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ABSTRACT 
The prevention of electrostatic discharge (ESD) is of crucial importance in the electronics industry, and surfaces of workstations have to be 
of specific resistance for effective ESD protection. The paper presents results of an R&D project which investigated the—so far rarely 
researched—dependence of worksurface resistance on ambient conditions and surface contamination in a live industrial environment. 
Upon examination of known and assumed dependencies, measurement and instrumentation are outlined, relying on existing automated 
facility management, autonomous devices, and manual measurement/logging. Further parts of the paper report on an analysis of the data 
obtained, as well as their use in building models of surface resistance, employing feature selection metaheuristics applied in combination 
with artificial neural networks. Surface resistance models built with approximately one year’s worth of measurement data yielded 
estimations with 12 % mean relative error, and showed that surface resistance can be estimated relying on data that can be obtained by 
contactless and remote measurement, without direct interference with work processes. 
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1. INTRODUCTION 

Research and development of the past 1 to 2 decades 
brought forth data processing and model building tools that are 
able to tackle the complex interdependencies of large 
production systems at multiple levels of organizational and 
functional hierarchy, as well as sophisticated methods and 
technologies for prediction, planning and control of industrial 
processes. Several of these have ripened from experimental 
pilot to industrial application, and find growing acceptance in 
production environments that are otherwise pressed by 
tightening environmental and health regulations, and by 
increasing competition that requires costs to be cut while 
maintaining or improving product quality, flexibility and 
responsiveness. An important development contributing to 
these trends is the increase of process transparency by means of 

massive unique identification, process/product data and 
measured quantities, allowing better models to be built and 
utilized, possibly also yielding a more accurate picture of the 
borders of safe operating conditions. The latter can, in turn, be 
approached more closely, resulting in savings and improved 
quality and process safety guarantees. 

The specific case examined in the paper is that of the 
electronics industry where products must be protected from 
electrostatic discharge (ESD), especially at stages of production, 
maintenance, or repair where no protective shielding of the 
product is present. ESD occurs when electrostatic charges 
accumulated in production equipment, clothing of personnel, 
etc., are discharged in an ESD event. Discharge passing through 
semiconductor components may inflict irreparable damage 
which can remain hidden long enough for a damaged device to 
slip through immediate quality checks — such risks must, 
therefore, be removed from the processes of production and 
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handling. This consists in ensuring that (1) electrostatic charges 
accumulate as little as possible in the environment, equipment, 
and personnel, and (2) if a discharge event does occur after all, 
discharge current must be limited to protect sensitive 
components from overcurrent. In industrial practice, this is 
ensured by (1) the use of conductive materials for floors, 
clothing, worksurfaces (Figure 1) and certain tools, as well as 
protective ground connections at specific points of production 
equipment, and by (2) the surface resistivity of materials in 
possible physical contact with the semiconductor components 
being within a range that allows draining of accumulated charge 
but keeps discharge current within safe limits [1], [2]. 

The transfer resistance of surfaces depends on several 
ambient conditions as well as deposits on the surface — in 
present-day practice, neither precise and frequent measurement 
of the relevant conditions, nor a minimal-impact acquisition of 
actual resistance values are part of industrial practice. While 
contactless methods are known for the measurement of charge 
dissipation properties [3], their setup would still interfere with 
the work processes. Therefore, an accurate model of the dependence of 
surface resistance on ambient conditions and process parameters is not relied 
on in present-day industrial practice, implying relatively rough estimations 
and wide safety margins that are maintained at high costs. It is expected 
that more accurate knowledge of a surface resistance model will 
eventually contribute to improved efficiency in maintaining safe 
operating conditions. Nonetheless, data acquisition and model 
building are only of practical relevance to the industry if they can be rolled 
out and robustly deliver added value in a true industrial environment where 
interdependencies are complex and largely unknown, and data acquisition 
can be limited and never has top priority. 

Extending a previous IMEKO TC4 conference publication 
[4], the paper presents a measurement instrumentation, data 
pre-processing, and model acquisition setup in the context of 
an R&D project that has collected measurement data of ambient 
conditions and work activity logs assumed to be relevant for modelling the 
surface resistance of worksurfaces of manually operated ESD-protected 
workstations. The key objective of the work presented here is to examine 
the viability of the aforementioned data acquisition and modelling as a 
field-deployable method, and much less the establishment of an accurate 
model of one or several specific ESD-protective materials at any cost. In 
further parts, the paper is structured as follows. After an 
overview of preliminaries (Section 2), the extent and methods 
of measurement are presented (Section 3), followed by first 
findings of raw data (Section 4), and the concept of data 
preparation, model building, and results of modelling itself 
(Section 5). Section 6 recapitulates the novelties achieved by the 
research so far, and highlights further possibilities of 
measurement and online diagnostics. 

2. PREVIOUS WORK 

2.1. ESD protection in literature 

The mainstream of ESD-related literature deals, in fact, not 
with ESD protection directly but with the nature and effects of 
ESD events, assuming that discharge does already occur [5], [6]. 
A major share is taken by models (i.e., substituting circuits) of 
equipment or personnel potentially carrying accumulated charge 
[7], [8], facilitating comparative characterization [5], formal 
analysis, simulation of ESD events [6], and definition of 
robustness requirements for semiconductor components and 
their protective circuits. 

The second major group of works deals with robustness of 
semiconductors, devices and protective circuits against 
electrostatic discharge [9]–[11]. Also here, the occurrence of an 
ESD event is assumed, while research presented here is aimed 
at ensuring their continuous prevention — hence, little of these 
two major problem areas are directly related to our focal 
problem. 

A third — much narrower — segment, more relevant to the 
topic of the paper, focuses on materials suitable for ESD 
protection of work environment, tools, clothing, and packaging 
[1], [12]–[15]. While these give valuable guidance for expected 
dissipative characteristics, only a fraction of the sources deals in 
detail with the influence of certain ambient conditions on 
material properties [1], [16]–[18]. 

While the thin corpus of existing literature in the third area 
made first steps of the presented research difficult, it still 
allowed one to recognise that the current project, due to its 
specific perspective, would have to cope with two requirements 
without significant preliminaries at hand. So far, existing 
literature has, namely, not aimed for (1) acquisition of material 
properties under conditions of live production processes (i.e., 
measurements known so far assumed a laboratory environment 
where conditions can be manipulated as desired and 
measurements can be taken without having to avoid 
interference with work processes), and (2) building a model that 
covers possible dynamics of ambient conditions (some of them partially 
or poorly measurable) and can be queried in real-time for early 
warnings or recommended cleaning, adjustment, etc. of ESD-
protected workstations. 

2.2. Relevant conditions in other domains 

Earlier experience has already revealed that dust settling on 
the worksurface, in combination with humidity and temperature 
of ambient air, has impact on the resistance of ESD-protected 
worksurfaces. Therefore, it is worth examining how these 
conditions are represented in literature in other domains [19], 
[20]. Relevant in this context are results regarding particulate 
matter, aerosols and settling of dust [21]–[23] which reveal 
much regarding expected fluctuations of dust density (even 
though, care must be taken regarding the specific composition 
and ratio of mineral particles, cellulose and skin fragments 
which differ in outdoor environments and closed airspaces of 
manufacturing facilities).  

While some sources deal with the mechanical behaviour and 
handling of dust (e.g., accumulation and removal from 
photovoltaic panels [24]), others have investigated the 
conductive properties of dust and moisture, with particular 
attention to their effect on dielectrics such as high voltage 
isolators [21] and printed circuit boards (PCBs) [19], [26].  

Research has also been extended to transmittance and 
reflectance of dust-contaminated surfaces, especially in the 

 

Figure 1. Example of an ESD-protected worksurface. Green marks show the 
locations of resistance measurement carried out in this research. 
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infrared spectrum. A number of sources point out that 
moisture captured by settled dust exhibits definite spectral 
patterns [27] which are potentially useful in estimating surface 
resistance properties as well — the more so as this would allow 
online contactless and remote measurement with minimal impact on ongoing 
work processes. 

2.3. Industrial experience 

Empirical experience has shown over the past few decades 
that ambient temperature, humidity and deposits on the surface 
have impact on the resistance of ESD-protected worksurfaces 
— nonetheless, it must be noted that these are much influenced 
by production practice, such as cleaning, choice of materials in 
tools and clothing, and artificial control of ambient conditions. 
The Ishikawa diagram shown in Figure 2 reflects the relevance 
of contributing factors recognized in today’s production 
practice. Note that the relevance predicates shown reflect the 
impact of factors under nominal operating conditions which are kept 
in safe distance from potential risk zones by a wide margin that 
precludes hazards, even under limited opportunities of 
measurement and intervention. Regarding relative humidity, a 
30 % limit is seen as a rule of thumb: below this value the 
resistance of rubber, and most polymer, surfaces may rise 
beyond safe limits, necessitating very costly humidity control, 
e.g., in cold and dry outdoor weather [16]–[18]. 

3. MEASUREMENT SETUP: CONCEPT AND EXTENT 

3.1. Purpose of measurement 

As outlined before, the purpose of measurements presented 
here is to gain more accurate knowledge of the dependence of 
the surface resistance of ESD-protected worksurfaces on 

selected ambient conditions in a live industrial environment 
(temperature, relative humidity, floating/settled dust, regular 
work-related activities and cleaning/maintenance measures). 
The quantities of interest are shown in an Ishikawa diagram 
revised in the course of our research (Figure 2). The figure 
shows a shift of attention towards quantities that had less 
impact under close-to-nominal operating conditions (see the 
framed area at the bottom left of the diagram). 

Due to the nature of the research presented here, 
measurements had to be carried out in live industrial environment 
where (1) ambient conditions cannot be varied at will as one would do 
in a laboratory or test pad (nonetheless, the measurements will 
span the operating area in ambient conditions that nominal 
work processes usually cover), and (2) ongoing work processes and 
hard requirements on health, safety and product quality guarantees 
do restrict the quantities to be measured, and the ways, places and timing 
at which they can be measured (e.g., measurement directly at the 
worksurface is only possible after completion of a shift, with all 
products stowed safely, and personnel not present). While these 
conditions do limit the possibilities of model acquisition, similar 
circumstances have to be expected in an industrial roll-out as a 
“retrofit” in existing and operating facilities. 

3.2. Measurement and instrumentation 

Data were gathered in a constantly operating facility under 
normal operating conditions, from three groups of sources: 

(1) Downloads from automated facility management records covered 
outdoor and indoor facility-level temperature, fan-air 
temperature, and relative humidity values. These quantities were 
measured, as part of the normal functioning of the rooftop 
HVAC (heating, ventilation, air conditioning) units at ceiling 
height. Two rooftop HVAC units were selected as source 

 

Figure 2. Revised diagram of dependencies and controllable/measurable quantities — note the shift of focus towards previously marginal factors (see circled 
are at the bottom left of the fishbone diagram). 
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(marked as RT4 and RT6), delivering 650–700 datasets of 8 
scalar values weekly (sampling every 15 minutes).  

 (2) Independent logging devices delivering data via periodic manual 
downloads were installed on a support pillar in the vicinity (within 
less than 2 m) of the workstation, approximately at the height 
of the ESD-protected worksurface of the station in question. 
The locations of the workstation and the logging devices were 
selected to be near the path of frequent logistics processes 
inside the facility (typically transporting cardboard boxes on 
carts), allowing any possible short-time effect of material 
handling to show in the dust density measurements. Logging 
devices were designed and procured in-house, and contain a set 
of sensors, an independently running real-time clock (RTC), 
and a microcontroller for immediate conversion, time-stamped 
storage (EEPROM) and communication of measurements 
through a periodically connected serial interface (see Figure 3). 
Logging devices have their own independent power source. 
Relative humidity, wet-bulb and ambient temperature 
measurements relied on off-the-shelf semiconductor 
components which communicate measured values digitally to 
the microcontroller. Floating dust density was likewise 
measured using a commercial sensor comprising a sampling 
channel with regulated temperature difference ensuring a steady 
air stream, and an optical sensor measuring the transmissivity of 
sampled air [28]. The logging devices yielded 1900–2100×3 
scalars a week for relative humidity, wet-bulb and ambient 
temperature, and 3800–4000 scalars a week for floating dust 
density. 

 (3) Manual measurements were carried out once a week, after 
the first or second shift of the day. During these measurements, 
ambient air temperature and relative humidity were measured 
by a handheld device directly above the worksurface, while 
manually measured resistance values were taken between a 

common ground point (accessible as a metallic contact at the 
workstation) and 20 discrete grid points of the worksurface of 
the selected workstation (Figure 1). The latter measurements 
were carried out with a handheld instrument [29], connected to 
a cylindrical probe of standard weight and geometry as specified 
in [30]. Manual measurements thus delivered 20+2 scalars a 
week. In addition, cleaning event dates and times were logged 
whenever the worksurface was cleaned (1–5 times a week). 

Table 1 gives a summary of the quantities measured in the 
data collection period, as well as their spatial range and method 
of measurement and registration. 

Table 1. Summary of quantities measured in the data collection period. 

 

 

Figure 3. Example of logging device (bottom right) and dust density sensor 
(top left). 
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Figure 4. Side-by-side view of the difference between indoor and outdoor temperature (green), indoor relative humidity (blue), and surface resistance (black 
circles) throughout the entire measurement period (top), and in the interval marked by the grey background in the top graph (bottom). The triangles above 
the horizontal axis denote logged surface cleaning events. 

 

Figure 5. Surface resistance measured at selected points of the same worksurface under various ambient conditions, and average of all measurements 
(right)—a consistent pattern of higher/lower resistance values can be recognized. 
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Clearly, the selection of measured quantities, and the degree 
of measurement automation leaves much reserve to be 
exploited for successful roll-out in everyday production — 
measuring the surface resistance presents by far the tightest 
bottle-neck here, due to its labour-intensive nature and high 
uncertainty. Some limitations of instrumentation and 
measurement were set by the extent of this particular project 
(budget and workforce limits, in particular), forcing some key 
approaches, such as infrared spectrometry, to be postponed, 
while other constraints were set by the production environment 
(e.g., resistance measurements are confined to time slots 
between shifts). Some quantities deemed relevant in the 
Ishikawa diagram cannot be measured with sufficient certainty. 
Wherever possible, we strove to either balance out such 
uncertainties by measuring across an entire spectrum of 
conditions (e.g., staff rotation reduces fluctuation due to 
individual differences in typical skin resistance, skin flaking, 
etc.), or by keeping influencing factors constant (e.g., fixed 
types of operations carried out at the selected workstation). 

4. EVALUATION OF RAW DATA 

Measurements were taken on a regular basis — with minor 
interruptions for operational reasons — from calendar week 35 
of 2015 until week 34 of 2016, yielding ca. 700,000 scalar 
values. A first examination of raw data did already confirm 
consistency of values of the same quantity measured by 
different sensors, and reveal simple relations. Neither indoor 
temperature nor relative humidity showed much variation 
across the factory airspace, suggesting that a facility-wide roll-
out is likely to succeed with relatively few temperature and 
humidity measuring locations. The impact of the difference of 
indoor and outdoor temperature on indoor relative humidity is 
clearly recognizable, as is the effect of relative humidity on 
surface resistance which begins to rise at values below 30 % 
(see Figure 4), both findings confirming previous industrial 
experience. 

It is also worth noticing that surface resistance 
measurements consistently returned lower or higher values in 
specific regions of the worksurface — the pattern could be 
observed regardless of the time elapsed after the last cleaning 
event (Figure 5). This implies that position-dependent 
characteristics of surface resistance can possibly be modelled, 
yet, the uncertainty of the recorded measurements suggests that 
estimating the resistance characteristics of the entire surface 
based on a reduced number of measurement points will quickly 
encounter its limits. 

5. DATA PREPARATION AND MODELING 

5.1. Definition of modelling assignments 

Two modelling assignments were foreseen for this R&D 
project, examining (1) the dependence of floating dust density 
on other ambient conditions (indoor and outdoor temperature, 
and relative humidity) and work-dependent periodicity, and 
(2) the dependence of worksurface resistance on ambient 
conditions, cleaning events and work activity. In both cases, we 
looked back on pre-transformed measurement values and a 
fixed set of their statistical features aggregated over selected 
time intervals (Table 2). In order to model accumulation and 
saturation processes of worksurface deposits, elapsed time and 
floating dust density integrated since the last cleaning event 
were also added to the data set. In the case of dust density 

estimation, possible work-related periodicity was taken into 
account by inserting the number of the current hour, shift, 
workday and week (as an incremented index) into the data set. 
The sparse sampling of resistance values did not allow the latter 
indexing in the case of surface resistance modelling. In order to 
include position-dependent characteristics of surface resistance, 
the two location indices of the measurement points ({A ··· E}, 
{1 ··· 4} in Figure 1) were added as mandatory inputs to the 
resistance model. 

5.2. Modelling with feature selection and neural networks 

For building the models and finding relevant dependencies, 
a feature selection metaheuristic method was used in combination 
with artificial neural networks [31].  

In preparation for feature selection, the raw measurement 
data are augmented by a number of statistical characteristics (as 
in Table 2) calculated over various time windows — all these, 
along with the measurement data, will comprise input candidates. 
The reason for the large set of calculated properties is the 
assumption that, in such complex environments as a 
production facility, raw measurements alone may not fully 
capture all relevant dependencies or the dynamics of underlying 
processes. It is, then, the task of feature selection to determine 
which of the candidates are relevant, and which should rather 
be discarded as they would make the model unnecessarily large 
and potentially less accurate. 

The feature selection method ranks the input candidates by 
relevance — this can be understood as a preliminary 
(automatic) analysis of the effect of ambient conditions and any 
possible hidden dynamics on the quantities regarded as output 
(dust density or surface resistance, in our case). The algorithm 
applied here is a generalisation of the method by Devijver and 
Kittler [32], mapping continuous parameters onto the originally 
discrete classification scheme with appropriate heuristics. Here, 
the values of the output encountered in the training data set are 
grouped into the highest possible number of clusters (i.e., 
intervals of equal length), so that at least one element is 
contained in each interval. Once the continuous output vector 
is transformed into a discrete range, the feature selection 
algorithm can be applied to rank the input features based on 
relevance. This is done by using sequential forward selection 
and applying a statistical measure which aims to maximize the 
separability of the output classes. The following equations 
define the statistical measure: 

𝑀 =  
𝑆𝑏

𝑆𝑤
, (1) 

𝑆𝑏 = ∑
𝑛𝑖

𝑛

𝑐
𝑖=1 (𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚)

𝑇
, (2) 

𝑆𝑤 = ∑
𝑛𝑖

𝑛

𝑐
𝑖=1

∑ (𝑝𝑖𝑗−𝑚𝑖)(𝑝𝑖𝑗−𝑚𝑖)
𝑇𝑛𝑖

𝑗=1

𝑛𝑖
, (3) 

where 𝑐 is the number of classes of the output, 𝑛𝑖 is the 

number of samples in the ith class, 𝑛 is the number of samples, 

𝑚𝑖 is the centre of gravity of the ith class, 𝑚 is the centre of 

gravity of the samples and 𝑝𝑖𝑗 is the jth sample of the ith class. 

Vector parameters 𝑝𝑖𝑗 , 𝑚𝑖 and 𝑚 are defined in a subset of the 

whole feature set, i.e., the dimension of these vectors equals to 
the number of features contained in the subset. The dimension 

of 𝑝𝑖𝑗 , 𝑚𝑖 and 𝑚 is increasing over the iterations of the 

sequential forward selection as features are selected 
incrementally. In a given iteration, the newly selected feature is 

the one where the 𝑀 value of the containing subset is the 

highest. 𝑆𝑏 represents the average distance between the classes, 



 

ACTA IMEKO | www.imeko.org December 2017 | Volume 6 | Number 4 | 7 

𝑆𝑤 represents the average distance within the classes, and 𝑀 
has to be maximized in each iteration for the classes to be the 
most separated in a given subset. At the end of the procedure, 
inputs and related dependencies are ranked by relevance, 
allowing the number of inputs to be trimmed by omitting the 
least significant ones. Variable ranks determined by feature 
selection are shown for two examples: Table 3 and Figure 6 

show variables and the 𝑀 values obtained upon their selection 
for estimating average dust density in the next shift, while 

Table 4 and Figure 7 show the same for surface resistance 
estimation. 

After the feature selection stage, artificial neural network 
(ANN) models can be fitted on the first n variables (nmax = 75 
or nmax = 50 in our case) to estimate the output variable. A wide 
range of ANN types can be used for fitting models onto the 
inputs prepared — however, best experience has, so far, been 
made with simple Multilayer Perceptron (MLP) networks. In the 
cases described here, the networks had n inputs (depending on 

Table 2. List of calculated statistical properties of measured quantities used in the feature selection phase of model acquisition. Note that raw data were 
previously transformed to align with equidistant sampling, and derivatives could be simplified to differences as a consequence. 
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the specific modelling task), one output, and one hidden layer  
    

Table 3. Ranking of the first 50 calculated statistical properties of measured quantities and their calculation windows for next-shift estimation of dust density 
(see equations (1) – (3) for the definition of the measure M, and Table 2 for the definition of statistical properties). 
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Table 4. Ranking of the first 50 calculated statistical properties of measured quantities and their calculation windows for estimation of current surface 
resistance. Note that, as opposed to the usual behaviour, M has a low initial value which rises gradually. Forced input variables placed in the first rank(s) are 
known to have such effect — this, however, does not compromise subsequent ranking by calculated M values. 
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with 8 neurons. The dimensioning of the hidden layer relied on 
empirical experience with previous industrial modelling tasks of 
comparable complexity [31]. Data sets were assembled from the 
n selected inputs and the corresponding output, and training, 
validation and test sets were selected by random choice from 
the assembled vectors [33]. Training was performed with 
variable-rate gradient descent, using the Levenberg–Marquardt 
algorithm [34]. 

The resulting models can be ordered by increasing number 
of inputs, and the model error can be observed to see how 
many input variables are necessary to reach a point where the 
model error cannot be lowered significantly by adding more of 
the input variables ranked by feature selection. Figures 8 and 9 
show the graph of mean model errors in dependence of the 
number of input variables used for model building. Note that 
for each number of selected — most relevant — inputs, a new 
network was trained, and the mean relative error of the trained 
network is shown in the graphs in Figures 8 and 9, and not, as 
typical, the mean error of the same network during a training 
procedure. 

5.3. Modelling solutions and their evaluation 

ANN models for floating dust density estimations were 
prepared for current value, and prediction windows of the next 
hour, next shift, and next day. Average error rates of 5–8 % 
were attained with the 50 best input variables included in the 
ANN, and reasonably close results (6–8 % error) were reached 
with the most relevant 10–15 inputs (see also Table 5). For all 
of the dust density estimations, statistical features of previous 
dust densities were found most relevant, typically in the range 
of some shifts or days prior to estimation (see also Table 3). 
Remarkable was also the presence of outdoor temperature 
values among the most relevant variables — at this point, this is 
assumed to be the effect of increased fan air stream in the air 
conditioned inner space when indoor and outdoor temperatures 
differ largely. In case the dependence on fan air stream holds, 
facility-wide dust density measurements are recommended, as 
dust is known to exhibit uneven distribution and settling 
patterns in the presence of air streams, especially if the latter are 
themselves potential dust sources. 

The ANN model estimating surface resistance (current 
values only) showed a mean relative error below 12 % already 

after including the 10 most relevant inputs, and did not 
improve much thereafter (Table 6). In the feature selection 
round, the relative humidity values from the past 7 days were 
found to be of highest relevance, followed by outdoor 
temperature and dust density of the preceding 3–7 days 
(Table 3). As mentioned before, long-lasting low outdoor 
temperatures are known to deplete humidity of heated indoor 
spaces, and were found to have effect on dust density as well 
via increased fan air stream. Interestingly, effects of cleaning 
events were ranked 33rd and behind, possibly implying that 
resistance measurements were carried out too sparsely to 
capture their influence. 

6. NOVELTIES AND CONCLUSIONS 

The paper presented first results of an R&D project in an 
area of industrial production that has rarely been in the focus of 
research, namely, the dependence of the surface resistance of 
ESD-protected worksurfaces on ambient conditions and work 
processes in an electronics assembly and repair context. An 
important characteristic of the research presented is its 
closeness to practical application — (1) existing industrial 
experience played a key role in outlining expected dependencies 
and setting up an instrumentation roadmap, and (2) results 
continue to be evaluated in the context of a possible roll-out in 
industrial production where measuring and intervention must 
align well with efficient manufacturing routine. It is also 
important to stress that measurements were carried out in a live 
industrial environment where ambient conditions cannot be varied at will, 
and measurements cannot impair ongoing work processes. While such 
conditions differ largely from laboratory tests, they are often 
encountered during improvement or retrofit of existing 
production facilities, especially if the subject of investigation 
cannot be cleanly separated from a complex network of 
interdependencies of the manufacturing environment. 

Measured data of ambient conditions and surface resistance 
were examined by a feature selection method, revealing that 
surveying the ambient conditions for the preceding 3–7 days 
allows a resistance estimation with 12 % relative error without 
relying on resistance measurement records from these intervals. 
This allows surface resistance estimation with sensors that do not interfere 
with ongoing work processes, although with limited accuracy. While these 

 

Figure 6. Feature selection measure of input candidates ranked for shift-by-
shift estimation of floating dust density (see also Table 3 for detailed data). 

 

Figure 7. Feature selection measure of input candidates ranked for 
estimation of surface resistance (see also Table 4 for detailed data).  
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results alone already show that a model-based estimation tool is feasible, 
relevance rankings of cleaning times suggest that a more accurate model is 
likely to need more frequent resistance measurement, at least in the data 
collection phase. 

The results presented in the paper focused on one selected 
workstation where the material of the ESD-protected 
worksurface was not changed during the measurements. The 
examined workstation was equipped with good quality 
protective materials, and critically low humidity values were 
never experienced during the data collection interval — 
therefore, extension of the measurements to inferior protective 
materials is recommended in order to gain more insight into 
differences to be expected at other production sites. Also, 
measurements would have to be taken over an extended 
timespan to capture gradual changes, e.g., due to material aging, 
or variations in worksurface contaminants due to major 
changes in the product mix, tooling, etc. Compliance with 
production processes has not allowed so far to leave the safe 
area of ambient parameters — follow-up research will have to 
include this option for better examination of the boundaries of 
safe work process conditions. 

While the potential relevance of optical (contactless) surface 
contamination measurement in ease of use and minimal impact 
on work activities was highlighted in the paper, limitations of 
the current project will leave it for later examination. Infrared 
imaging is all the more interesting if the high fluctuation of 
resistance measurements is in correlation with local differences 
of infrared reflectivity of the surface. 

Research presented in the paper was carried out by industrial 
incentive, and, consequently, had to adapt to the conditions and 
preferences of a given manufacturing context. While budget 
and workforce limitations have not allowed research to step far 
beyond the aforementioned scope, the sparse coverage of 
surface resistance models in literature suggests that follow-up 
research will provide more insight regarding underlying 
theoretical models as well as application in an industrial 
environment. In this regard, laboratory measurements, isolated 
from the complex interdependencies of field deployment, as 
well as more comprehensive testing of various model building 
approaches are expected convey an added value in the 
application context of the electronics manufacturing industry. 

 
  

Table 5. Mean relative error of dust density estimations for various estimation intervals and numbers of features. 

 

Table 6. Mean relative error of surface resistance estimations for various numbers of features. 

 

 

Figure 8. Error rates of models estimating dust density for different time 
windows, in dependence of the number of most relevant input variables 
selected. 

 

Figure 9. Error rate of the model estimating worksurface resistance, in 
dependence of the number of most relevant input variables selected 
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