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Abstract—This paper highlights similarities between
higher and lower levels of production, focusing on assign-
ments and solution techniques. Various production levels
are examined with respect to several aspects (complexity of
relations, large number of parameters) and typical generic
tasks (“classical” modelling, problem solving, optimization
and submodel decomposition). For each issue, the paper high-
lights that due to similarities, the same classes of methods
based on artificial neural networks (ANN) can be used for
different levels of production, outlining a uniform approach.
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1. INTRODUCTION

Optimizing the efficiency of production has always been
a vital issue and is recently getting much attention due to in-
creasing competition between manufacturers. This, of course,
calls for substantial improvement of planning, control and
monitoring of production processes and manufacturing sys-
tems. While opinions differ as to where the borders of vari-
ous production levels should be drawn (see Horvéath et al. [1],
Toéth [2], Luttervelt et al. [3] and Téth et al. [4] for a general
overview), it can be observed that all levels share some basic
characteristics, such as high complexity (which, however, can
be broken up to subsystems, as shown later) and a high num-
ber of relevant system parameters. This observation raises the
assumption that suitable unified methods can be set up and
used for handling production on its various levels, allowing
an integrated treatment of manufacturing.

This paper presents a family of methods based on artificial
neural networks whose successful application in various lev-
els of manufacturing supports the aforementioned idea. First,
basic properties are highlighted which are common to various
production levels (such as complexity due to the large num-
ber of interdependencies, as well as a large number of system
parameters). Hereafter, a family of ANN-based methods is
presented through practical application examples where ANN
models are used to solve key classes of problems (classical
modelling of complex systems with missing data, unknown
input/output arrangement and uncertainties, basic problem
solving, optimization and decomposition of a complex sys-

tem to a net of simple submodels). The examples are selected
to span a wide range of production levels, which will shed
light on the universal applicability of the methods.

2. COMPLEXITY

Significant complexity can be encountered in all levels of
production. At the lowest level, even a single production step
is usually performed using a very complex machine. Here, a
few fundamental, relatively simple relations can be set up for
some physical properties. However, none of these can be fully
decoupled from the dense network of interdependencies—this
eventually obstructs the efficient use of conventional analytic
modelling and evaluation techniques. As an example, cutting
and machining processes can be mentioned (see Markos et al.
[5], Monostori et al. [6] and DolinSek et al. [7]). To give an
idea of the complexity of cutting processes, Fig. 1 shows the
main parameter groups connected to key phenomena, as well

as their interdependencies.
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Figure 1: Key physical phenomena of a machining process and their
interdependencies
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Figure 2: Main steps of a multistage material removal process for
turning an axle. The subsequent execution of manufacturing pro-
cesses introduces complicated interdependencies, so that even a
higher level production model’s complexity is similar to that of low-
level process models

The concatenation of several production steps and their
integration into a larger system brings about new interdepen-
dencies (Fig.2). This has two main reasons. First, the result
of a given production step (such as surface quality in machin-
ing and cutting, see [7]) can largely influence the parameters
of a subsequent stage, even if the goal of the latter would not
be influenced by deviations encountered in the preceding step.
Second, the different subsystems have to work together as one
production system where even decisions—such as work as-
signment to one machine or another—may depend on the re-
sult of a given production step. Even if phenomena inherent
to subsystems are neglected in a higher level arrangement, the
integration of several lower level systems into a higher level
network adds new interdependencies, so that the complexity
of production systems does not necessarily decrease while
examining higher levels of hierarchy. This is demonstrated,
e.g., by the results of a production modelling, planning and
control project (Digital Factory), as reported by Monostori et
al. [8].

In addition to the complexity of production systems, some
parameters can even change their nature from being an inde-
pendent one (input) to being a dependent one (output). The
input/output nature of a parameter may either alter due to
changing task prefernces, or it may be uncertain owing to
sparse knowledge of the interdependencies within the pro-
cess. Altogether, it can be seen that the following fundamen-
tal phenomena can be encountered in all levels of production:

e complexity due to numerous interdependencies and

e varying input/output nature of parameters.

3. LARGE NUMBER OF PARAMETERS

Another difficulty in handling production systems is the
large number of parameters in their corresponding models.
Even if some related features can be arranged in groups, their
total number alone can be a serious hindrance for the applica-
tion of conventional approaches (not to speak of the dense net-
work of interdependencies, as mentioned before). The num-
ber of relevant physical properties can easily reach the range
of a hundred parameters, as demonstrated by the cutting pro-
cess (Markos et al. [5]), and even the features of a part of the
process (such as chip formation, see Viharos et al. [9]) are
numerous.

The same phenomenon can be observed in higher levels
of production—the number of parameters is often too high
to tackle problems related to the system with conventional
means, and artificial intelligence techniques have to be used
for simulation, decision support etc. (see Monostori et al.

[10]).

4. CLASSICAL MODELLING

Is sufficient measurement information available, the first
step towards handling a production system, no matter at what
level, is the creation of an adequate model. This is essential
for setting up planning and control methods, as well as for
testing and validating them in a simulation environment be-
fore practical application.

Production processes are characterised by nonlinear rela-
tions, usually contain significant uncertainty and may change
during production. Conventional methods, such as differen-
tial equations or rudimentary interpolation, may describe the
relation of a few typical process parameters, yet they fail to
handle the entire process of interest in its full complexity, deal
with its uncertainties and adapt to its changes.

Therefore, artificial intelligence (Al) techniques have
been used for long to deal with modelling production pro-
cesses. One possible Al technique is the use of artificial neu-
ral networks (ANN)—as proposed and successfully demon-
strated in practice in various works by Viharos et al. Applica-
tion of these networks in lower levels of production is shown
in [9] for simulating chip formation in turning and milling
processes and in [5] for modelling surface quality properties
of a cutting process depending on various technical param-
eters. Application of ANN’s for modelling higher levels of
production was proposed in [10], where a more efficient suc-
cessor of the previously mentioned concept is extended to
process chains and entire production plants, while [11] shows
the application of various Al and machine learning techniques
for the design of manufacturing processes and production sys-
tems.

Two key features of the novel ANN-based method of Vi-
haros et al. are highlighted in [12]. First, the proposed net-
work architecture can cope with changing input/output as-
signments. These can either change due to the nature of a
given subtask (in addition to the question of which parameters
are considered known or given and which are to be found),
or are unknown and to be determined by the learning be-
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Figure 3: Protected (dotted) and unprotected (solid) states of differ-
ent neurons and corresponding weights

havior of the neural network. Independently of the specific
reason an uncertain input/output arrangement may have, an
automatic search method facilitates meeting the best choice.
Here, possible output candidates are selected and the learn-
ing performance (learning speed and accuracy) of the ANN
is monitored, keeping allowable tolerances of the given pa-
rameter in mind. Should the training of the ANN for a given
input/output arrangement succeed, the selected variable be-
comes eligible for being an output. This automatic search can
also detect non-invertable relations, as in their case, training
the input/output arrangement corresponding to their inverse
fails. An important characteristic of the method is the un-
changing topology of the network where, as shown in Fig. 3,
unused neurons and links are not deleted but only protected
from being altered during learning.

A similar method is applied when incomplete data sets
are encountered. While numerous methods paste up miss-
ing components in training and test data by interpolation,
the concept of Viharos et al. does not make this necessary.
Here, weights corresponding to missing data are protected
and remain omitted by the given learning step. As shown
by the results (see [12]), this is suitable for handling incom-
plete data. Moreover, “impaired” training vectors often bring
better learning results if data vectros to be learned contain
redundant information.

5. PROBLEM SOLVING

Having once assembled the general, multi-purpose ANN-
based model as described above, it can be used to solve a wide
variety of problems. The key to the model’s versatility arises,
aside from the fact that it is among the best models attainable
with an ANN of a given size and topology, from the possibil-
ity of both direct and indirect use. Is a parameter—considered
unknown in a given problem—equivalent to an output of the
ANN, direct estimation can be performed. Should unknown
parameters of a problem be inputs of the network, an indirect
approach can be used which is also suitable for non-invertable
relations.
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Figure 4: A thousand possible machine settings which produce a
prescribed surface roughness

Numerous practical application examples for low levels of
production (metal cutting again, as in various examples men-
tioned before) are given in [6]:

e The output of an ANN can determine operation order
and assignment of resources to work centers.

e The generic model can facilitate the determination of
cutting settings, tool selection etc. to maintain prescribed
quality.

e Attainable fields of machine parameters can be explored
by ANN-based simulation.

e Expected tool life and monitoring parameters can be es-
timated and an early warning can be issued according to
them.

e Adaptive control of machine settings can be realized to
satisfy a given processing requirement.

In [13, 14], the role of a proper input-output search is shown
in picking out non-invertable relations to learn them the cor-
rect way. Should a non-invertable relation be encountered,
learning it imposes no hindrance to a correctly configured
ANN, however, the non-invertable nature does show in the
high number of solutions found in an indirect problem solu-
tion process, as shown in Fig. 4.

Still an application example for lower levels of manufac-
turing, [15] shows another case for multiple solutions of a
non-invertable relation. An example is shown in Fig. 5 where
solutions had to be found for a set of multiple prescribed pa-
rameters of a cutting process. In [15], the influence of the
simultaneous selection of several requirements is examined
from the point of view of estimation accuracy.

An example for the use of the generic ANN model in
higher levels of production is given in [10] where vari-
ous problems related to efficiency improvement had to be
solved in manufacturing processes of multilayer printed cir-
cuit boards.



0 g
0,25 0,75

1,75

a (mm)

A 0,25 <feedrate <0,5
0,1 <feedrate <0,25

4 0,036 < feed rate <0,1

1,25 2,25 2,75 3,25

Figure 5: Thirty thousand possible solutions to a cutting problem
obtained from an ANN model of the process

6. OPTIMIZATION

Depending on the nature of the model and the problem,
finding a solution (or a set of solutions) may require iterative
search or optimization. In fact, this is the case every time the
ANN-based model is used in an indirect way to obtain a so-
lution where a valid interval for unknown inputs and outputs
is to be determined. In this case, following constraints are
imposed on the iterative search:

e Condition regarding known output parameters—
complying with this contraint ensures that a valid
solution estimates known output parameters by forward
calculation within specified bouds of estimation error.

e Condition regarding unknown input parameters—this is
determined by the valid domain of inputs of the ANN
model which is assumed to be covered by the set of train-
ing data.

e Condition regarding unknown output parameters—
determined by the valid range of the ANN’s output, a
prospective solution is only accepted if the unknown out-
put remains in this acceptable range.

An application example of iterative optimization with such
constraints is shown by Viharos et al. [16] where simulated
annealing is used to obtain a set of valid solutions to manufac-
turing problems. Also, the technique initially applied to only
one production step is extended in [16] to a higher level of
production: The block-oriented ProcessManager framework
presented in [16] can deal with an entire process chain where
the result of an earlier step may influence all subsequent steps.

Even higher levels of production are handled in [10] where
a hybrid optimisation technique (supported by Al, machine
learning (ML) and simulation) is used to find an optimal ar-
rangement of manufacturing processes within a production
plant. A substantial gain in optimization time (acceleration
by a factor of 6000) is reached by substituting discrete event
simulation with ANN’s trained by results of earlier simulation
runs.

7. SUBMODEL DECOMPOSITION

The complexity of production systems implies models
which—due to the high number of parameters and the dense
network of interrelations—can be handled as a whole only at
huge computational costs. It is thus advantageous to decom-
pose these complex models to several smaller interconnected
submodels which can be easily handled one by one. For this
purpose, a submodel finding approach combining feature se-
lection and artificial neural networks—a culmination of the
ANN-based techniques presented before—was developed by
Viharos [17, 18]. The application of the algorithm has two
main prerequisites:

e A data set of sufficient size has to be supplied, e.g., in
form of a database table where columns represent the
variables to describe the system and each row stands for
these variables recorded at a given time.

e Since in subsequent parts of the algorithm, an artificial
neural network is employed to test whether a given vari-
able can be estimated using other parameters, a maximal
tolerable error has to be assigned to each variable when
estimating it with an ANN model.

Having fulfilled these requirements, an algorithm can be run
which uses ANN'’s to validate proposed submodels. In the
most “conventional” case, the assignment of potential inputs
and outputs as well as the isolation of proposed submodel
structures is done in a separate block, prior to any ANN
training, as proposed by earlier approaches (e.g., Caelli et
al. [19]). Departing from this rigid setup, one can allow the
structure of the interconnected submodels to be determined
dynamically during learning.

The novel method presented in [20] allows the flexible
configuration of submodels, as well as free assignment of a
given variable for input or output. As shown before, the high-
est number of outputs is selected in an input/output search
based on ANN learning performance. However, attempting
to learn a potential output by an ANN can only signalize
that there is a dependency “somewhere within the set of se-
lected variables” but cannot weed out parameters totally in-
dependent of the given subsystem. This would result in a sin-
gle ANN struggling to learn the entire structure in question,
therefore, the reduction to smaller, easy-to-handle submodels
must be cared for by other means. While the vast majority
of such approaches determines the submodel structures be-
fore any ANN training takes place, this new method identifies
the submodel structures dynamically, leaning on the results of
earlier ANN training periods.

This is accomplished by an extended feature selection
algorithm—developed by Viharos et al—running on the com-
plete set of variables and setting up a decision tree for sub-
model selection. This can be considered a set of assump-
tions, to be either verified or rejected by the ANN algorithm.
The latter begins validating a given part of the submodel
structure—at a given point in the decision tree—and delivers
first training results. Examining these and removing the suc-
cessfully learned submodel form the “pool” of unclassified
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Figure 6: A simple case of submodel decomposition. The net of
accepted submodels consists, in this example, of five main relations
(in brackets), partitioning a system containing eleven description pa-
rameters. The fourth row in the window shows that the algorithm
identified a submodel with parameters 2, 3 and 6 as inputs for the
estimation of output 5. The four identified submodels have common
parameters, e.g., parameter 6 is estimated by the submodel shown
in the second row, but it is to be found among the input variables
of the next two submodels, too. Thus, a structure of interconnected
submodels can be recognized additionally to the identification of its
individual parts.

variables, feature selection is run again on the remaining data
set and the decision tree is reconfigured if needed. Hereafter,
ANN training takes place again. Thus, the method does not
separate preselection and ANN training into disjoint tasks—
in fact, feature selection and training complement each other
with their alternate execution until all submodels are identi-
fied and learned.

Having completed the decomposition, the following re-
sults are obtained (see also Figs. 6,7):

e A set of valid submodels, each containing a minimal set
of the system’s parameters with as many of them labeled
as output as the ANN algorithm could find.

e A set of rejected submodels. These were originally pro-
posed as submodels by the feature selection procedure
but were judged invalid by the ANN algorithm. Storing
these discarded patterns is useful for an early pruning of
submodel candidates bound to fail.

e Since the valid submodels were spotted while ANN’s
were learning their parameter dependencies, this knowl-
edge is readily accessible and applicable for problem
solving as a network separate neural nets, each of them
representing one submodel.

Fig. 7 shows a screenshot of an actual industrial application in
a rather low level of manufacturing where a production line
is modelled using more than sixty parameters. In [17] and
[18], another industrial application is shown for an intermedi-
ate level of production.

Currently ongoing research activities, as described by Vi-
haros et al. in [21], are aimed at extending submodel decom-
position towards an agent-based framework where knowl-
edge specific to an agent is mapped onto a given submodel.
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Figure 7: Result of submodel decomposition in an industrial exam-
ple with a large number of system parameters

The feasibility of this generalisation is assumed because of
remarkable analogies between ANN-based submodels and
agents: the fact of decomposability, the existence of localised
knowledge with strongly limited connections beyond a given
neighborhood, a network architecture, learning or adaptive
behavior and estimation or prediction abilities. Addition-
ally to the submodel principle, the automatic decomposition
approach itself is expected to be applicable to autonomous
agents as well, moreover, agents could be dynamically set up,
grouped or split up according to various efficiency criteria,
such as learning ability or skills of predicting relevant events.

It is envisaged that such a multi-agent system can be
erected as a higher level envelope for lower level production
control to determine an efficient initial layout of entire pro-
duction plants or provide decision support for their reorgani-
sation.

8. CONCLUSION

The first part of this paper highlighted fundamental phe-
nomena equally shared by higher and lower levels of man-
ufacturing (complexity due to a dense network of interde-
pendencies, and a large number of relevant system parame-
ters). To handle these in various types of problems, a family
of ANN-based methods was presented (classical modelling,
problem solving, optimization and submodel decomposition)
which can be equally applied in lower and higher hierarchical



levels of production. To demonstrate their versatile applica-
bility, examples of practical use were shown for various levels
of manufacturing systems. While submodel decomposition,
combined with a flexible multi-agent system, is still subject
to research, previous examples support the assumption that
the submodel decomposition technique, applied this far only
to monitor production lines, can be used in the highest hierar-
chical levels of a production plant as well.
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