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Abstract 
The paper presents a novel approach for generating multipurpose models of machining operations combining 
machine learning and search techniques. These models are intended to be applicable at different engineering 
and management assignments. Simulated annealing search is used for finding the unknown parameters of the 
models in given situations. It is expected that the developed block-oriented framework will be a valuable tool 
for modelling, monitoring and optimisation of manufacturing processes and process chains. The applicability 
of the proposed solution is illustrated by the results of experimental runs. 
 
 

 
1. Introduction 

Reliable process models are extremely important in 
different fields of computer integrated 
manufacturing. They are required e.g. for selecting 
optimal parameters during process planning, for 
designing and implementing adaptive control 
systems or model based monitoring algorithms. 

A way is to implement fundamental models 
developed from the principles of machining science 
on computer. However, in spite of progress being 
made in fundamental process modelling, accurate 
models are not yet available for many 
manufacturing processes. Heuristic models are 
usually based on the rules of thumb gained from 
experience, and used for qualitative evaluation of 
decisions. Empirical models derived from 
experimental data still play a major role in 
manufacturing process modelling [17].  

In the CIRP survey on developments and trends 
in control and monitoring of machining processes, 
the necessity of sensor integration, sophisticated 
models, multimodel systems, and learning ability 
was outlined [12]. Attaching further importance to 
the issue, in 1995 the CIRP Working Group on 
Modelling of Machining Operations was established 
“to promote the development of models of chip 
removal operations by defined cutting edges with 
the aim to quantitatively predict the performance of 
such operations, and to promote the use of such 
models in industry” [13].  

Difficulties in modelling manufacturing 
processes are manifold: the great number of 
different machining operations, multidimensional, 
non-linear, stochastic nature of machining, partially 
understood relations between parameters, lack of 
reliable data, etc.  

A number of reasons back the required models: 
design of processes, optimisation of processes, 
control of processes, simulation of processes, and 
design of equipment [13]. 

Artificial neural networks (ANNs), neuro-fuzzy 
(NF) systems are general, multivariable, non-linear 
estimators, therefore, offer a very effective process 
modelling approach. Such soft computing 
techniques seem to be a viable solution for the lower 
level of intelligent, hierarchical control and 
monitoring systems where abilities for real-time 
functioning, uncertainty handling, sensor 
integration, and learning are essential features [8]. 
Successful attempts were reported on in the 
literature [1, 6, 7, 8, 9, 10, 15]. The assignments to 
be performed determined the input-output 
configurations of the models, i.e. the parameters to 
be considered as inputs and the ones as outputs. 

Different assignments, however, require different 
model settings, i.e. different input-output model 
configurations. Considering the input-output 
variables of a given task together as a set of 
parameters, the ANN model estimates a part of this 
parameter set based on the remaining part. The 
selection of input-output parameters strongly 
influences the accuracy of the developed model, 
especially if dependencies between parameters are 
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non-invertable. At different stages of production 
(e.g. in planning, optimisation or control) tasks are 
different, consequently, the estimation capabilities 
of the related applied models vary, even if the same 
set of parameters is used.  

The paper summarises the first results of the 
research activity aiming at finding a multipurpose 
model for a set of assignments which can satisfy the 
various accuracy requirements. A method for 
automatic generation of ANN-based process models 
by back propagation and heuristic search is 
described. The application phase of the process 
models is also detailed. A novel technique based on 
simulated annealing search is introduced to find the 
unknown parameters of the model in given 
situations. The applicability of the proposed solution 
is illustrated by the results of experimental runs. The 
extension of the approach to modelling and 
optimisation of process chains is also addressed. 

2. Automatic input-output 
configuration and generation of 
multipurpose ANN-based 
process models 

The automatic generation of appropriate ANN-based 
process models, i.e. models, which are expected to 
work with the required accuracy in different 
assignments, consists of the following steps: 
- Determining the (maximum) number of output 

parameters (No) from the available N parameters 
which can be estimated by using the remaining 
Ni = N - No input parameters within the 
prescribed accuracy. 

- Ordering the available parameters into input and 
output parameter sets having Ni and No 
elements, respectively. 

- Training the network whose input-output 
configuration has been determined in the 
preceding steps.  
The above steps are performed parallel, using the 

speed of the learning process as an indicator for the 
appropriateness of the given ANN architecture to 
realise the required mapping. In order to accelerate 
the search for the ANN configuration, which 
complies with the accuracy requirements with the 
minimum number of input parameters, sequential 
forward search (SFS) algorithm is used.  

The first two steps can be formulated as follows. 
A search algorithm is needed to select all the 
possible outputs from the given set of parameters 
with regard to the accuracy demands. The search 
space consists of all the conceivable possibilities. 

Usually, there is a large number of input-output 
configurations to select No parameters from N, 
moreover, No is unknown, indicating that the search 
space is quite large.  

To evaluate whether a given configuration 
satisfies the accuracy demands, the appropriate 
learning process has to be also performed. Using a 
search method without heuristics would take too 
long time because of the size of the search space and 
of the slowness of evaluation. This is the reason 
why the developed search algorithm uses the 
properties of the learning stage of the ANN model 
as indicators for the evaluation.  

The importance of the right input-output 
configuration is dominant in the case of non-
invertable dependencies where the input-output 
ordering of the parameters is of fundamental 
importance. Experiments show that some 
complicated dependencies usually need a larger 
number of learning steps then simple settings. The 
basic assumption of the proposed search algorithm 
is – if enough runs are initiated – that the speed of 
the learning process can be used as indicator for the 
appropriateness of the chosen neural approach to 
realise the required mapping.  

The application of the sequential forward 
selection (SFS) [2] algorithm was the compromise 
taking the large search space and the time intensive 
ANN learning into account. The search process is 
accomplished as follows. The learning data set is 
given by the user in the form of N dimensional 
vectors. To select the first output parameter, N 
ANNs are generated, each having one output and N-
1 input parameters. After generating the ANNs, 
learning begins by all ANNs, concurrently. First, 
each ANN performs M learning steps. The ANN 
with the smallest estimation error is checked, 
whether it has reached the required estimation 
accuracy. If not, another learning phase is started 
with M epochs. If yes, then this means that an 
output was found which can be estimated with the 
given accuracy based on the remaining input 
parameters.  

The next step of the algorithm is to order this 
variable to the output set of parameters and to select 
a further output parameter. This selection is realised 
by the same method as for the first output. For 
searching the second output, N-1 ANNs are 
generated because one output is already fixed, 
consequently, there are N-1 possibilities to add 
another output to the set of output parameters. The 
remaining N-2 parameters are used as inputs. After 
finding the second output, two outputs are fixed and 
a search starts to find a third output, etc.  

Obviously, for adding a new output to the set of 



output parameters a successful learning step is 
required. Learning is regarded successful if an ANN 
configuration can learn the dependencies between 
input and output variables with the given accuracy. 
The algorithm terminates if after a large number of 
learning steps, none of the ANNs can achieve the 
given accuracy, i.e. it does not take the “natural” 
ordering of the available parameters into input and 
output sets into account. 

During this search algorithm the largest number 
of outputs can be found, the accuracy demands are 
satisfied and the multipurpose ANN model is built 
up. It can be seen that this algorithm has regard only 
for the given accuracy requirement and not for the 
given assignment. 

The applicability of the approach was tested by 
artificial data (e.g. for handling non-invertable 
dependencies), using data derived from analytical 
descriptions for a set of engineering assignments 
(different levels of planning, optimisation and 
control), and by experimental machining.  

2.1 Experimental results 

To test the behaviour of the developed algorithm 
non-invertable dependencies were investigated first 
(x2=x1

2, x3= x1
2+ x2

2, x4= x1
2+ x2

2+ x3
2, sin(x1)). 

Favourable results of these investigations promised 
real world applicability, too. 

In the following space, results are presented with 
four engineering assignments where the required 
models work on the same parameter set but the 
feasible input-output configurations of these models 
are different.  
1. The first task is planning. A surface has to be 

machined by turning to achieve roughness 
(parameter: Ra[mm]) demands of the customer. 
The engineer has to determine the tool 
(parameters: cutting edge angle: χ[rad], corner 
radius: rε[mm]), the cutting parameters 
(parameters: feed: f[mm/rev], depth of cut: 
a[mm], speed: v[m/min]) and predict 
phenomenon during cutting (parameters: force: 
Fc[N], power: P[kW] and tool life: T[min]) 
consequently a model is needed where Ra serves 
as input and other parameters as outputs. 
Usually, the customer gives only an upper limit 
for the roughness. 

2. The second task is to satisfy the roughness 
demands of the customer but with a given tool. 
In this case the Ra, χ, rε are inputs and f, a, v, Fc, 
P, T are outputs. 

3. The third task is to control the running cutting 
process with measured monitoring parameters 
such as force and power. Measured values of 

these parameters can be used as information 
about the current state of the cutting process. In 
this case Ra, χ, rε, Fc, P serve as input and f, a, v, 
T as outputs. The CNC controller has to select 
the appropriate cutting parameters to produce the 
requested surface.  

4. The fourth task is the same as the third one but 
the CNC controller can change only the ‘f ‘and 
‘a’ parameters because v is prescribed. This case 
needs a model with inputs Ra, χ, rε, Fc, P, v and 
with outputs f, a, T. 
These assignments show several input-output 

configurations for modelling dependencies between 
the different elements of a parameter set. The 
question arises: which model describes the cutting 
process in the best way, i.e. with the highest 
accuracy? The heuristic search algorithm can 
answer this question. 

In practical implementation sensors, machine 
controllers and computers would provide a part of 
parameters of an ANN operation model. For 
simulating the machining process in the 
investigations to be reported in this part of the 
paper, all information were generated via theoretical 
relations, which are functions of several input 
variables. It should be stressed that in a practical 
implementation these a priori relations are not 
necessary, the models are to be set up by using 
measured values. The validity of the equations is 
determined by the minimum and maximum 
boundaries of the parameters. Four equations (for 
force, power, tool life and roughness) are used in 
this paper for the above engineering tasks (1) [3], 
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where the boundaries of the equations are as 
follows (2): 
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With help of these strongly non-linear equations, 
values for tool life, force, power and roughness can 
be calculated based on the tool and machining 
parameters. 



To create learning and testing parameter sets 
random values were determined in the allowed 
range of f, a, χ, v, rε considering also the boundaries 
of Ra, Fc, P, T while calculating their values using 
the above equations. The dependencies between 
parameters f, a, χ, v, rε, Fc, P, T, Ra were 
experienced as invertable in the given parameter 
range except the variable χ. Consequently, to get an 
accurate ANN model the variable χ has to be always 
input. A hundred data vectors were created as stated 
above. To test this type of problems the described 
input-output configuration and model building 
approach were repeated a hundred times. The 
allowed average estimation error was given as 
±2.5%. Fifteen different ANN configurations were 
generated as results (Figure 1). The variable χ is 
always on the input size of the ANN model as 
expected. (Figure 1: On the horizontal axis the 
resulted input-output configurations are listed 
represented by their output parameters. The vertical 
axis shows the percentage a configuration has been 
selected in the hundred runs.) 

For testing estimation capabilities of the resulted 
ANN based models all of the configurations were 
trained a hundred times but by each training the 
related physical parameters (f, a, χ, v, rε,) and the 
starting weights were generated randomly. The 
target average estimation error was ±0.0002 
(±2.5%). To test, another set of a hundred randomly 
generated data vectors were used and the average 
estimation errors were calculated (Figure 2). No 
significant difference could be found between input-
output configurations showing that most of the 
dependencies among parameters are invertable. 
(Figure 2: The resulted input-output configurations 
represented by their output parameters are listed on 
the horizontal axis.)  

The results indicate that the developed technique 
is able to generate process models with the required 
accuracy, moreover, under given circumstances a 
result is a set of applicable models each 
guaranteeing the required accuracy performance. 

As expected, the resulted input-output 
configurations can not be used directly to the given 
assignments. The solution for this problem is 
presented in the next paragraph. 
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Figure 1: Resulted input-output configurations of 

the ANN models 
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Figure 2: Average estimation errors of the models 

3. Application of the multipurpose 
model for various assignments 

Usually, some parameters are known, and using the 
multipurpose model generated according to the 
previous paragraph, the task is to determine the 
other parameters while satisfying some constraints. 
Because of the general nature of the multipurpose 
model, almost in every case, a part of the input and a 
part of the output variables of the model are known 
by the user and the unknown part of the inputs is to 
be determined by taking the above mentioned 
constraints into account.   

In the paper a simulated annealing search 
technique is proposed for the application phase of 
the multipurpose model. The search process is 
guided by the accuracy requirements of the 
estimation for the known output parameters while 
holding the unknown input and output parameter(s) 
within its (their) range of application boundaries.  

The search space consists of unknown input 
parameters. One point of the search space can be 



represented by one possible value set of the 
unknown input parameters. After placing these 
parameters together with the known input 
parameters to the input side of the given ANN an 
output vector can be calculated (forward 
propagation). During the search process the 
unknown input parameters are to be determined and 
at the same time three conditions are to be satisfied: 
1. Condition regarding the known output 

parameters. This condition assures that only that 
points of the search space can be accepted as 
result, which can adequately estimate the known 
output parameters by using forward calculation. 
To measure the deviation between estimated and 
known output parameters an error can be 
calculated (Error 1, on Figure 3). 

2. Condition regarding the unknown input 
parameters. This condition is determined by the 
validity of the ANN model. This validity is 
usually specified by the data set used for the 
training [4]. Boundaries of the model can be 
handled by minimum and maximum values of 
the related parameters like in the engineering 
tasks presented above. (The search algorithm can 
take values for the unknown input parameters 
only from the related allowed intervals.) 

3. Condition regarding the unknown output 
parameters. The third condition relates also to 

the validity of the ANN. Values of the unknown 
input parameters are only acceptable if the 
estimated values of the unknown output 
parameters are within their allowed range (Error 
2, on Figure 3).  
The search algorithm is terminated if all of the 

three conditions above are met. An error value is 
ordered to all visited points of the search space. In 
the developed algorithm this value is the maximum 
of Error1 and Error2 presented above. The 
algorithm searches for the minimum error point.  

The algorithm stops if no neighbour can be 
selected and the current error value is below the 
prescribed error limit. This simulated annealing 
algorithm works on the discrete points of the search 
space, therefore, the parameters of unknown part of 
the input vector consist of the discrete points of the 
related intervals. The distance between two points of 
an interval is chosen to satisfy the accuracy 
requirements of the estimation prescribed by the 
user.  

As a result, this algorithm gives one solution for 
a given assignment of the user. To look for a larger 
number of solutions the search has to be repeated. 
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Figure 3: The generated ANN model and its application for the third task presented above 
(control of the cutting process with measured monitoring parameters) 

3.1 Solution of the assignments There are a large number of solutions for each of the 
enumerated assignments. To represent the whole 
interval of solutions for each parameter the search 



algorithm was repeated a hundred times at each 
assignment. To get a simple view about the possible 
solution field, the maximum and minimum values of 
the results were selected for all parameters, for each 
task. These parameter fields are listed in Figure 4. 
(The horizontal axis represents the number of the 
given tasks.) Results in this table show the 
descending intervals of acceptable parameters from 
the planning phase to the CNC control.  

The requested value of parameter Ra is special 
because the user gives only upper limit for this 
parameter. In the assignments the allowed highest 
value for the roughness of the produced surface is 
0.014 mm. The tool used for cutting is determined 

in the second task, values of related parameters are 
χ=1.549 rad, rε=0.7394 mm. In monitoring, 
measured values of force and power were 
Fc=2247N and P=8.69kW, respectively. In the 
fourth engineering task the prescribed speed value 
was v=161 m/min. In every case the task of the 
modelling was to satisfy the roughness demand of 
the user through choosing appropriate values of 
related parameters. 

The diversity of solutions indicates the 
opportunity to incorporate optimisation into the 
decision making processes based on the generated 
multipurpose models. 
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Figure 4: Descending intervals of allowed parameter fields in the four engineering tasks presented before 

 
4. Optimisation of machining 

processes by using the 
multipurpose model 

Optimisations can be realised to satisfy some 
constrains or goals where there are several solutions 
of a given assignment. There are different 
approaches to optimise a given process or process 
chain [11]. At the Computer and Automation 
Research Institute a block-oriented software was 
developed named “ProcessManager” to optimise 
operations and/or production chains form various 
points of view at the same time. Multiple of 

objectives can be handled by the usual weighting 
technique. 

The applicability of the program system is 
illustrated here through the optimisation of the plate 
turning assignment. Optimisations were performed 
from the twofold viewpoints of the customer 
(surface roughness minimisation), and the producer 
(minimisation of production time). 

To realise optimisations from both of these 
viewpoints weighting factors were varied to result in 
different compromises. Figure 5 shows possible 
compromises through values of the related 
parameters belonging together. These results can be 
also used directly to support business decisions and 
compromises.
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Figure 5: Parameters resulted by the optimisation of the plate turning operation. On the left side the 
viewpoint of the customer (Ra - min.) on the right side the viewpoint of the producer (t - min.) is satisfied. 

Curves show possible compromises between the two viewpoints. 
 
Figure 6 and Figure 7 illustrate the application of 

ProcessManager for the threefold optimisation of 
the viewpoints of the customer (minimisation of the 
surface roughness), owner of the company 
(profit/productivity maximisation) and the employed 
engineer (maximisation of process stability through 
the ‘a/f’ ratio). 

Figure 6 shows the building up phase of 
ProcessManager, where the model of the plate 
turning is realised by an ANN and the other 
variables to be optimised, e.g. cutting intensity ‘q’ 
and ‘a/f’ for stability, are given by equations.  

Parameters resulted by the optimisation of the 
plate turning operation are illustrated by 3D-plots in 

Figure 7. Ratios of the weighting factors of the three 
variables to be optimised are represented along the 
axes.  

The “surfaces’ are to be used together, i.e. the 
moving along the plane marked by ‘Ra’ and ‘a/f’ 
occurs on each of the diagrams at the same time. 
The corner marked by ‘q’ indicates the position, 
where the viewpoint of the company owner is the 
most important and by moving along the axes ‘Ra’ 
and ‘a/f’ represents that the viewpoints of the 
customer and the engineer become more and more 
important with respect to ‘q’.  
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Figure 6: Chain model for optimisation of the plate turning operation with optimisation criteria 
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Figure 7: Parameters resulted by the threefold optimisation of the plate turning operation 

 
5. Modelling and optimisation of 

process chains 
 
As it was pointed out in [16], it is not enough to 
concentrate on the final tolerances usually defined 
by design. The final tolerances are determined not 
only by the finishing operations, but are the results 
of the initial tolerances of the workpieces and the 
intermediate tolerances reached by the elements of 
the process chain resulting in the finished part. The 
output of one operation is the input of another one 

or it is a feature of the end product. To build a 
model for a production chain, models have to be 
ordered to every stage of production. The sequence 
of production operations can be modelled by a chain 
of operations connected by their input-output 
parameters [14]. To have process models with the 
required accuracy is especially important in the case 
of process chains where the errors can cumulate 
(Figure 8). (The effect of individual models on their 
output parameter is indicated with “}”.) 
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Figure 8: Errors of parameter estimations along the whole production chain 



 
The tolerance channel through which the 

manufacturing process is to be led is influenced by a 
number of parameters: material properties, nominal 
and actual machine parameters, cutting conditions, 
tool state, etc. The non-deterministic nature of 
manufacturing processes is the fundamental barrier 

that prevents us from determining this channel and 
mapping it to NC programs before machining. 
Systematic and accidental non-conformities can be 
enumerated that contribute to this stochastic nature 
[16] 
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Figure 9: Errors of parameter estimations along the whole production chain 
 

The final part of the paper deals with the 
problem of modelling and optimisation of process 
chains through the extension of the modelling and 
search techniques introduced for single processes. 
The ProcessManager block-oriented framework for 
modelling, monitoring and optimisation of 
manufacturing processes and process chains referred 
above incorporates (Figure 9): 
- definition of the elements of the chain, 
- determination of the process models by 

integrating analytical equations, expert 
knowledge and example-based learning, 

- connecting the single models into a process chain 
by coupling input-output model parameters not 
limited to models of successive processes in the 
chain, 

- definition of eligible intervals or limits for the 
process parameters and monitoring indices, 

- definition of a cost function to be optimised, etc. 

Conclusions 

The paper presented a novel approach for 
generating multipurpose models of machining 
operations which combines machine learning and 
search techniques. Simulated annealing search was 
used for finding the unknown parameters of the 
multipurpose model in given situations. It is 
expected that the developed ProcessManager will 
be a valuable tool for modelling, monitoring and 
optimisation of manufacturing processes and 
process chains. Taking the globalisation issues and 
the increasing role of virtual enterprises into 
account, the distributed version of the system will 
show up further benefits. 
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