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Abstract — The paper is aimed to present how Neuro-Fuzzy 

Systems can be applied for identifying a general system 

model of a given problem defined by a set of variables. 

Neuro-Fuzzy Systems are favored in many application fields 

because they provide fair accuracy and their inner 

computational model can be interpreted through the fuzzy 

rules they encapsulate. The proposed input-output search 

algorithm is able to find optimal system configuration of an 

arbitrary set of variables. By placing the algorithm on a 

Neuro-Fuzzy basis the resulted system model became more 

interpretable through the inner rules of the Neuro-Fuzzy 

model. This makes the algorithm more interpretable by 

revealing more information about the inner connections 

between the variables of a specific problem. 

I. INTRODUCTION 

Neuro-Fuzzy Systems have many applications in 
various fields such as production, control systems, 
diagnostic, supervision, etc. [1][2]. They evolved and 
improved throughout the years to adapt arising needs and 
technological advancements. Neuro-Fuzzy Systems are 
hybrid models that utilize the advantages of fuzzy rule 
systems and ANNs (Artificial Neural Networks): they 
have learning and generalization capabilities and at the 
same time they reveal the functionality stored in the 
model. These combined features make this type of 
systems useful when solving complex problems. 

The paper introduces an algorithm for building up the 
general system model using Neuro-Fuzzy Systems. 
System models are extremely important in control 
solutions e.g. in production control systems, too. Reliable 
process models are also extremely important in different 
fields of computer integrated manufacturing. Difficulties 
in modeling manufacturing processes are manifold: the 
great number of different machining operations, 
multidimensional, nonlinear, stochastic nature of 
machining, partially understood relations between 
parameters, lack of reliable data, etc. [3][4]. 

The paper contains five sections. After the introduction 
the second section presents Neuro-Fuzzy applications and 
its most common model structure. The third section 
describes the generalized input-output search algorithm 
followed by the forth one reviewing the test results and 
experiences. The last three sections are conclusions, 
acknowledgments and references. 

II. NEURO-FUZZY SYSTEMS 

The section discusses some applications of Neuro-

Fuzzy Systems and the most important architectures in 

the field [1][5]. 

A. Neuro-Fuzzy Applications 

As it was emphasized already reliable process models 
are extremely important in different fields of computer 
integrated manufacturing, especial in system modelling 
using cybernetics supported solutions [6][7]. Zhang and 
Morris used a Neuro-Fuzzy solution for fault diagnosis of 
continuous stirred tank reactor process [8]. They achieved 
better performance than with a conventional MLP (Multi-
Layer Perceptron) while the system also provided a more 
interpretable structure. 

Detecting the onset of damage in gear systems was the 
goal of Wang et al., for which they developed a neuro-
fuzzy based diagnostic system [9]. They also developed a 
constrained-gradient-reliability algorithm to train the 
system and their solution outperformed other Fuzzy and 
Neuro-Fuzzy Systems. 

Evsukoff and Gentil created a recurrent Neuro-Fuzzy 
system for fault detection and isolation in nuclear reactors 
[10]. In their model a fuzzification module is linked to a 
neural network based inference module which was 
adapted to recognize related faults based on the process 
variables. 

One of the first and probably most widespread Neuro-
Fuzzy architecture is the ANFIS (Adaptive-Network-
based Fuzzy Inference System) which has similar 
accuracy as the MLP which makes it ideal for function 
approximation. This architecture was used for mechanical 
fault diagnostics of induction motors with variable speed 
drives by Sadeghian and Wu [11]. The authors managed 
to significantly reduce the system complexity and learning 
duration of the network by using multiple ANFIS units in 
their model. In another application Lei et al. used multiple 
ANFIS combination with genetic algorithm for fault 
diagnostics of rotating machinery [12].  

Machinery malfunctions often reduce productivity and 
increase maintenance costs in various industrial fields. Zio 
and Gole proposed a neuro-fuzzy approach to solve fault 
diagnostic problems by pattern classification while 
obtaining a model which remained easily interpretable 
[13]. Chen, Roberts and Weston used Neuro-Fuzzy 
Systems for fault detection and diagnostics of railway 
track circuits [14]. 

Different application fields are also targeted by Neuro-
Fuzzy solutions as in the case of another ANFIS model 
which was used to detect alterations in sleep EEG activity 
during hypopnoea episodes by Übeyli et al. [15]. The 
authors used the ANFIS for classification and they 
performed feature extraction by computing of wavelet 
coefficients. In their case four models was used: three 
were fed directly by measured data on the electrodes and 
the fourth had the purpose of improving diagnostic 
accuracy by gaining its inputs from the outputs of the 
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other three systems. There is a wide variety of other 
applications where this kind of systems was successfully 
implemented from the fields of biology and environment 
to fault detection and diagnostics as by Kar et al. [16]. 

B. Neuro-Fuzzy model structure and konwledge 

interpretation 

There are two fuzzy inference types that create the base 
of the different Neuro-Fuzzy structures; this paragraph 
explains how to interpret their incorporated knowledge. 
These are the Takagi-Sugeno-type [17] and the Mamdani-
type. The first one is described by rules in the form of 

IF A X1 AND B X2 THEN C = ax1+bx2+c 

while the latter one is described by rules in the form of 

IF A X1 AND B X2 THEN C X3 

where A and B are the inputs and C is the output; X1, 
X2 and X3 are fuzzy sets; a, b and c are constants. From 
the forms of the inference rules it can be seen that the 
Mamdani-type rules produce fuzzy outputs, while the 
Takagi-Sugeno type rules produce exact values as a result 
of a linear equation. 

One of the first Neuro-Fuzzy Systems was introduced 
by Jang [18][19]. This architecture is called ANFIS and it 
uses the Takagi-Sugeno inference system. 

Fig. 1 shows the ANFIS structure which combines the 
nonlinear membership functions of the inputs with the 
linear membership functions of the output. 

 

 

Figure 1.  ANFIS architecture [18] 

The ANFIS model has the advantage to be the most 
accurate among the different Neuro-Fuzzy architectures, 
but it’s drawback is that the output membership functions 
are harder to interpret than in the case of a Mamdani-type 
inference system. 

In the case of the Takagi-Sugeno inference the rules 
consist of nonlinear antecedent part and linear consequent 
part. 

Fig. 2 shows the input membership functions for one 
input in the case of two rules. If the membership functions 
of a given input variable are well separated from each 
other at the end of the model training it indicates that the 
connection between the given input variable and the 
output is nonlinear because different rule is activated in 
the case of a lower input value than in the case of a higher. 
For each rule there is a linear output membership function 
which is weighted with the firing strength of the 
corresponding rule. 

 

Figure 2.  Input membership functions 

Fig. 3 shows the coefficients in the output membership 
function for the two rules. If the input membership 
functions are well separated then only one rule will fire for 
a given input vector and only the corresponding output 
membership function will contribute to the final output 
value, consequently, linear relationship is applied in the 
given region. 

 

Figure 3.  Output membership function coefficients 

When the input membership functions totally overlap it 
means that the input has a linear connection with the 
output because for any input value both rules fire with 
similar strength which means both output membership 
functions are weighted equally and the coefficients are 
summed respectively resulting in a merged membership 
function.  

These experiences and paper contributions resulted in a 
methodology to look into and understand deeply the 
meaning of the individual resulted fuzzy rules (and the 
related coefficients) also when the system is a Takagi-
Sugeno Neuro-Fuzzy but not Mamdani type. Moreover 
this type of models is more accurate than the Mamdani 
systems. 

One disadvantage of the classic ANFIS structure is that 
it is only capable to estimate one output value. This 
problem can be avoided by using the MANFIS (Multi 
output ANFIS) or the CANFIS (Coactive Neuro-Fuzzy 
Inference System) [20] model. The former one uses 
different ANFIS models for each output while the latter 
one generalizes the ANFIS model to be capable of 
handling multiple outputs with one model. 

III. INPUT-OUTPUT SEARCH ALGORITHM 

The solution for identifying a general system model 
formulated as an input-output search algorithm based on 
artificial neural networks was developed [21]. By building 
up of this general model the algorithm does not have any 
regard to the given assignment of engineers or other 
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experts/users, its target is to satisfy accuracy requirements 
and build up the most useful system model, e.g. for 
generalized control aspects. In other words its aim is to 
build up a general system model pursuing “only” the 
maximal knowledge identification and incorporation. In 
this aspect the solution gives up considering the ordering 
of system parameters to inputs and outputs, its target is to 
find also the “best” system configuration that maximizes 
the incorporated knowledge. 

Fig. 4 shows the pseudocode of this input-output search 
where E is a set of error and model index pairs. The model 
method returns the error of a given model configuration 
and the min_e and min_i methods return the error and 
index of the element of E respectively where the error is 
minimal. 

 

1   iosearch(el, P) 

2       I <- P 

3       O <- Ø 

4       em <- ∞ 

5       WHILE |I| > 1 AND em < el 

6           E <- Ø 

7           FOREACH i IN I 

8               e <- model(I \ i, O ⋃ i) 

9               E <- E ⋃ (e, i) 

10          END 

11          em <- min_e(E) 

12          p <- min_i(E) 

13          I <- I \ p 

14          O <- O ⋃ p 

15      END 

16  END 

Figure 4.  Pseudocode of the input-output search 

In this generalized algorithm the model method can be 
implemented as the evaluation of an arbitrary (forward) 
computational model like ANN or a Neuro-Fuzzy System. 
This algorithm was generalized earlier to use SVM 
(Support Vector Machine) models, too [24]. 

IV. TEST RESULTS AND EXPERIENCES 

This section details the test results of the input-output 

search on different test cases and the interpretation of the 

optimal models. 

A. Test cases 

Four datasets were used for evaluation of the general 
model search algorithm; these test cases were selected to 
cover a wide variety of problem types. 

The first dataset is from the field of cutting theory, 
applied typically cutting tool machining companies and 
their customers. 9 variables consist of machine settings, 
like feed and speed, and measurable process variables like 
force and roughness [3].  
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In this case the dependencies are described by special 
equations and values for the related variables are 

generated by four equations (1) which were defined by 
cutting tool manufacturers. 

The second test case is also from cutting process, but in 
this case the dataset contains measured values of 7 
variables [21]. This dataset represents the real production 
environment where the values can contain noise and the 
measurement system is not fully ideal. 

The third test case is the well-known Iris dataset from 
UCI Machine Learning repository [22]. This dataset 
contains 4 geometrical variables (sepal and petal length 
and width) and one classification variable with three 
different class values (three types of Iris flower). 

Finally, the fourth test case, another dataset from UCI 
Machine Learning repository [22], is housing which 
consists of 14 variables describing real estate properties in 
the outskirts of Boston. 

B. Optimal Models 

The input-output search was applied on each test 
dataset without defining an error limit thus forcing the 
algorithm to run until all the variables except one are put 
on the output side of the model Modell estimation error 
was used to measure the accuracy of possible model 
configurations considering different amount of model 
output variables. 

Fig. 5 shows the search results on the 4 datasets 
comparing the MLP, MANFIS and CANFIS models. The 
diagrams show how the estimation errors of the models 
grow as more and more variables are placed on the output 
side (consequently, less and less variables remain on the 
input side). Moreover, it is represented that Neuro-Fuzzy 
models are more accurate than the MLP model types. 
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Figure 5.  Error of various input-output search results for different 

model output variable amounts. 

One can see that typically there is a drastic leap in the 
error at a specific output number. For example in the case 
of the calculated cutting dataset the 4 output model has a 
fairly low error but the 5 output model has very poor 
accuracy. This is due to the fact that the dataset was 
generated from 4 equations. It can be noticed that because 
this dataset was generated by using the equations in (1), 
the problem can be estimated with high model accuracy. 

In the case of the three other datasets the data comes 
from measurements, which typically incorporate noise in 
the values and the connections of the variables are also 
more uncertain. The measured cutting datasets shows a 
leap in the error between the 4 and 5 output model. The 
Iris dataset produces similar accuracy at 3 and 4 output 
which is due to the fact that the original 4 geometrical 
variables (Sepal length, Sepal width, Petal length, Petal 
width) are redundant and the input-output search puts one 
of these variables (the first one) to the output side. The 
Housing dataset is the hardest to estimate which can be 
seen from the relatively high error values. In this case 
there isn’t a definitive leap in the error and the 5-6-7-8 
output models can all be considered as optimal system 
model. 

C. Interpretation of the resulted optimal model using 

the Iris dataset as example 

In the case of Iris that has the highest ranking among 
machine learning benchmark datasets [22], both the 3 and 
4 output models have similar accuracy making them both 
valid system models. The 3 output model is the direct 
model because the 4 inputs are the geometrical variables 
while the 3 outputs are the classification values of the 
three classes (for classification problems the class variable 

is often partitioned into 0-1 type variables for each class 
and the model diagnosis is the one variable that is the 
closest to 1). 

Fig. 6 shows the membership functions of the 4 
geometrical input variables (from top to bottom 
respectively) for identifying the first class (in this case the 
MANFIS model is used so there is a different ANFIS 
model for each output). It is represented again, that Neuro-
Fuzzy systems can serve with more accurate models than 
pure MLP solutions that is a general experience after the 
tests. 

 

 

 

 

 
Figure 6.  Input membership function of the 3 output model (first class 

output) 

Fig. 7 shows the membership functions of the Sepal 
width, Petal length and Petal width input variables (from 
top to bottom respectively) for identifying the first class as 
the input-output search put the Sepal length variable to the 
output side. 
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Figure 7.  Input membership function of the 4 output model (first class 

output) 

It represents that the corresponding membership 
functions are basically the same for both models with four 
and with three input variables, which also means that 
input-output search identified that the first class can be 
diagnosed based only on these 3 inputs. The same 
conclusions can be drawn in the case of the other two 
classes which means that the input-output search 
successfully identified a redundant variable and put it on 
the output side. 

So the 3 class variables can be estimated form 3 
geometrical variables but it is also expected of the model 
to give good estimation for the identified output 
geometrical variable. Fig. 8 shows the membership 
functions of the Sepal width, Petal length and Petal width 
input variables (from top to bottom respectively) for 
estimating the geometrical output variable Sepal length. 

It is represented in the Fig. 8. that the relative location 
of the membership functions can be interpreted as that the 
Petal length input has the most impact on the Sepal length 
(as it is the most separated) and the Sepal width input has 
the least impact (as it is the most overlapping). 

Fig. 9 shows how the three classes are located in the 
space of different geometrical variable pairs. It can be 
seen that the location of the classes completely correspond 
the membership function overlap of Fig. 8. 

This behavior of the membership functions mirrors that 
it is possible to interpret also the ANFIS based Neuro-
Fuzzy rules, moreover the introduced algorithm for 

determining Neuro-Fuzzy model configuration is able to 
result in the optimal system mapping. 

 

 

 
Figure 8.  Input membership function of the 4 output model 

(geometrical output) 
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Figure 9.  Location of the three classes in the space of the geometrical 

values 

V. CONCLUSION 

This paper presented how Neuro-Fuzzy Systems can be 
used for identifying general system models of a given 
problem defined by a set of variables. Neuro-Fuzzy 
Systems are favored in many application fields because 
they provide high accuracy and their inner computational 
model can be interpreted through the fuzzy rules they 
encapsulate. The input-output search algorithm is able to 
find optimal system configuration of an arbitrary set of 
variables. By placing the algorithm on a Neuro-Fuzzy 
basis the resulted system models became more 
interpretable through the inner rules of the Neuro-Fuzzy 
model. This makes the algorithm more efficient by 
revealing more information about the inner connections 
between the variables of a specific problem that can be 
exploited later in many applications [23].Furthermore the 
input-output search was integrated into the submodel 
search algorithm which is able to identify variable subsets 
which can be modelled with a given accuracy [25]. 
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