R_{t}}_{\text {"target" }}-V_{t-1}) .
$$

- More general update:

$$
V_{t}=V_{t-1}+\alpha_{t}\left(R_{t}-V_{t-1}\right),
$$

- "Robbins-Monro" conditions:

$$
\sum_{t=0}^{\infty} \alpha_{t}=\infty, \quad \sum_{t=0}^{\infty} \alpha_{t}^{2}<\infty
$$

Application to learning a value: the Monte-Carlo method

Setup:

- Finite, episodic MDP
- Policy π, which is proper from x_{0}
- Goal: Estimate $V^{\pi}\left(x_{0}\right)$!

- Trajectories:

$$
\begin{aligned}
& X_{0}^{(0)}, R_{1}^{(0)}, X_{1}^{(0)}, R_{2}^{(0)}, \ldots, X_{T_{0}}^{(0)}, \\
& X_{0}^{(1)}, R_{1}^{(1)}, X_{1}^{(1)}, R_{2}^{(1)}, \ldots, X_{T_{1}}^{(0)},
\end{aligned}
$$

where $X_{0}^{(i)}=x_{0}$

First-visit Monte-Carlo

function FiRstVisitMC($\mathcal{T}, V, n)$
$\mathcal{T}=\left(X_{0}, R_{1}, \ldots, R_{T}, X_{T}\right)$ is a trajectory with $X_{0}=x$ and X_{T} being an absorbing state, n is the number of times V was updated
1: sum $\leftarrow 0$
2: for $t=0$ to $T-1$ do
3: $\quad \operatorname{sum} \leftarrow \operatorname{sum}+\gamma^{t} \boldsymbol{R}_{t+1}$
4: end for
5: $V \leftarrow V+\frac{1}{n}($ sum $-V)$
6: return V

Every-visit Monte-Carlo - learning a value function

function EVERYVisitMC $\left(X_{0}, R_{1}, X_{1}, R_{2}, \ldots, X_{T-1}, R_{T}, V\right)$
Input: X_{t} is the state at time t, R_{t+1} is the reward associated with the
$t^{\text {th }}$ transition, T is the length of the episode, V is the array storing
the current value function estimate
1: sum $\leftarrow 0$
2: for $t \leftarrow T-1$ downto 0 do
3: \quad sum $\leftarrow R_{t+1}+\gamma \cdot$ sum
4: $\quad \operatorname{target}\left[X_{t}\right] \leftarrow$ sum
5: $\quad V\left[X_{t}\right] \leftarrow V\left[X_{t}\right]+\alpha \cdot\left(\operatorname{target}\left[X_{t}\right]-V\left[X_{t}\right]\right)$
6: end for
7: return V

Learning from snippets of data

Goals

- Learn from elementary transitions of the form $\left(X_{t}, R_{t+1}, X_{t+1}\right)$
- Learn a full value function
- Increase convergence rate (if possible)

\Longrightarrow Temporal Difference (TD) Learning

Learning from guesses: TD learning

- Idealistic Monte-Carlo update:

$$
V\left(X_{t}\right) \leftarrow V\left(X_{t}\right)+\frac{1}{t}\left(\mathcal{R}_{t}-V\left(X_{t}\right)\right)
$$

where \mathcal{R}_{t} is the return from state X_{t}.

- However, \mathcal{R}_{t} is not available!
- Idea: Replace it with something computable:

$$
\begin{aligned}
\mathcal{R}_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\ldots \\
& =R_{t+1}+\gamma\left\{R_{t+2}+\gamma R_{t+3}+\ldots\right\} \\
& \approx R_{t+1}+\gamma V\left(X_{t+1}\right)
\end{aligned}
$$

- Update:

$$
V\left(X_{t}\right) \leftarrow V\left(X_{t}\right)+\frac{1}{t} \overbrace{\left\{R_{t+1}+\gamma V\left(X_{t+1}\right)-V\left(X_{t}\right)\right\}}^{\delta_{t+1}(V)} .
$$

The TD(0) algorithm

function $\operatorname{TDO}(X, R, Y, V)$
Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, V is the array storing the current value estimates
1: $\delta \leftarrow R+\gamma \cdot V[Y]-V[X]$
2: $V[X] \leftarrow V[X]+\alpha \cdot \delta$
3: return V

Which one to love? Part I

TD(0) at state 2 :

- By the $k^{\text {th }}$ visit to state 2 , state 3 has already been visited $\approx 10 k$ times!
- $\operatorname{Var}\left[\hat{V}_{t}(3)\right] \approx 1 /(10 k)$!

Which one to love? Part II

- Replace the stochastic reward by a deterministic one of value 1
- TD has to wait until the value of 3 converges
- MC updates towards the correct value in every step (no variance!)

The happy compromise: $\operatorname{TD}(\lambda)$

- Choose $0 \leq \lambda \leq 1$
- Consider the k-step return estimate:

$$
\mathcal{R}_{t: k}=\sum_{s=t}^{t+k} \gamma^{s-t} R_{s+1}+\gamma^{k+1} \hat{V}_{t}\left(X_{t+k+1}\right)
$$

- Consider updating the values toward the so-called λ-return estimate:

$$
\mathcal{R}_{t}^{(\lambda)}=\sum_{k=0}^{\infty}(1-\lambda) \lambda^{k} \mathcal{R}_{t: k}
$$

Toward TD (λ)

$$
\mathcal{R}_{t \cdot k}=\sum_{s=1}^{t+k} \gamma^{s-t R_{s+1}}+\gamma^{k+1} \hat{V}_{t}\left(X_{t+k+1)}\right), \quad \mathcal{R}_{t}^{(\lambda)}=\sum_{k=0}^{\infty}(1-\lambda) \lambda^{k} \mathcal{R}_{t k k}
$$

$$
\begin{aligned}
\mathcal{R}_{t}^{(\lambda)}-\hat{V}_{t}\left(X_{t}\right)= & (1-\lambda)\left\{R_{t+1}+\gamma \hat{V}_{t}\left(X_{t+1}\right)-\hat{V}_{t}\left(X_{t}\right)\right\}+ \\
& (1-\lambda) \lambda\left\{R_{t+1}+\gamma R_{t+2}+\gamma^{2} \hat{V}_{t}\left(X_{t+2}\right)-\hat{V}_{t}\left(X_{t}\right)\right\}+ \\
& (1-\lambda) \lambda^{2}\left\{R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} \hat{V}_{t}\left(X_{t+3}\right)-\hat{V}_{t}\left(X_{t}\right)\right\}+ \\
\vdots & \\
= & {\left[R_{t+1}+\gamma \hat{V}_{t}\left(X_{t+1}\right)-\hat{V}_{t}\left(X_{t}\right)\right] } \\
& \gamma \lambda\left[R_{t+2}+\gamma \hat{V}_{t}\left(X_{t+2}\right)-\hat{V}_{t}\left(X_{t+1}\right)\right]+ \\
& \gamma^{2} \lambda^{2}\left[R_{t+3}+\gamma \hat{V}_{t}\left(X_{t+3}\right)-\hat{V}_{t}\left(X_{t+2}\right)\right]+
\end{aligned}
$$

The $\operatorname{TD}(\lambda)$ algorithm

function TDLAMBDA (X, R, Y, V, z)
Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, V is the array storing the current value function estimate, z is the array storing the eligibility traces
1: $\delta \leftarrow R+\gamma \cdot V[Y]-V[X]$
2: for all $x \in \mathcal{X}$ do
3: $\quad z[x] \leftarrow \gamma \cdot \lambda \cdot z[x]$
4: \quad if $X=x$ then
5: $\quad z[x] \leftarrow 1$
6: end if
7: $\quad V[x] \leftarrow V[x]+\alpha \cdot \delta \cdot z[x]$
8: end for
9: return (V, z)

Experimental results

Problem: 19-state random walk on a chain. Reward of 1 at the left end. Both ends are absorbing. The goal is to predict the values of states.

Too many states! What to do?

- The state space is too large
- Cannot store all the values
- Cannot visit all the states!
- What to do???
- Idea: Use compressed representations!
- Examples
- Discretization
- Linear function approximation
- Nearest neighbor methods
- Kernel methods
- Decision trees
-
- How to use them?

Regression with stochastic gradient descent

- Assume $\left(X_{1}, R_{1}\right),\left(X_{2}, R_{2}\right), \ldots$ are i.i.d., $\exists V(x)=\mathbb{E}\left[R_{t} \mid X_{t}=x\right]$.
- Goal:
- Estimate V!
- With a function of the form $V_{\theta}(x)=\theta^{\top} \varphi(x)$
- This is called regression in statistics/machine learning
- More precise goal: Minimize the expected squared prediction error:

$$
J(\theta)=\frac{1}{2} \mathbb{E}\left[\left(R_{t}-V_{\theta}\left(X_{t}\right)\right)^{2}\right] .
$$

- Stochastic gradient descent:

$$
\begin{aligned}
\theta_{t+1} & =\theta_{t}-\alpha_{t} \frac{1}{2} \nabla_{\theta}\left(R_{t}-V_{\theta_{t}}\left(X_{t}\right)\right)^{2} \\
& =\theta_{t}+\alpha_{t}\left(R_{t}-V_{\theta_{t}}\left(X_{t}\right)\right) \nabla_{t} V_{\theta_{t}}\left(X_{t}\right) \\
& =\theta_{t}+\alpha_{t}\left(R_{t}-V_{\theta_{t}}\left(X_{t}\right)\right) \varphi\left(X_{t}\right) .
\end{aligned}
$$

- "Robbins-Monro" conditions: $\sum_{t=0}^{\infty} \alpha_{t}=\infty, \quad \sum_{t=0}^{\infty} \alpha_{t}^{2}<\infty$.

Limit theory

- Stochastic gradient descent:

$$
\theta_{t+1}-\theta_{t}=\alpha_{t}\left(R_{t}-V_{\theta_{t}}\left(X_{t}\right)\right) \varphi\left(X_{t}\right)
$$

- "Robbins-Monro" conditions: $\sum_{t=0}^{\infty} \alpha_{t}=\infty, \quad \sum_{t=0}^{\infty} \alpha_{t}^{2}<\infty$.
- If converges, it must converge to θ^{*} satisfying

$$
\mathbb{E}\left[\left(R_{t}-V_{\theta}\left(X_{t}\right)\right) \varphi\left(X_{t}\right)\right]=0 .
$$

- Explicit form:

$$
\theta^{*}=\mathbb{E}\left[\varphi_{t} \varphi_{t}^{\top}\right]^{-1} \mathbb{E}\left[\varphi_{t} R_{t}\right]
$$

where $\varphi_{t}=\varphi\left(X_{t}\right)$.

- Indeed a minimizer of J.
- "LMS rule", "Widrow-Hoff" rule, "delta-rule", "ADALINE"

Learning from guesses: TD learning with function

 approximation- Replace reward with return!
- Idealistic Monte-Carlo based update:

$$
\theta_{t+1}=\theta_{t}+\alpha_{t}\left(\mathcal{R}_{t}-V_{\theta_{t}}\left(X_{t}\right)\right) \nabla_{\theta} V_{\theta_{t}}\left(X_{t}\right)
$$

where \mathcal{R}_{t} is the return from state X_{t}.

- However, \mathcal{R}_{t} is not available!
- Idea: Replace it with an estimate:

$$
\mathcal{R}_{t} \approx R_{t+1}+\gamma V_{\theta_{t}}\left(X_{t+1}\right)
$$

- Update:

$$
\theta_{t+1}=\theta_{t}+\alpha_{t} \overbrace{\left\{R_{t+1}+\gamma V_{\theta_{t}}\left(X_{t+1}\right)-V_{\theta_{t}}\left(X_{t}\right)\right\}}^{\delta_{t+1}\left(V_{\theta_{t}}\right)} \nabla_{\theta} V_{\theta_{t}}\left(X_{t}\right)
$$

TD (λ) with linear function approximation

function TDLAmbdaLinFApp (X, R, Y, θ, z)
Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, $\theta \in \mathbb{R}^{d}$ is the parameter vector of the linear function approximation, $z \in \mathbb{R}^{d}$ is the vector of eligibility traces
1: $\delta \leftarrow R+\gamma \cdot \theta^{\top} \varphi[Y]-\theta^{\top} \varphi[X]$
2: $z \leftarrow \varphi[X]+\gamma \cdot \lambda \cdot z$
3: $\theta \leftarrow \theta+\alpha \cdot \delta \cdot z$
4: return (θ, z)

Issues with off-policy learning

5-star example
Behavior of TD(0) with expected backups on the 5-star example

Defining the objective function

- Let $\delta_{t+1}(\theta)=R_{t+1}+\gamma V_{\theta}\left(Y_{t+1}\right)-V_{\theta}\left(X_{t}\right)$ be the TD-error at time t, $\varphi_{t}=\varphi\left(X_{t}\right)$.
- TD(0) update:

$$
\theta_{t+1}-\theta_{t}=\alpha_{t} \delta_{t+1}\left(\theta_{t}\right) \varphi_{t}
$$

- When $\operatorname{TD}(0)$ converges, it converges to a unique vector θ^{*} that satisfies

$$
\begin{equation*}
\mathbb{E}\left[\delta_{t+1}\left(\theta^{*}\right) \varphi_{t}\right]=0 \tag{TDEQ}
\end{equation*}
$$

- Goal: Come up with an objective function such that its optima satisfy (TDEQ).
- Solution:

$$
J(\theta)=\mathbb{E}\left[\delta_{t+1}(\theta) \varphi_{t}\right]^{\top} \mathbb{E}\left[\varphi_{t} \varphi_{t}^{\top}\right]^{-1} \mathbb{E}\left[\delta_{t+1}(\theta) \varphi_{t}\right]
$$

Deriving the algorithm

$$
J(\theta)=\mathbb{E}\left[\delta_{t+1}(\theta) \varphi_{t}\right]^{\top} \mathbb{E}\left[\varphi_{t} \varphi_{t}^{\top}\right]^{-1} \mathbb{E}\left[\delta_{t+1}(\theta) \varphi_{t}\right]
$$

- Take the gradient!

$$
\nabla_{\theta} J(\theta)=-2 \mathbb{E}\left[\left(\varphi_{t}-\gamma \varphi_{t+1}^{\prime}\right) \varphi_{t}^{\top}\right] w(\theta)
$$

where

$$
w(\theta)=\mathbb{E}\left[\varphi_{t} \varphi_{t}^{\top}\right]^{-1} \mathbb{E}\left[\delta_{t+1}(\theta) \varphi_{t}\right]
$$

- Idea: introduce two sets of weights!

$$
\begin{aligned}
\theta_{t+1} & =\theta_{t}+\alpha_{t} \cdot\left(\varphi_{t}-\gamma \cdot \varphi_{t+1}^{\prime}\right) \cdot \varphi_{t}^{\top} w_{t} \\
w_{t+1} & =w_{t}+\beta_{t} \cdot\left(\delta_{t+1}\left(\theta_{t}\right)-\varphi_{t}^{\top} w_{t}\right) \cdot \varphi_{t}
\end{aligned}
$$

GTD2 with linear function approximation

function GTD2($X, R, Y, \theta, w)$
Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, $\theta \in \mathbb{R}^{d}$ is the parameter vector of the linear function approximation, $w \in \mathbb{R}^{d}$ is the auxiliary weight
1: $f \leftarrow \varphi[X]$
2: $f^{\prime} \leftarrow \varphi[Y]$
3: $\delta \leftarrow R+\gamma \cdot \theta^{\top} f^{\prime}-\theta^{\top} f$
4: $a \leftarrow f^{\top} w$
5: $\theta \leftarrow \theta+\alpha \cdot\left(f-\gamma \cdot f^{\prime}\right) \cdot a$
6: $w \leftarrow w+\beta \cdot(\delta-a) \cdot f$
7: return (θ, w)

Experimental results

Behavior on 7-star example

Bibliographic notes and subsequent developments

- GTD - the original idea (Sutton et al., 2009b)
- GTD2, a two-timescale version (TDC) (Sutton et al., 2009a). Just replace the update in line 5 by

$$
\theta \leftarrow \theta+\alpha \cdot\left(\delta \cdot f-\gamma \cdot a \cdot f^{\prime}\right)
$$

- Extension to nonlinear function approximation (Maei et al., 2010) Addresses the issue that TD is unstable when used with nonlinear function approximation
- Extension to eligibility traces, action-values (Maei and Sutton, 2010)
- Extension to control (next part!)

The problem

- The methods are "gradient"-like, or "first-order methods"
- Make small steps in the weight space
- They are sensitive to:
- choice of the step-size
- initial values of weights
- eigenvalue spread of the underlying matrix determining the dynamics
- Solution proposals:
- Use of adaptive step-sizes (Sutton, 1992; George and Powell, 2006)
- Normalizing the updates (Bradtke, 1994)
- Reusing previous samples (Lin, 1992)
- Each of them have their own weaknesses

The LSTD algorithm

- In the limit, if $\mathrm{TD}(0)$ converges it finds the solution to
$(*) \quad \mathbb{E}\left[\varphi_{t} \delta_{t+1}(\theta)\right]=0$.
- Assume the sample so far is

$$
\mathcal{D}_{n}=\left(\left(X_{0}, R_{1}, Y_{1}\right),\left(X_{1}, R_{2}, Y_{2}\right), \ldots,\left(X_{n-1}, R_{n}, Y_{n}\right)\right),
$$

- Idea: Approximate (*) by $\quad(* *) \quad \frac{1}{n} \sum_{t=0}^{n-1} \varphi_{t} \delta_{t+1}(\theta)=0$.
- Stochastic programming: sample average approximation (Shapiro, 2003)
- Statistics: Z-estimation (e.g., Kosorok, 2008, Section 2.2.5)
- Note: $\left({ }^{* *}\right)$ is equivalent to

$$
-\hat{A}_{n} \theta+\hat{b}_{n}=0
$$

where $\hat{b}_{n}=\frac{1}{n} \sum_{t=0}^{n-1} R_{t+1} \varphi_{t}$ and $\hat{A}_{n}=\frac{1}{n} \sum_{t=0}^{n-1} \varphi_{t}\left(\varphi_{t}-\gamma \varphi_{t+1}^{\prime}\right)^{\top}$.

- Solution: $\theta_{n}=\hat{A}_{n}^{-1} \hat{b}_{n}$, provided the inverse exists.
- Least-squares temporal difference learning or LSTD (Bradtke and Barto, 1996).

RLSTD(0) with linear function approximation

function RLSTD (X, R, Y, C, θ)
Input: X is the last state, Y is the next state, R is the immediate reward associated with this transition, $C \in \mathbb{R}^{d \times d}$, and $\theta \in \mathbb{R}^{d}$ is the parameter vector of the linear function approximation
1: $f \leftarrow \varphi[X]$
2: $f^{\prime} \leftarrow \varphi[Y]$
3: $g \leftarrow\left(f-\gamma f^{\prime}\right)^{\top} C \quad \triangleright g$ is a $1 \times d$ row vector
4: $a \leftarrow 1+g f$
5: $v \leftarrow C f$
6: $\delta \leftarrow R+\gamma \cdot \theta^{\top} f^{\prime}-\theta^{\top} f$
7: $\theta \leftarrow \theta+\delta / a \cdot v$
8: $C \leftarrow C-v g / a$
9: return (C, θ)

Which one to love?

Assumptions

- Time for computation T is fixed
- Samples are cheap to obtain

Some facts

How many samples (n) can be processed?

- Least-squares: $n \approx T / d^{2}$
- First-order methods:

$$
n^{\prime} \approx T / d=n d
$$

Precision after t samples?

- Least-squares: $C_{1} t^{-\frac{1}{2}}$
- First-order: $C_{2} t^{-\frac{1}{2}}$
- $C_{2}>C_{1}$

Conclusion

Ratio of precisions:

$$
\frac{\left\|\theta_{n^{\prime}}^{\prime}-\theta_{*}\right\|}{\left\|\theta_{n}-\theta_{*}\right\|} \approx \frac{C_{2}}{C_{1}} d^{-\frac{1}{2}},
$$

Hence: If $C_{2} / C_{1}<d^{1 / 2}$ then the first-order method wins, in the other case the least-squares method wins.

The choice of the function approximation method

Factors to consider

- Quality of the solution in the limit of infinitely many samples
- Overfitting/underfitting
- "Eigenvalue spread" (decorrelated features) when using first-order methods

Error bounds

Consider $\operatorname{TD}(\lambda)$ estimating the value function V. Let $V_{\theta(\lambda)}$ be the limiting solution. Then

$$
\left\|V_{\theta(\lambda)}-V\right\|_{\mu} \leq \frac{1}{\sqrt{1-\gamma_{\lambda}}}\left\|\Pi_{\mathcal{F}, \mu} V-V\right\|_{\mu} .
$$

Here $\gamma_{\lambda}=\gamma(1-\lambda) /(1-\lambda \gamma)$ is the contraction modulus of $\Pi_{\mathcal{F}, \mu} T^{(\lambda)}$ (Tsitsiklis and Van Roy, 1999; Bertsekas, 2007).

Error analysis II

- Define the Bellman error $\Delta^{(\lambda)}(\hat{V})=T^{(\lambda)} \hat{V}-\hat{V}, \hat{V}: \mathcal{X} \rightarrow \mathbb{R}$ under $T^{(\lambda)}=(1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} T^{[m]}$, where $T^{[m]}$ is the m-step lookahead Bellman operator.
- Contraction argument: $\|V-\hat{V}\|_{\infty} \leq \frac{1}{1-\gamma}\left\|\Delta^{(\lambda)}(\hat{V})\right\|_{\infty}$.
- What makes $\Delta^{(\lambda)}(\hat{V})$ small?
- Error decomposition:

$$
\Delta^{(\lambda)}\left(V_{\theta(\lambda)}\right)=(1-\lambda) \sum_{m \geq 0} \lambda^{m} \Delta_{m}^{[r]}+\gamma\left\{(1-\lambda) \sum_{m \geq 0} \lambda^{m} \Delta_{m}^{[\varphi]}\right\} \theta^{(\lambda)}
$$

where

- $\Delta_{m}^{[r]}=\bar{r}_{m}-\Pi_{\mathcal{F}, \mu} \bar{r}_{m}$
- $\Delta_{m}^{[\varphi]}=P^{m+1} \varphi^{\top}-\Pi_{\mathcal{F}, \mu} P^{m+1} \varphi^{\top}$
- $\bar{r}_{m}(x)=\mathbb{E}\left[R_{m+1} \mid X_{0}=x\right]$,
- $P^{m+1} \varphi^{\top}(x)=\left(P^{m+1} \varphi_{1}(x), \ldots, P^{m+1} \varphi_{d}(x)\right)$,
- $P^{m} \varphi_{i}(x)=\mathbb{E}\left[\varphi_{i}\left(X_{m}\right) \mid X_{0}=x\right]$.

For Further Reading

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, volume 2. Athena Scientific, Belmont, MA, 3 edition.
Bradtke, S. J. (1994). Incremental Dynamic Programming for On-line Adaptive Optimal Control. PhD thesis, Department of Computer and Information Science, University of Massachusetts, Amherst, Massachusetts.
Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal difference learning. Machine Learning, 22:33-57.
George, A. P. and Powell, W. B. (2006). Adaptive stepsizes for recursive estimation with applications in approximate dynamic programming. Machine Learning, 65:167-198.
Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer.
Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 9:293-321.
Maei, H., Szepesvári, C., Bhatnagar, S., Silver, D., Precup, D., and Sutton, R. (2010). Convergent temporal-difference learning with arbitrary smooth function approximation. In NIPS-22, pages 1204-1212.
Maei, H. R. and Sutton, R. S. (2010). GQ(λ): A general gradient algorithm for temporal-difference prediction
learning with eligibility traces. In Baum, E., Hutter, M., and Kitzelmann, E., editors, AGI 2010, pages 91-96. Atlantis Press.

Shapiro, A. (2003). Monte Carlo sampling methods. In Stochastic Programming, Handbooks in OR \& MS, volume 10. North-Holland Publishing Company, Amsterdam.

Sutton, R. S. (1992). Gain adaptation beats least squares. In Proceedings of the 7th Yale Workshop on Adaptive and Learning Systems, pages 161-166.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., and Wiewiora, E. (2009a). Fast gradient-descent methods for temporal-difference learning with linear function approximation. In Bottou, L. and Littman, M., editors, ICML 2009, pages 993-1000. ACM.

Sutton, R. S., Szepesvári, C., and Maei, H. R. (2009b). A convergent $O(n)$ temporal-difference algorithm for off-policy learning with linear function approximation. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, NIPS-21, pages 1609-1616. MIT Press.

Tsitsiklis, J. N. and Van Roy, B. (1999). Average cost temporal-difference learning. Automatica, 35(11):1799-1808.

