
Reinforcement Learning Algorithms in Markov
Decision Processes

AAAI-10 Tutorial

Part IV: Take home message

Csaba Szepesvári Richard S. Sutton

University of Alberta
E-mails: {szepesva,rsutton}@.ualberta.ca

Atlanta, July 11, 2010

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 1 / 9

Contributions! !"# !"$ %
&'()*+

!

%, -.*/0/)1)(2

34+5)(2

67+'()*+5

80.94(

:*1)'2;<)(=;

.4'*9+)>4.

?4=0@)*.;:*1)'2

80.94(;

:*1)'2;<A*

;.4'*9+)>4.

Off-policy learning with options and recognizers
Doina Precup, Richard S. Sutton, Cosmin Paduraru, Anna J. Koop, Satinder Singh

 McGill University, University of Alberta, University of Michigan

Options

Distinguished

region

Ideas and Motivation Background Recognizers Off-policy algorithm for options Learning w/o the Behavior Policy

Wall

Options
• A way of behaving for a period of time

Models of options
• A predictive model of the outcome of following the option
• What state will you be in?
• Will you still control the ball?
• What will be the value of some feature?
• Will your teammate receive the pass?
• What will be the expected total reward along the way?
• How long can you keep control of the ball?

Dribble Keepaway Pass

Options for soccer players could be

Options in a 2D world

The red and blue options

are mostly executed.

Surely we should be able

to learn about them from

this experience!

Experienced

trajectory

Off-policy learning
• Learning about one policy while behaving according to another
• Needed for RL w/exploration (as in Q-learning)
• Needed for learning abstract models of dynamical systems

(representing world knowledge)
• Enables efficient exploration
• Enables learning about many ways of behaving at the same time

(learning models of options)

! a policy
! a stopping condition

Non-sequential example

Problem formulation w/o recognizers

Problem formulation with recognizers

• One state

• Continuous action a ∈ [0, 1]

• Outcomes zi = ai

• Given samples from policy b : [0, 1] → #+

• Would like to estimate the mean outcome for a sub-region of the

action space, here a ∈ [0.7, 0.9]

Target policy π : [0, 1] → "+ is uniform within the region of interest

(see dashed line in figure below). The estimator is:

m̂π =
1
n

n
X

i=1

π(ai)

b(ai)
zi.

Theorem 1 Let A = {a1, . . . ak} ⊆ A be a subset of all the

possible actions. Consider a fixed behavior policy b and let πA be

the class of policies that only choose actions from A, i.e., if
π(a) > 0 then a ∈ A. Then the policy induced by b and the binary
recognizer cA is the policy with minimum-variance one-step

importance sampling corrections, among those in πA:

π as given by (1) = arg min
p∈πA

Eb

"

„

π(ai)

b(ai)

«2
#

(2)

Proof: Using Lagrange multipliers

Theorem 2 Consider two binary recognizers c1 and c2, such that

µ1 > µ2. Then the importance sampling corrections for c1 have

lower variance than the importance sampling corrections for c2.

Off-policy learning

Let the importance sampling ratio at time step t be:

ρt =
π(st, at)

b(st, at)

The truncated n-step return, R
(n)
t , satisfies:

R
(n)
t = ρt[rt+1 + (1 − βt+1)R

(n−1)
t+1].

The update to the parameter vector is proportional to:

∆θt =
h

Rλ
t − yt

i

∇θytρ0(1 − β1) · · · ρt−1(1 − βt).

Theorem 3 For every time step t ≥ 0 and any initial state s,

Eb[∆θt|s] = Eπ[∆θ̄t|s].

Proof: By induction on n we show that

Eb{R
(n)
t |s} = Eπ{R̄

(n)
t |s}

which implies that Eb{R
λ
t |s} = Eπ(R̄λ

t |s}. The rest of the proof is
algebraic manipulations (see paper).

Implementation of off-policy learning for options

In order to avoid∆θ → 0, we use a restart function g : S → [0, 1]
(like in the PSD algorithm). The forward algorithm becomes:

∆θt = (Rλ
t − yt)∇θyt

t
X

i=0

giρi...ρt−1(1 − βi+1)...(1 − βt),

where gt is the extent of restarting in state st.

The incremental learning algorithm is the following:

• Initialize κ0 = g0, e0 = κ0∇θy0

• At every time step t:

δt = ρt (rt+1 + (1 − βt+1)yt+1) − yt

θt+1 = θt + αδtet

κt+1 = ρtκt(1 − βt+1) + gt+1

et+1 = λρt(1 − βt+1)et + κt+1∇θyt+1

References

Off-policy learning is tricky

• The Bermuda triangle

! Temporal-difference learning
! Function approximation (e.g., linear)
! Off-policy

• Leads to divergence of iterative algorithms
! Q-learning diverges with linear FA
! Dynamic programming diverges with linear FA

Baird's Counterexample

V
k
(s) =

!(7)+2!(1)

terminal

state99%

1%

100%

V
k
(s) =

!(7)+2!(2)

V
k
(s) =

!(7)+2!(3)

V
k
(s) =

!(7)+2!(4)

V
k
(s) =

!(7)+2!(5)

V
k
(s) =

2!(7)+!(6)

0

5

10

0 1000 2000 3000 4000 5000

10

10

/ -10

Iterations (k)

5
10

10
10

0
10

-

-

Parameter
values, !k(i)

(log scale,

broken at !1)

!k(7)

!k(1) – !k(5)

!k(6)

Precup, Sutton & Dasgupta (PSD) algorithm

• Uses importance sampling to convert off-policy case to on-policy case
• Convergence assured by theorem of Tsitsiklis & Van Roy (1997)
• Survives the Bermuda triangle!

BUT!

• Variance can be high, even infinite (slow learning)
• Difficult to use with continuous or large action spaces
• Requires explicit representation of behavior policy (probability distribution)

Option formalism

An option is defined as a triple o = 〈I,π, β〉

• I ⊆ S is the set of states in which the option can be initiated

• π is the internal policy of the option

• β : S → [0, 1] is a stochastic termination condition

We want to compute the reward model of option o:

Eo{R(s)} = E{r1 + r2 + . . . + rT |s0 = s, π, β}

We assume that linear function approximation is used to represent

the model:

Eo{R(s)} ≈ θT φs = y

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of ICML.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001). Off-policy temporal-difference

learning with function approximation. In Proceedings of ICML.

Sutton, R.S., Precup D. and Singh, S (1999). Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, vol . 112, pp. 181–211.

Sutton,, R.S. and Tanner, B. (2005). Temporal-difference networks. In Proceedings

of NIPS-17.

Sutton R.S., Rafols E. and Koop, A. (2006). Temporal abstraction in

temporal-difference networks”. In Proceedings of NIPS-18.

Tadic, V. (2001). On the convergence of temporal-difference learning with linear

function approximation. In Machine learning vol. 42.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control 42.

Acknowledgements

Theorem 4 If the following assumptions hold:

• The function approximator used to represent the model is a

state aggregrator

• The recognizer behaves consistently with the function

approximator, i.e., c(s, a) = c(p, a), ∀s ∈ p

• The recognition probability for each partition, µ̂(p) is estimated
using maximum likelihood:

µ̂(p) =
N(p, c = 1)

N(p)

Then there exists a policy π̂ such that the off-policy learning

algorithm converges to the same model as the on-policy algorithm

using π̂.

Proof: In the limit, w.p.1, µ̂ converges to
P

s db(s|p)
P

a c(p, a)b(s, a) where db(s|p) is the probability of
visiting state s from partition p under the stationary distribution of b.

Let π̂ be defined to be the same for all states in a partition p:

π̂(p, a) = ρ̂(p, a)
X

s

db(s|p)b(s, a)

π̂ is well-defined, in the sense that
P

a π̂(s, a) = 1. Using Theorem
3, off-policy updates using importance sampling corrections ρ̂ will
have the same expected value as on-policy updates using π̂.

The authors gratefully acknowledge the ideas and encouragement

they have received in this work from Eddie Rafols, Mark Ring,

Lihong Li and other members of the rlai.net group. We thank Csaba

Szepesvari and the reviewers of the paper for constructive

comments. This research was supported in part by iCore, NSERC,

Alberta Ingenuity, and CFI.

The target policy π is induced by a recognizer function

c : [0, 1] !→ #+:

π(a) =
c(a)b(a)

P

x c(x)b(x)
=

c(a)b(a)
µ

(1)

(see blue line below). The estimator is:

m̂π =
1
n

n
X

i=1

zi
π(ai)
b(ai)

=
1
n

n
X

i=1

zi
c(ai)b(ai)

µ

1
b(ai)

=
1
n

n
X

i=1

zi
c(ai)

µ

!" !"" #"" $"" %"" &""
"

'&

!

!'& ()*+,+-./01.,+.2-34
5.13,.630780#""04.)*/301.,+.2-349

:+;<7=;0,3-762+>3,

:+;<0,3-762+>3,

?=)@3,07804.)*/30.-;+724

McGill

The importance sampling corrections are:

ρ(s, a) =
π(s, a)
b(s, a)

=
c(s, a)
µ(s)

where µ(s) depends on the behavior policy b. If b is unknown,
instead of µ we will use a maximum likelihood estimate

µ̂ : S → [0, 1], and importance sampling corrections will be defined
as:

ρ̂(s, a) =
c(s, a)

µ̂(s)

On-policy learning

If π is used to generate behavior, then the reward model of an
option can be learned using TD-learning.

The n-step truncated return is:

R̄
(n)
t = rt+1 + (1 − βt+1)R̄

(n−1)
t+1 .

The λ-return is defined as usual:

R̄λ
t = (1 − λ)

∞
X

n=1

λn−1R̄
(n)
t .

The parameters of the function approximator are updated on every

step proportionally to:

∆θ̄t =
h

R̄λ
t − yt

i

∇θyt(1 − β1) · · · (1 − βt).

• Recognizers reduce variance

• First off-policy learning algorithm for option models

• Off-policy learning without knowledge of the behavior

distribution

• Observations

– Options are a natural way to reduce the variance of

importance sampling algorithms (because of the termination

condition)

– Recognizers are a natural way to define options, especially

for large or continuous action spaces.

Contributions! !"# !"$ %
&'()*+

!

%, -.*/0/)1)(2

34+5)(2

67+'()*+5

80.94(

:*1)'2;<)(=;

.4'*9+)>4.

?4=0@)*.;:*1)'2

80.94(;

:*1)'2;<A*

;.4'*9+)>4.

Off-policy learning with options and recognizers
Doina Precup, Richard S. Sutton, Cosmin Paduraru, Anna J. Koop, Satinder Singh

 McGill University, University of Alberta, University of Michigan

Options

Distinguished

region

Ideas and Motivation Background Recognizers Off-policy algorithm for options Learning w/o the Behavior Policy

Wall

Options
• A way of behaving for a period of time

Models of options
• A predictive model of the outcome of following the option
• What state will you be in?
• Will you still control the ball?
• What will be the value of some feature?
• Will your teammate receive the pass?
• What will be the expected total reward along the way?
• How long can you keep control of the ball?

Dribble Keepaway Pass

Options for soccer players could be

Options in a 2D world

The red and blue options

are mostly executed.

Surely we should be able

to learn about them from

this experience!

Experienced

trajectory

Off-policy learning
• Learning about one policy while behaving according to another
• Needed for RL w/exploration (as in Q-learning)
• Needed for learning abstract models of dynamical systems

(representing world knowledge)
• Enables efficient exploration
• Enables learning about many ways of behaving at the same time

(learning models of options)

! a policy
! a stopping condition

Non-sequential example

Problem formulation w/o recognizers

Problem formulation with recognizers

• One state

• Continuous action a ∈ [0, 1]

• Outcomes zi = ai

• Given samples from policy b : [0, 1] → #+

• Would like to estimate the mean outcome for a sub-region of the

action space, here a ∈ [0.7, 0.9]

Target policy π : [0, 1] → "+ is uniform within the region of interest

(see dashed line in figure below). The estimator is:

m̂π =
1
n

n
X

i=1

π(ai)

b(ai)
zi.

Theorem 1 Let A = {a1, . . . ak} ⊆ A be a subset of all the

possible actions. Consider a fixed behavior policy b and let πA be

the class of policies that only choose actions from A, i.e., if
π(a) > 0 then a ∈ A. Then the policy induced by b and the binary
recognizer cA is the policy with minimum-variance one-step

importance sampling corrections, among those in πA:

π as given by (1) = arg min
p∈πA

Eb

"

„

π(ai)

b(ai)

«2
#

(2)

Proof: Using Lagrange multipliers

Theorem 2 Consider two binary recognizers c1 and c2, such that

µ1 > µ2. Then the importance sampling corrections for c1 have

lower variance than the importance sampling corrections for c2.

Off-policy learning

Let the importance sampling ratio at time step t be:

ρt =
π(st, at)

b(st, at)

The truncated n-step return, R
(n)
t , satisfies:

R
(n)
t = ρt[rt+1 + (1 − βt+1)R

(n−1)
t+1].

The update to the parameter vector is proportional to:

∆θt =
h

Rλ
t − yt

i

∇θytρ0(1 − β1) · · · ρt−1(1 − βt).

Theorem 3 For every time step t ≥ 0 and any initial state s,

Eb[∆θt|s] = Eπ[∆θ̄t|s].

Proof: By induction on n we show that

Eb{R
(n)
t |s} = Eπ{R̄

(n)
t |s}

which implies that Eb{R
λ
t |s} = Eπ(R̄λ

t |s}. The rest of the proof is
algebraic manipulations (see paper).

Implementation of off-policy learning for options

In order to avoid∆θ → 0, we use a restart function g : S → [0, 1]
(like in the PSD algorithm). The forward algorithm becomes:

∆θt = (Rλ
t − yt)∇θyt

t
X

i=0

giρi...ρt−1(1 − βi+1)...(1 − βt),

where gt is the extent of restarting in state st.

The incremental learning algorithm is the following:

• Initialize κ0 = g0, e0 = κ0∇θy0

• At every time step t:

δt = ρt (rt+1 + (1 − βt+1)yt+1) − yt

θt+1 = θt + αδtet

κt+1 = ρtκt(1 − βt+1) + gt+1

et+1 = λρt(1 − βt+1)et + κt+1∇θyt+1

References

Off-policy learning is tricky

• The Bermuda triangle

! Temporal-difference learning
! Function approximation (e.g., linear)
! Off-policy

• Leads to divergence of iterative algorithms
! Q-learning diverges with linear FA
! Dynamic programming diverges with linear FA

Baird's Counterexample

V
k
(s) =

!(7)+2!(1)

terminal

state99%

1%

100%

V
k
(s) =

!(7)+2!(2)

V
k
(s) =

!(7)+2!(3)

V
k
(s) =

!(7)+2!(4)

V
k
(s) =

!(7)+2!(5)

V
k
(s) =

2!(7)+!(6)

0

5

10

0 1000 2000 3000 4000 5000

10

10

/ -10

Iterations (k)

5
10

10
10

0
10

-

-

Parameter
values, !k(i)

(log scale,

broken at !1)

!k(7)

!k(1) – !k(5)

!k(6)

Precup, Sutton & Dasgupta (PSD) algorithm

• Uses importance sampling to convert off-policy case to on-policy case
• Convergence assured by theorem of Tsitsiklis & Van Roy (1997)
• Survives the Bermuda triangle!

BUT!

• Variance can be high, even infinite (slow learning)
• Difficult to use with continuous or large action spaces
• Requires explicit representation of behavior policy (probability distribution)

Option formalism

An option is defined as a triple o = 〈I,π, β〉

• I ⊆ S is the set of states in which the option can be initiated

• π is the internal policy of the option

• β : S → [0, 1] is a stochastic termination condition

We want to compute the reward model of option o:

Eo{R(s)} = E{r1 + r2 + . . . + rT |s0 = s, π, β}

We assume that linear function approximation is used to represent

the model:

Eo{R(s)} ≈ θT φs = y

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of ICML.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001). Off-policy temporal-difference

learning with function approximation. In Proceedings of ICML.

Sutton, R.S., Precup D. and Singh, S (1999). Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, vol . 112, pp. 181–211.

Sutton,, R.S. and Tanner, B. (2005). Temporal-difference networks. In Proceedings

of NIPS-17.

Sutton R.S., Rafols E. and Koop, A. (2006). Temporal abstraction in

temporal-difference networks”. In Proceedings of NIPS-18.

Tadic, V. (2001). On the convergence of temporal-difference learning with linear

function approximation. In Machine learning vol. 42.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transactions on Automatic Control 42.

Acknowledgements

Theorem 4 If the following assumptions hold:

• The function approximator used to represent the model is a

state aggregrator

• The recognizer behaves consistently with the function

approximator, i.e., c(s, a) = c(p, a), ∀s ∈ p

• The recognition probability for each partition, µ̂(p) is estimated
using maximum likelihood:

µ̂(p) =
N(p, c = 1)

N(p)

Then there exists a policy π̂ such that the off-policy learning

algorithm converges to the same model as the on-policy algorithm

using π̂.

Proof: In the limit, w.p.1, µ̂ converges to
P

s db(s|p)
P

a c(p, a)b(s, a) where db(s|p) is the probability of
visiting state s from partition p under the stationary distribution of b.

Let π̂ be defined to be the same for all states in a partition p:

π̂(p, a) = ρ̂(p, a)
X

s

db(s|p)b(s, a)

π̂ is well-defined, in the sense that
P

a π̂(s, a) = 1. Using Theorem
3, off-policy updates using importance sampling corrections ρ̂ will
have the same expected value as on-policy updates using π̂.

The authors gratefully acknowledge the ideas and encouragement

they have received in this work from Eddie Rafols, Mark Ring,

Lihong Li and other members of the rlai.net group. We thank Csaba

Szepesvari and the reviewers of the paper for constructive

comments. This research was supported in part by iCore, NSERC,

Alberta Ingenuity, and CFI.

The target policy π is induced by a recognizer function

c : [0, 1] !→ #+:

π(a) =
c(a)b(a)

P

x c(x)b(x)
=

c(a)b(a)
µ

(1)

(see blue line below). The estimator is:

m̂π =
1
n

n
X

i=1

zi
π(ai)
b(ai)

=
1
n

n
X

i=1

zi
c(ai)b(ai)

µ

1
b(ai)

=
1
n

n
X

i=1

zi
c(ai)

µ

!" !"" #"" $"" %"" &""
"

'&

!

!'& ()*+,+-./01.,+.2-34
5.13,.630780#""04.)*/301.,+.2-349

:+;<7=;0,3-762+>3,

:+;<0,3-762+>3,

?=)@3,07804.)*/30.-;+724

McGill

The importance sampling corrections are:

ρ(s, a) =
π(s, a)
b(s, a)

=
c(s, a)
µ(s)

where µ(s) depends on the behavior policy b. If b is unknown,
instead of µ we will use a maximum likelihood estimate

µ̂ : S → [0, 1], and importance sampling corrections will be defined
as:

ρ̂(s, a) =
c(s, a)

µ̂(s)

On-policy learning

If π is used to generate behavior, then the reward model of an
option can be learned using TD-learning.

The n-step truncated return is:

R̄
(n)
t = rt+1 + (1 − βt+1)R̄

(n−1)
t+1 .

The λ-return is defined as usual:

R̄λ
t = (1 − λ)

∞
X

n=1

λn−1R̄
(n)
t .

The parameters of the function approximator are updated on every

step proportionally to:

∆θ̄t =
h

R̄λ
t − yt

i

∇θyt(1 − β1) · · · (1 − βt).

• Recognizers reduce variance

• First off-policy learning algorithm for option models

• Off-policy learning without knowledge of the behavior

distribution

• Observations

– Options are a natural way to reduce the variance of

importance sampling algorithms (because of the termination

condition)

– Recognizers are a natural way to define options, especially

for large or continuous action spaces.

Outline

1 Main message

2 Review

3 Literature

4 Software

5 .. and beyond

6 Bibliography

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 2 / 9

Main message

Reinforcement learning, building on a simple, yet powerful theory,
provides effective solutions to many AI problems.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 3 / 9

Concepts

Markov decision processes
I Generalizes shortest path computations
I Stochasticity, state, action, reward, value functions, policies
I Bellman (optimality) equations, operators, fixed-points
I Value iteration, policy iteration

Value prediction
I Temporal difference learning unifies Monte-Carlo and bootstrapping
I Function approximation to deal with large spaces
I New gradient based methods
I Least-squares methods

Control
I Closed-loop interactive learning: exploration vs. exploitation
I Q-learning
I SARSA
I Policy gradient, natural actor-critic

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 4 / 9

Literature – books

Kaelbling et al. – review
Bertsekas and Tsitsiklis (1996)
Sutton and Barto (1998)
Bertsekas (2007a,b)
Bertsekas (2010) – 160 pages!
Gosavi (2003)
Cao (2007) – policy gradient methods
Powell (2007) – operations research perspective
Chang et al. (2008) f– adaptive sampling (i.e., simulation-based
performance optimization)
Busoniu et al. (2010) – function approximation
Szepesvári (2010) – concise, algorithms, ideas (the latest, . . .)

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 5 / 9

Literature – II

Conferences
I ICML
I NIPS
I UAI, AAAI, IJCAI, COLT, ALT, ..

Journals
I MLJ
I JMLR
I IEEE TAC
I MOR
I NN, Neurocomputing, IEEE TNN

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 6 / 9

Software

RL-GLUE: http://glue.rl-community.org
RL-LIBRARY: http://library.rl-community.org
CLSquare – http://www.ni.uos.de/index.php?id=70

PIQLE – http://piqle.sourceforge.net/

RL Toolbox – http://www.igi.tugraz.at/ril-toolbox/

JRLF – http://mykel.kochenderfer.com/?page_id=19

LibPG – http://code.google.com/p/libpgrl/

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 7 / 9

http://glue.rl-community.org
http://library.rl-community.org
http://www.ni.uos.de/index.php?id=70
http://piqle.sourceforge.net/
http://www.igi.tugraz.at/ril-toolbox/
http://mykel.kochenderfer.com/?page_id=19
http://code.google.com/p/libpgrl/

.. and beyond

What if the state is not observable?
Abstractions: time!?
Knowledge representation (and value functions)
Automated basis construction, regularization, . . .
Beyond the probabilistic framework

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 8 / 9

For Further Reading

Bertsekas, D. P. (2007a). Dynamic Programming and Optimal
Control, volume 1. Athena Scientific, Belmont, MA, 3
edition.

Bertsekas, D. P. (2007b). Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, Belmont, MA, 3
edition.

Bertsekas, D. P. (2010). Approximate dynamic programming
(online chapter). In Dynamic Programming and Optimal
Control, volume 2, chapter 6. Athena Scientific, Belmont,
MA, 3 edition.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic
Programming. Athena Scientific, Belmont, MA.

Busoniu, L., Babuska, R., Schutter, B., and Ernst, D. (2010).
Reinforcement Learning and Dynamic Programming Using
Function Approximators. Automation and Control
Engineering Series. CRC Press.

Cao, X. R. (2007). Stochastic Learning and Optimization: A
Sensitivity-Based Approach. Springer, New York.

Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I. (2008).
Simulation-based Algorithms for Markov Decision
Processes. Springer Verlag.

Gosavi, A. (2003). Simulation-based optimization: parametric
optimization techniques and reinforcement learning.
Springer Netherlands.

Kaelbling, L., Littman, M., and Moore, A. (1996).
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4:237–285.

Powell, W. B. (2007). Approximate Dynamic Programming:
Solving the curses of dimensionality. John Wiley and
Sons, New York.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning: An Introduction. Bradford Book. MIT Press.

Szepesvári, C. (2010). Reinforcement Learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Szepesvári & Sutton (UofA) RL Algorithms July 11, 2010 9 / 9

	Outline
	Main Talk
	Main message
	Review
	Literature
	Software
	.. and beyond
	Bibliography
	References

\beamer@endinputifotherversion {3.07pt}
\headcommand {\slideentry {0}{0}{1}{1/1}{}{0}}
\headcommand {\beamer@framepages {1}{1}}
\headcommand {\sectionentry {1}{Outline}{2}{Outline}{0}}
\headcommand {\beamer@sectionpages {1}{1}}
\headcommand {\beamer@subsectionpages {1}{1}}
\headcommand {\slideentry {1}{0}{2}{2/2}{}{0}}
\headcommand {\beamer@framepages {2}{2}}
\headcommand {\partentry {Main Talk}{1}}
\headcommand {\beamer@partpages {1}{2}}
\headcommand {\beamer@sectionpages {2}{2}}
\headcommand {\beamer@subsectionpages {2}{2}}
\headcommand {\sectionentry {2}{Main message}{3}{Main message}{1}}
\headcommand {\beamer@sectionpages {3}{2}}
\headcommand {\beamer@subsectionpages {3}{2}}
\headcommand {\slideentry {2}{0}{3}{3/3}{}{1}}
\headcommand {\beamer@framepages {3}{3}}
\headcommand {\sectionentry {3}{Review}{4}{Review}{1}}
\headcommand {\beamer@sectionpages {3}{3}}
\headcommand {\beamer@subsectionpages {3}{3}}
\headcommand {\slideentry {3}{0}{4}{4/4}{}{1}}
\headcommand {\beamer@framepages {4}{4}}
\headcommand {\sectionentry {4}{Literature}{5}{Literature}{1}}
\headcommand {\beamer@sectionpages {4}{4}}
\headcommand {\beamer@subsectionpages {4}{4}}
\headcommand {\slideentry {4}{0}{5}{5/5}{}{1}}
\headcommand {\beamer@framepages {5}{5}}
\headcommand {\slideentry {4}{0}{6}{6/6}{}{1}}
\headcommand {\beamer@framepages {6}{6}}
\headcommand {\sectionentry {5}{Software}{7}{Software}{1}}
\headcommand {\beamer@sectionpages {5}{6}}
\headcommand {\beamer@subsectionpages {5}{6}}
\headcommand {\slideentry {5}{0}{7}{7/7}{}{1}}
\headcommand {\beamer@framepages {7}{7}}
\headcommand {\sectionentry {6}{.. and beyond}{8}{.. and beyond}{1}}
\headcommand {\beamer@sectionpages {7}{7}}
\headcommand {\beamer@subsectionpages {7}{7}}
\headcommand {\slideentry {6}{0}{8}{8/8}{}{1}}
\headcommand {\beamer@framepages {8}{8}}
\headcommand {\sectionentry {7}{Bibliography}{9}{Bibliography}{1}}
\headcommand {\beamer@sectionpages {8}{8}}
\headcommand {\beamer@subsectionpages {8}{8}}
\headcommand {\sectionentry {8}{References}{9}{References}{1}}
\headcommand {\beamer@sectionpages {9}{8}}
\headcommand {\beamer@subsectionpages {9}{8}}
\headcommand {\slideentry {8}{0}{9}{9/9}{}{1}}
\headcommand {\beamer@framepages {9}{9}}
\headcommand {\beamer@partpages {3}{9}}
\headcommand {\beamer@subsectionpages {9}{9}}
\headcommand {\beamer@sectionpages {9}{9}}
\headcommand {\beamer@documentpages {9}}
\headcommand {\def \inserttotalframenumber {9}}

%\documentclass[serif,mathserif]{beamer} % For use with beamer v 2.20
\documentclass[handout,serif,mathserif]{beamer}

%% NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeameroption{hide notes}

\usepackage{embedfile}
\IfFileExists{\jobname.nav}{\embedfile{\jobname.nav}}{}
% again, optional:
% just to keep things together
\embedfile{\jobname.tex}
%\embedfile{beamerthemeLausanne.sty}
%\embedfile{SplitShowIcon.png}
\newcommand{\emptynote}{\note{\mbox{}}}
\input{tutorial04}

% Doc: http://sourceforge.net/apps/mediawiki/skim-app/index.php?title=Tips_and_Tricks

% SKIM!! You need to open up the PDF of your presentation, as well as a second PDF of accompanying notes as the 'Synchronized Notes Document', containing exactly the same number of pages as the presentation. Then, in the presentation PDF, go to 'View' > 'Presentation Options', and in the dropdown for 'Synchronized Notes Document' you will see as an option the filename of the other PDF containing the notes for the presentation. Select that, then make sure you have the window of the presentation PDF on the 'public' monitor (eg a projector, as you would usually do) and the window of the notes document on your private monitor, such as your own laptop. Then simply put the PDF in presentation mode, and the notes PDF will scroll along as you change pages on the presentations PDF.

