
 

Abstract: A new approach is proposed for vision-
based sensing and processing for process control 
and monitoring of automated processes. The pro-
posed approach relies on a number of binary logi-
cal sensors defined over specific regions of interest 
in the viewed scene. On top of these elementary 
sensors, temporal and logical aggregation mecha-
nisms realize hierarchies of compound logical func-
tions, able to detect complex events. Finally, sce-
nario verification mechanisms are employed to 
monitor the occurrence order and timing of ex-
pected and actual events. The proposed framework 
has been tested and validated in an application in-
volving monitoring of automated processes, dem-
onstrating that the proposed approach provides a 
promising concept of vision-based event detection. 
The described framework is being implemented on 
the Bi-i standalone cellular vision system which has 
the potential of replacing several conventional sen-
sors used for process control and fault detection in 
automation. 
 
Key-Words: high speed image processing and 
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1. INTRODUCTION 
Recent advances in computer vision techniques allow 
the extraction of high-level semantic information from 
video streams, contributing to improvement in a vari-
ety of applications including surveillance, vision-
based human-computer interaction, etc. Event detec-
tion requires the interpretation of the “semantically 
meaningful object actions” [1]. This task can be ac-
complished if the gap between pure numeric features 
and the semantic level is bridged. Past work has 
mostly dealt with extracting object trajectories fol-
lowed by supervised learning, applying parameterized 

models for actions [2,3], usually consisting of prede-
fined dynamic patterns of movements learnt in an off-
line training phase. However, as the nature of events 
varies depending on the application, event modeling 
becomes a very challenging task. 

In this paper, a new approach to event detection and 
interpretation is proposed within a process monitoring 
framework. The approach has two significant advan-
tages over past work, as it i) decouples the detection 
and the interpretation of events from explicit, com-
puter-based detection and recognition, and ii) it de-
pends on very simple, low-level vision processes 
which is a key to robust and efficient performance. 

The proposed approach is based on the Vision-
Based Logical Sensors (VBLSs) [4] which meet a bi-
nary decision of whether a specific property holds in a 
specific image region at a certain moment in time, 
such as “region illumination exceeds predefined 
threshold”, “region changed with respect to the scene 
background”, “region profile matches stored proto-
type”, etc., corresponding to primitive events in a 
video stream. Compound Logical Sensors (CLSs) can 
then be built through temporal and logical aggrega-
tion applied to the values of VBLSs (or, recursively, 
other CLSs). Temporal aggregation creates a CLS by 
reasoning on the value of a VBLS (or a CLS) over 
time, while logical aggregation creates a CLS by 
combining the values of several other VBLSs or CLSs 
into Boolean expressions. 

The framework proposed is particularly suited to the 
application area of monitoring of automated processes. 
In most such processes (e.g., in mass production), 
things occur in a relatively strict, predetermined, 
scheduled way in comparison to other real life cases 
(e.g., vehicle control on highways). This permits us to 
turn difficult detection problems into much simpler 
verification problems, i.e., instead of trying to detect 
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“what is going on” in the viewed scene, the VBLS ap-
proach can be used to verify that things proceed as ex-
pected. This results in several advantages: 
• Computational efficiency: The VBLS approach re-

quires simple, low level, computationally cheap, 
data parallel image processing operations to be ap-
plied on (typically) small image regions. 

• Extensibility: VBLSs and CLSs can be dynamically 
tailored and expanded based on the needs of differ-
ent application domains. 

• Flexibility and adaptability: Most complex vision 
algorithms either fail in specific settings or require 
elaborate, non-intuitive parameter tuning. With the 
VBLS approach, it is more likely to come up with a 
suitable arrangement of VBLSs/CLSs. 

Answering the need for an easily programmable, 
flexible sensor system with a minimum of required 
mechanical adjustment, the proposed solution involves 
the Bi-i standalone cellular vision system [5] which, 
enhanced with the VBLS framework, will be able to 
visually interpret image sequences of automated proc-
esses, report malfunctions and deviations in the proc-
ess and assist the task of programming an adequate 
sequence of events. A significant advantage of this 
system is that it can potentially replace several “con-
ventional” sensors and thus substantially reduce the 
set-up time and costs for assembly machines. 

The paper is organized as follows. Section 2 de-
scribes briefly the issue of event detection in general. 
Section 3 provides a description of the basic elements 
of the VBLS approach as well as a search method to 
find correct sensor timing parameters in a semi-
automatic way. Section 4 describes experiments car-
ried out with a prototype implementation of the ap-
proach in the application area of the monitoring of 
automated processes. The document is concluded with 
a discussion summarizing the contributions of this 
work and future research directions. 

2. EVENT DETECTION 
In process control, sensors are used whenever uncer-
tainties are high enough to justify feedback. Tradition-
ally, such processes are supervised using several sim-
ple sensors (e.g., light barriers), either to deliver actual 
values for closed control loops, or to detect fault situa-
tions which result in (discrete) decisions taken by the 
controller. The number and type of sensors employed 
depend on the given control task. In general, it can be 
said that there should be a bijection between the situa-
tions to be detected and the information the sensors 
provide. Typical situations are for example: 

• Object was/was not inserted into the machine, 
• Object got stuck or was dropped, 
• Object was/was not gripped correctly, 
• Object started/stopped moving, etc. 
Some of these situations can be detected visually – 
this is the subset where “conventional” sensors can be 
directly replaced by vision. To accomplish this, rele-
vant information must be extracted from an image se-
ries and categorized as an event, possibly related to 
initial object detection, such as: 
• Object appeared (at a given position, with a given 

orientation and a given linear/angular velocity). 
• Object started/is moving/rotating (at a given loca-

tion, with a given linear/angular velocity). 
• Object stopped (at a given location, with a given 

orientation). 
• Object disappeared (moved out of the image or be-

hind a non-transparent object in the background). 
• Two (or more) objects move together or have a 

given relative linear/angular velocity. 
• Objects joined/split up/are overlapping. 
Finally, there may be other types of events related to 
the deformation of the shape of an object or combina-
tions of any of the above (and other) events. This 
event list is the result of experiences collected through 
the study and analysis of various production systems 
[7,8,9,10,11,12]. 

Comparing the above event list and manufacturing 
situations where a sensor is employed, one can recog-
nize that there is rarely a one-to-one mapping between 
them, but events can be very well recognized based on 
the above list. Consequently, a solution is needed to 
translate the above primitives into complex events to 
be recognized. This can be a logical model having 
events as inputs and manufacturing situations as out-
puts, to be built up typically by an expert having 
know-how in both process automation and machine 
vision. 

3. THE VBLS APPROACH 
Having described the task of the vision system, the 
specification of the elements of the solution will fol-
low. 

3.1 Vision-Based Logical Sensors (VBLSs) 

A Vision-Based Logical Sensor (VBLS) is the basic 
entity in the VBLS approach, applying a set of user-
defined Image Processing and Analysis Algorithms 
(IPAs) which detect a measurable property in a user-
defined Region Of Interest (ROI) and delivers a Boo-
lean output depending on whether or not the given 
property met a predefined requirement. 



 
3.2 Region Of Interest (ROI) 

A ROI is an arbitrarily shaped, user-defined region in 
an image. We denote a ROI R, with 
R≡ROI(I,M,X,Y,W,H), meaning a region of interest in 
image I, having a mask image M with dimensions 
W×H (giving a Boolean specification whether a given 
pixel belongs to the ROI), located at image position 
(X,Y), see also Fig. 3.1. 

3.3 Image Processing and Analysis Algorithms 
(IPAs) 

Having defined a ROI, the next step is to define the 
algorithm(s) that will be applied on it. We distinguish 
four categories of IPAs. 
• Preprocessing IPAs, processing a grayscale image 

to enhance/improve it (filtering operations as Gaus-
sian smoothing, averaging, median filtering, histo-
gram equalization, etc).  

• Analysis IPAs, operating on grayscale images to 
produce a binary image in which pixels having a 
certain property are differentiated from the rest (e.g., 
change detection algorithms, methods verifying 
whether pixels have an expected value, etc). 

• Post-processing IPAs, operating on binary images 
and producing another binary image with certain de-
sired properties (e.g., morphological operators as 
erosion, dilation, etc). 

• Decision IPAs, typically taking a binary image, and 
producing a decision on the value (true/false) of the 
Vision-Based Logical Sensor. 

Thus, the output of an elementary logical sensor in the 
VBLS approach is the Boolean result of a collection of 
IPAs applied over a ROI. More formally, a VBLS L 
computes a binary function f implemented through a 
series of IPAs that are applied to a ROI R, or L≡f(R). 

3.3 Compound Logical Sensors (CLSs) 

The Compound Logical Sensors (CLSs) are process-
ing the output of VBLSs (and, possibly, other CLSs), 
implementing two aggregation mechanisms. In tempo-
ral aggregation (TA), an “observation window” is 
sliding over inputs measured at a series of discrete 
points in time (video frames, in the most straightfor-
ward approach), performing the operation 
CLSi≡TA(CLSj,Amin,Amax,T2,T1) 

This means that a new CLS (CLSi) is built through 
temporal aggregation (TA) of the values of CLSj. Its 
output will be true at time t if CLSj was true at least 
Amin and at most Amax times over the time interval  
[t–T1,t–T2]. CLSi reporting the current value of CLSj is 
then a special case of TA with CLSi≡TA(CLSj,1,1,0,0). 
In logical aggregation, a CLS is built based on the 
logical combination of the results of other LSs 

(VBLSs, or, recursively, CLSs). The following are 
some example CLSs: 

CLS1 := LS1 OR LS2 

CLS2 := LS3 AND LS4 

CLS3 := LS4 XOR LS5 

CLS4 := CLS1 AND LS6 (i.e., CLS4 is equivalent to the 
expression “(LS1 OR LS2) AND LS6”). 
Logical and temporal aggregation can be combined 
arbitrarily. 

3.5 Scenarios (SC) 
Scenarios are mechanisms provided to support the 
automatic monitoring of processes where several 
events occur serially, one after the other. A scenario 
SC is defined by the ordered list E of events e1,e2,…,en 
comprising it, the time differences di between the suc-
cessive events ei and ei+1, and the time tolerances τi in 
the occurrence of these events. This means that if the 
event ei occurs at time ti, then, according to the sce-
nario, the event ei+1 should occur in the time interval 
[ti+di–τi,ti+di+τi]. More formally, a scenario SC is rep-
resented by the triplet SC≡(E,D,T), where 
E=〈e1,e2,…,en〉, D=〈d1,d2,…,dn–1〉 and T=〈τ1,τ2,…,τn–1〉. 
The validation of a scenario is achieved by a mecha-
nism checking whether the events comprising the sce-
nario have been detected and if their timing complies 
with the prescribed requirements. In the case of a strict 
scenario, the events comprising it should occur only 
with the predetermined timing, while in a relaxed sce-
nario, they should occur at least at the required tim-
ing; however, some of the events could also occur at 
other time instances, besides the ones specified. 
Regardless of its type, a scenario may fail either be-
cause an event was never detected, or because it was 
detected but did not occur at the proper timing. In both 
cases, the framework may provide an intuitive expla-
nation for scenario failure, at different levels of detail. 
This is achieved by tracing the hierarchical structure 

 
Fig. 3.1. Example of a ROI (red rectangle), with 
pixels selected for further processing in yellow 



 

of the CLS responsible for the non-detected event, and 
reporting the lower-level CLS or VBLS that did not 
produce the expected value. 

3.6 Setting up the evaluation network 

The above elements outline a three-level framework of 
logical evaluation, as shown in Fig. 3.2. While in most 
cases, a fair amount of experience, simple “rules of 
thumb” or brief practical tests are sufficient for setting 
correct IPA parameters, the same may not necessarily 
hold for the timing parameters in the TA operators and 
the events prescribed in the SC. Practical use would be 
largely facilitated by 
• a benchmarking method expressing the qualities of 

the given timing configuration numerically, and 
• an optimization method which can automatically 

find the timing parameters best fit for the given pur-
pose (and using the aforementioned measure as an 
objective function). 

Since fulfilling the latter requirement already gives a 
benchmarking tool as a by-product, the main goal pur-
sued here was the elaboration of a suitable optimiza-
tion method for finding suitable timing parameters. To 
this end, the timing properties of CLSs (both logical 
and temporal aggregation) were examined, resulting in 
linear inequalities which, together with basic assump-
tions about the finite length of a video sequence and 
causality in general, can define a search space where 
suitable timing parameters are to be found. Now, the 
optimal timing parameters must be determined for cor-
rect separation of successful input sequences from 
failures. Possible learning inputs may be 
• one successful sequence; 
• several successful sequences; 
• several successful and unsuccessful sequences cor-

rectly labeled in advance by a human operator. 

Having once specified the search space and possible 
inputs, a suitable objective function must be assem-
bled which delivers its extremum when a given se-
quence of VBLS inputs fits best the requirements set 
by the timing parameters of the VBLS—CLS—SC 
network. The objective function is composed of the 
terms 
• Q1, or decision ability, expressing the ratio of cor-

rect pass/fail decisions for entire sequences; 
• Q2, or decision ability on the level of SC events, as a 

refinement of Q1; 
• Q3, or decision quality, expressing how well the re-

sults are located within the given interval of correct 
decision; 

• Q4, or decision safety, expressing how far away a 
given result is located from the border of the corre-
sponding binary decision. 

From these, a compound criterion is assembled 
Q=Q1+Q2+Q3+Q4 where the above terms are scaled so 
that an optimization hierarchy is created with Q1 re-
ceiving the highest priority and Q4 the lowest one. 

With the criterion, the search space and the learning 
patterns defined, the optimization procedure itself can 
be performed. Since the inequalities do not guarantee 
a convex search space and the possible choices of Q3 
and Q4 include nonlinear functions, suitably robust op-
timization algorithms must be employed. In our case, 
the Nelder-Mead simplex algorithm [13] and the 
Greedy tabu search method [14] was tested with pre-
recorded learning sequences of all three possible com-
positions, the latter algorithm presenting better results. 
Experience obtained with the tests let us conclude that 
(semi-)automatic tools can be produced to assist the 
setup activity of installation personnel. 

Fig. 3.2. Example detail of a VBLS—CLS—SC  
network with only one VBLS for input 

 
Fig. 3.3. Graphical interface of the software  
developed for testing the VBLS approach 



 

4. EXPERIMENTS 
4.1 Validation of the VBLS approach 

A software platform (Fig. 3.3) has been developed in 
order to test and validate the VBLS approach [4]. The 
capabilities of the platform include image sequence 
visualization, definition of ROIs, IPAs, VBLSs, and 
CLSs, as well as composition of scenarios (both strict 
and relaxed), parameter tuning, control of several 
visualization options, saving of results in text/video 
form and detailed error reporting. In addition, a 
framework for timing parameter search has been de-
veloped as a Matlab implementation with a separate 
interface specification. 

The VBLS approach has been tested in the context 
of an application involving the monitoring of the ac-
tivities of a 5-axis robot, consisting in moving a work 
piece from/to several locations. 

A camera system was set up to observe and monitor 
the operation of the robot. Using the VBLS software 
platform, an unexperienced user is able to quickly de-
fine VBLSs, CLSs and scenarios to detect and verify 
several complex tasks of robot operation, including 
the correct recognition of failures (e.g., workpiece fal-
ling down or sticking to gripper or mounting frame, or 
even humans entering the field of view of the camera). 
Fig. 3.3 shows a typical screenshot of the system 
while in operation. LSs and CLSs which happen to be 
true/false at the particular moment in time are marked 
with green/red, respectively. 

The fact that the recognition of complex events was 
already possible using some of the most simple IPAs 
(e.g., Gaussian smoothing) supports the conclusion 
that the power of the VBLS framework in detecting 
complex events lies in the spatial and temporal aggre-
gation of the information of a large number of logical 
sensors and not in the “intelligence” of one, complex 
vision module – this property bearing a potential of 
efficient and robust performance in a wide variety of 
application domains. 

4.2 The Bi-i Vision System and the VBLS ap-
proach 

The Bi-i standalone cellular vision system [6] consists 
of state-of-the art cellular sensing, processing and 
communication devices enabling the system for appli-
cation as a computing platform for combined topog-
raphic and non-topographic calculations in sensing—
processing—actuation scenarios.  

The Bi-i can capture and process up to 10,000 
128×128 images per second. At its core is Cellular 
Visual Technology (CVT), which combines bio-
inspired hardware and software solutions into a flexi-

ble and compact computational platform. Bi-i is ide-
ally suited for applications requiring standalone opera-
tion and real-time performance in tasks whose com-
plexity transcends the abilities of normal cameras and 
processors. Already proven in a variety of application 
pilots [5], the field of monitoring and control of auto-
mated processes constitutes a new application field 
where the Bi-i can unfold its ultra high-speed image 
processing capabilities. 

The Bi-i is well suited for high-speed event detec-
tion and process monitoring, since the current frame-
work of the VBLS approach involves simple IPAs and 
the running time of them is in the range of a few doz-
ens of microseconds per frame. Some IPAs are im-
plemented (Fig. 4.1) in the platform independent In-
stant Vision library supporting application develop-
ment for Bi-i, while further ones can easily be added 
to this software platform, working towards the final 
goal of integrating the smart-sensor-based vision sys-
tem into a commercial product. 

5. CONCLUSION 
The paper presented a promising approach for replac-
ing several sensors with a camera and a vision system 
in automated production lines. The approach takes ad-
vantage of the fact that in industrial production, nu-
merous processes are clearly defined and their video 
images exhibit regular structures which can be cap-
tured by a series of simple filters (Vision-Based Logi-
cal Sensors, VBLSs), whose Boolean output is then 
passed on for interpretation by a network of Com-
pound Logical Sensors (CLSs) employing both tempo-
ral and logical aggregation, and finally a Scenario 
(SC) whose elements prescribe the occurrence of dis-
crete events. The work presented in the paper resulted 
in a prototype software which can be applied to build 
VBLS—CLS—SC networks and evaluate video se-
quences with them. In addition, a numerical tool was 
developed which supports the evaluation of the cor-

         
Fig. 4. 1. Image processing results obtained with the 

implementation of an IPA on Bi-i (right). The input im-
age (left) is a frame of a video recording acquired in an 

industrial environment. 



 
rectness of a given set of CLS and SC timing parame-
ters, and gives semi-automatic assistance for finding 
best parameters with robust optimization algorithms. 
Hardware implementation of the Image Processing 
Algorithms (IPAs) comprising VBLSs was carried out 
on the Bi-i cellular image processing camera with bi-
nary VBLS outputs leaving the device instead of raw 
image data. The tests have successfully demonstrated 
the feasibility of the concept and may support plans of 
developing the vision system into a commercial  
product. 
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