
How to Synchronize the Activity of All Components of a

P System?

Francesco Bernardini1, Marian Gheorghe2, Maurice Margenstern3,

and Sergey Verlan4

1Leiden Institute of Advanced Computer Science, Universiteit Leiden

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

bernardi@liacs.nl

2Department of Computer Science, The University of Sheffield

Regent Court, Portobello Street, Sheffield S1 4DP, UK

M.Gheorghe@dcs.shef.ac.uk

3Université Paul Verlaine - Metz, LITA, EA 3097, IUT de Metz

Ile du Saulcy, 57045 Metz Cédex, France

margens@univ-metz.fr

4LACL, Département Informatique, Université Paris 12

61 av. Général de Gaulle, 94010 Créteil, France

verlan@univ-paris12.fr

Abstract

We consider the problem of synchronizing the activity of all the membranes
of a P system. After pointing at the connection with a similar problem dealt
with in the field of cellular automata where the problem is called the firing squad

synchronization problem, FSSP for short, we provide two algorithms to solve
this problem. One algorithm is non-deterministic, the other is deterministic.
Both work in a time which is 3h, where h is the height of the tree defining the
membrane structure of the considered P system. In the conclusion, we suggest
various directions to continue this work.

1 Introduction

The synchronization problem can be formulated in general terms with a wide scope
of application. We consider a system constituted of explicitly identified elements
and we require that starting from an initial configuration where one element is
distinguished, after a finite time, all the elements which constitute the system reach
a common feature, which we call state, all at the same time and the state was never
reached before by any element.

This problem is well known for cellular automata, where it was intensively studied
under the name of the firing squad synchronization problem (FSSP): a line of soldiers
have to fire at the same time after the appropriate order of a general which stands

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 11 - 22, 2007.

11



at one end of the line, see [2, 7, 6, 11, 12, 13]. The first solution of the problem was
found out by Goto, see [2]. It works on any cellular automaton on the line with n

cells in the minimal time, 2n−2 steps, and requiring several thousands of states. A
bit later, Minsky found his famous solution which works in 3n, see [7] with a much
smaller number of states, 13 states. Then, a race to a cellular automaton with the
smallest number of states which synchronizes in 3n started. See the above papers
for references and for the best results and for generalizations to the planar case, see
[11] for results and references.

The synchronization problem appears in many different contexts, in particular
in biology. As P systems modelize the working of a living cell constituted of many
micro-organisms, represented by its membranes, it is a natural question to raise
the same issue in this context. Take as an example the meiosis phenomenon, it
probably starts with a synchronizing process which initiates the division process.
Many studies have been dedicated to general synchronization principles occurring in
cell cycle; although some results are still controversial, it is widely recognised that
these aspects might lead to an understanding of general biological principles used
to study the normal cell cycle, see [10].

Apparently, this problem was never studied in the framework of P systems.

Our first idea was to implement the well known solutions for cellular automata
on the line. This idea was used in [3, 5] in the context of cellular automata in the
hyperbolic plane in order to synchronize sets of cells which are more complex than
a line. However, in this context, the sets of cells are trees in which all branches have
the same length which allows to immediately implement the algorithms for cellular
automata on the line, thanks to the parallelism of computation of the cells of a cel-
lular automaton. It is not that difficult, although not immediately straightforward,
to implement an algorithm for linear cellular automata into the membrane structure
of a P system, even in the easy case when the tree of the membrane structure is
complete, i.e. all its branches have the same length. To extend this to any P system,
we devised two solutions. The first idea was to complete the tree. The second idea
was to use various delay strategies considered in generalized firing squad problems
for cellular automaton when the general is at an arbitrary position in the line of
soldiers, see [12]. In any case, a direct transcription of a CA solution might use
a kind of boundary rules, see [1]. This might be slightly combined with sending
appropriate symbols, current states to neighbours such as to make use of them in
each cell component, but this will double the synchronization time.

Then, we had a second thought. Why not trying to find a solution, more specific
to P systems? In the paper, we give two algorithms to solve the synchronization
problem for P systems. One algorithm is non-deterministic while the other is deter-
ministic. However, the working of our deterministic algorithm raises an interesting
discussion motivated by the implementation of the solution into a computer pro-
gram. It is also interesting to notice that both our algorithms work in 3n.

Before, turning to the algorithms, let us discuss again the setting of the problem
in the frame of P systems and how we can recognize the configuration when all the
membranes are synchronized.

We shall implement the “fire” state of cellular automaton, traditionally denoted
by F as an object which will appear at the time of synchronization, but never before

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

12



this time. Of course, such an object must occur in at least one rule. But still, this
condition is a good implementation of the cellular automaton process. Moreover, if
the objects of the membranes are strings, it will not be difficult to adapt the rules
of the two algorithms into rules in which F never occurs. We simply decide that
F is also a string and it is obtained through the rules by a computing process. This
latter process is a complication which we considered as not very informative. This
is why we restrict ourselves to the situation where F is an object.

2 Definitions

In the following we briefly recall the basic notions concerning P systems. For more
details on these systems and on P systems in general, we refer to [8].

An evolution-communication P system of degree n is a construct

Π = (O,E, µ,w1, . . . , wn, R1, . . . , Rn, i0),

where:

1. O is a finite alphabet of symbols called objects,

2. µ is a membrane structure consisting of n membranes that are labelled in a
one-to-one manner by 1, 2, . . . , n,

3. wi ∈ O∗, for each 1 ≤ i ≤ n is a multiset of objects associated with the region
i (delimited by membrane i),

4. E ⊆ O is the set of objects called environment; each element appears in an
infinite number of copies,

5. Ri, for each 1 ≤ i ≤ n, is a finite set of rules associated with the region i

and which have the following form u → v1, tar1; v2, tar2; . . . ; vm, tarm, where
u ∈ O+, vi ∈ O and tari ∈ {in, out, here, in!},

6. i0 is the label of an elementary membrane of µ that identifies the corresponding
output region.

An evolution-communication P system is defined as a computational device con-
sisting of a set of n hierarchically nested membranes that identify n distinct regions
(the membrane structure µ), where to each region i there are assigned a multiset of
objects wi and a finite set of evolution rules Ri, 1 ≤ i ≤ n.

An evolution rule u → v1, tar1; v2, tar2; . . . ; vm, tarm rewrites u by v1, . . . , vm

and moves each vj accordingly to the target tarj. If the tarj target is here, then
vj remains in membrane i. If the target tarj is out, then vj is sent to the parent
membrane of i. If the target tarj is in, then vj is sent to any inner membrane of i

chosen non-deterministically. If the target tarj is equal to in!, then vj is sent to all
inner membranes of i (a necessary number of copies is made).

A computation of the system is obtained by applying the rules in a non-determin-
istic maximally parallel manner. Initially, each region i contains the corresponding

How to synchronize the activity of all components of a P system?

13



finite multiset wi; whereas the environment contains only objects from E that appear
in infinitely many copies.

A computation is successful if starting from the initial configuration it reaches a
configuration where no rule can be applied. The result of a successful computation
is the natural number that is obtained by counting the objects that are presented
in region i0. Given a P system Π, the set of natural numbers computed in this way
by Π is denoted by N(Π).

An evolution-communication P system with polarizations and priorities of degree
n is a construct

Π = (O,E, µ,w1, . . . , wn, R1, . . . , Rn, i0),

defined as in the previous definition. However, in addition to that definition each
membrane has a label from the set {0,+,−} called polarization. Initially, all mem-
branes have the polarization 0.

Moreover, the set of rules may contain rules of the form

u → v1, tar1; v2, tar2; . . . ; vm, tarm,

where u ∈ O+, vi ∈ O and tari ∈ {in+,mark+, out, here, in!}.
As above, the here target means that the object remains in the current membrane

and the in! target sends the corresponding object to all inner membranes at the same
time (making the right number of copies). The out target sends the object to the
outer membrane and changes at the same time the polarization of membrane to −.
The in+ target sends the object to an inner membrane having a + polarization. The
mark+ target leaves the objects in the same membrane and, at the same time, it
takes one inner membrane having a 0 polarization and changes its polarization to
+.

Each rule has also a priority which is a natural number. A computational step
is obtained by applying the rules in a non-deterministic maximally parallel manner
where a rule with a lower priority cannot be applied if a rule of a higher priority is
applicable.

In the following we shall restrict our systems to systems where there are at least
2 membranes and all membranes contain the same set of rules and the same set of
objects, except the skin. The skin may contain a different set of objects.

We shall also try to satisfy the following goal: starting from the initial configu-
ration where only the skin has some differentiated objects the system halt at some
moment. In the halting configuration all membranes contain the same symbol(s)
which should not appear before.

3 Non-Deterministic Solution

In this section we discuss a non-deterministic solution to the FSSP using evolution-
communication P systems. We shall use the following algorithm (consider the P
system as a tree):

Algorithm 1

1. Starting from the root find an arbitrary leaf.

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

14



2. Compute the depth of this leaf. Let n be this number.

3. For any node (initially the root) do the following steps:

4. Decrement the counter b (initially equal to n).

5. Make a local copy of b (and call it b′).

6. If the current node is not a leaf then send counter b to all inner nodes.

7. At each following step decrement the local copy of b (b′).

8. If the local copy of b is equal to zero, then introduce the final symbol F .

9. If at some moment b is equal to zero, while there are inner nodes, then do not
stop (perform an infinite computation).

The idea of the algorithm is to guess the longest branch (having the length equal
to the height of the tree, i.e. to the length of the longest path from the root to a leaf)
and after that to propagate this height from the root to the leaves decreasing it at
each level. For the synchronization a copy of this height is kept at each visited node
and decreased at each step. When all these counters are zero, we may synchronize
by introducing the symbol F . If the guess was wrong, then the system will never
halt because the symbol # will be introduced.

Now let us present the system in details.

Let Π = (O,E, µ,w1, . . . , wn, R1, . . . , Rn) the P system to be synchronized, where
i0 is not mentioned as it is not relevant for the synchronization. To solve the syn-
chronization problem, we make the following assumptions on the objects, the envi-
ronment, the membranes and the rules. We considerthat:

O = {L, Y,R, S1, S2, S
′

2, S3, S4, S5, S6, S7, F, a, b, b′,#}, E = ∅,

and that µ is an arbitrary membrane structure, with w1 as the skin membrane.
We also assume that w1 = {L, Y,R, S1, S

′

2} and that all other membranes satisfy
wi = {Y,L}. The sets of rules, R1, . . ., Rn are all equal and they are described
below.

The rules:

Finding a leaf:

S1 → S1, in S′

2 → S2, here

S2 → S2, in S2 → #, here
(1)

Computing the depth of the leaf:

S1S2 → S3, out; a, out S3 → S3, out; a, out a → a, out (2)

S3R → S5, here a → b, here (3)

Propagation of the signal:

How to synchronize the activity of all components of a P system?

15



LY S5b → S5, in!;S6, here b → b, in!; b′, here S5 → #, here (4)

LY S5b → S7, here (5)

Counting back:

S6b
′ → S6, here S6 → F, here Fb′ → #, here (6)

S7b → S7, here S7 → F, here Fb → #, here (7)

Traps:

bY → #, here b′Y → #, here # → #, here (8)

Infinite loop:

L → L, here (9)

Rules (1) permit to find an arbitrary leaf. Indeed, two signals S1 and S2 descend
the tree, but signal S2 has a one-step delay with respect to S1. They may meet only
at a leaf, where the in target is not applicable. If this does not happen because of
the non-deterministic descent, then S2 will be transformed to the trap symbol #.
When signals S1 and S2 meet, a new signal S3 is produced. This signal moves up
until the root node, where the out target is not applicable. When moving up, at
each step, a new symbol a is produced. Hence, when S3 reaches the root, n copies
of a will be present, n being the height of the leaf reached by S1. Rules (2) permit
to do this. In this way steps 1 and 2 of the algorithm are implemented.

At the root node, the symbol S3 is transformed to S5 and all symbols a are
transformed to b by rules (3). If this last transformation happens before the root
node, then symbols b or b′ which are obtained from them will be trapped by rules (8).
The steps 4-6 of the algorithm are implemented by rules (4) and (5). Indeed, symbols
b are replicated and sent to all inner membranes and the same number of symbols
b′ is created. At the same time, one symbol b is used together with S5, L and Y . In
this way the number of b’s is decreased at each step. Symbol S5 is transformed to
S6 or S7 (if we reached a leaf).

Steps 7 and 8 of the algorithm are implemented by rules (6) and (7) (for the
leaf). The number of symbols b′ (b for the leaf) is decreased and when it reaches
zero, symbol S6 (S7 for the leaf) is transformed to F . If this rule is applied before
all symbols b′ (resp. b) are consumed then the trap symbol # is introduced.

Now we shall present some assertions that guarantee the correctness of the proof,
keeping in mind that a correct computation always halts.

• If symbol S3 does not appear, then the computation never halts.

Indeed, in this case, symbol S2 will reach a leaf different from the one reached
by S1 and it will be transformed to the trap symbol.

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

16



• Rules (3) may be applied only at the root node and the number of symbols b

which is obtained is equal to n, where n is the depth of the leaf visited by S1.

Indeed, the first rule uses the symbol R which is present only at the root node.
If the second rule is applied at a non-root node, then at least one symbol b is
introduced. By the second rule from (4) at least one copy of symbol b′ will
appear in the same node. Now it suffices to remark that this transformation
takes two steps and it is clear that symbol S5 cannot appear in the meanwhile
because if the current node is not the root node, then at least 3 steps are needed
to transform symbol S3 into S5 and propagate it down. Hence, the symbol
Y will be present and the trap symbol will be introduced by the second rule
from (8).

Since at each step the number of a’s is increased, at the root node it will be
equal to the depth of the starting leaf, i.e. the one visited by S1.

• The first rule from (4) must be applied when at least one b occurs in this node.

Indeed, otherwise S5 will be left alone either in the current node, or in the inner
nodes. In this case, the third rule from (4) will introduce the trap symbol.

• Rule (5) may be applied only at the leaf.

Indeed, if it is applied at a node which is not a leaf, then symbols L situated
in membranes below cannot be eliminated and the system will always perform
an infinite computation because of the rule (9).

• The second rule from (6) (resp. (7)) may be applied if and only if the number
of b′ (resp. b) at that node is zero.

It is clear that if these rules are applied before, then the third rule from (6)
(resp. (7)) will introduce the trap symbol.

• After the introduction of the symbol S5, at each step k, 0 ≤ k ≤ n the config-
uration of nodes having the depth h < k is {S6, b

′n−k} ({S7, b
n−k} if the node

is a leaf) and the configuration of nodes having the depth k is {L, Y, S5, b
n−k},

where n is the depth of the leaf visited by S1.

This assertion may be easily verified by induction. Initially, at the step 0, the
root node contains {S5, b

n}. Suppose that the assertion holds for k < n. Con-
sider all nodes of depth k that are not leaves. In this case rules (4) are appli-
cable and the configuration of these nodes becomes {S6, b

′n−k−1}. The config-
uration of the inner nodes, having the depth k+1, becomes {L, Y, S5, b

n−k−1}.
Consider now all leaves of depth smaller or equal than k. By the first rule
from (7) their configuration becomes {S7, b

n−k−1}. Now consider all non-leave
nodes of depth smaller than k. By the first rule from (6) their configuration
becomes {S6, b

′n−k−1}.

From the above assertions it is clear that if a leaf not corresponding to the longest
branch of the tree is reached by S1, then the system will never halt (because some
symbols L will be present). If the initial guess corresponds to the longest branch,
then it is clear that all nodes will reach the same configuration {F} at the same

How to synchronize the activity of all components of a P system?

17



time (because they contain the same number of symbols b or b′). This concludes the
proof.

Theorem 1. The time complexity of the just considered algorithm is 3h, where h is

the height of the tree of µ, the membrane structure.

Proof. The detection of the longest branch takes 2h steps: h steps to go to the
farthest leaf and h ones to get the feed back. Then, the synchronizing process takes
h steps.

We recall that the time complexity taken into consideration is the number of steps
of the computation. Now, note that h = log n for a complete tree and that h = n in
the worst case.

4 Deterministic Solution

In this section we show a deterministic solution to FSSP. We shall use a different
class of P systems, namely evolution-communication P systems with polarizations
and priorities.

We use the following algorithm to solve the problem.

1. Find the height of the tree.

2. Descend and distribute symbols like in the non-deterministic case.

In order to find the height of the tree we use the following algorithm:

Algorithm 2

1. Start at the root node. Counting = false, height=0.

2. If there are non-marked inner nodes then go to any of them. If counting= true
and height>0, then height=height-1;

3. If at leaf and counting = false, then counting = true.

4. If all inner nodes are marked, then mark the current node, and if the current
node is not root go up and height=height+1.

5. If the root is marked then stop.

Theorem 2. The above algorithm correctly computes the height of a tree.

Proof. The proof will be done by induction on the height of the tree. Consider a
tree of height 1. Obviously, the first chosen node is a leaf and the counting starts.
It is easy to see that the value of height will oscillate between 0 and 1, the value 1
appears when we are at the root node.

Now let us suppose that the algorithm returns the height of a tree for any tree
having the height <= n. Now suppose that we have a tree of height n + 1. Let R

be the root node and F1, . . . , Fk be the children of R. Clearly, each Ft, 1 ≤ t ≤ k

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

18



is a root node for a tree At of height, for instance, ht. Now let Fi be the first node
chosen at step 2 of the algorithm. By induction the algorithm reaches the step 4 with
counting=true and height=hi. After that we move up to the root R and the value
of height is hi +1. Now let Fj be another node chosen at step 2 of the algorithm and
h be the current value of height. If hj ≤ h − 1 then at the deepest node of Aj the
value of height is equal to h − 1 − hj and when we return to R the value of height
is equal to h. If hj > h − 1 then at the deepest node of Aj the value of height will
be 0 and when we return to R the value of height will become equal to hj .

Hence, at the last visit of R (we remark that we do not return to Am that were
already visited) the value of height is 1 + max(h1, . . . , hk) which is the height of the
initial tree. This concludes the proof.

Before going into the precise description of the P system, we have to focus on what
we mean by deterministic. In fact, the algorithm which we shall use to determine
the height of the tree to be synchronized contains the possibility of an arbitrary
choice at some steps of its execution. What happens is, whatever the choice, the
result is always the same. Now, if we wish to implement this algorithm in a computer
program in order to use it, the implementation must define a rule to fix the choice.
Accordingly, the execution of the algorithm by a simulating device is deterministic.
This is why we consider the algorithm as deterministic, although its presentation is
not.

Let us describe the algorithm to compute the height of the tree in an informal
way.

At the beginning, all membranes have the polarity 0. The algorithm repeatedly
performs the following sequence of actions:

When the control arrives at a membrane M , it looks whether there is at least
one child-membrane with polarity 0. If there is at least one such membrane, the
algorithm selects one of them, N , and it changes the polarity of N to +. Then, it
decreases the height by 1, unless it is already 0, in which case the height remains
unchanged. If all child-membrane are with the polarity −, the control goes back to
the parent membrane of M , changes the polarity to − and the height is increased
by 1.

The loop is stopped when the control arrives at the skin membrane and all
child-membranes are with the polarity −.

The choice of the child-membrane whose polarity is turned from 0 to + is the
non-deterministic operation. However, the result of the algorithm does not depend
on which membrane has been chosen. It is enough to select one of them, whatever
the membrane. Now, in the context of a biological environment where some protein
would choose a membrane M to perform some operation on M , there are probably
additional factors which determine the choice performed by the protein. And so, the
choice may be considered as deterministic. This corresponds to the implementation
which we above invoked.

This choice is formalized by an operator mark+ which selects one child-mem-
brane with polarity 0 if any, and changes its polarity to +. The operator mark+

has the highest priority. Now, note that when the control leaves the membrane M

where mark+ was invoked, it changes the polarity + to −. Accordingly, when mark+

How to synchronize the activity of all components of a P system?

19



successfully performed the change on one child-membrane of M , a single membrane
has the polarity + among the child-membranes of M .

This can be implemented by the following rules (all nodes are initially empty,
except the root containing symbol S1). The number at the left indicates the priority
of the rule (a higher number means a higher priority).

Finding the first leaf:

2 S1 → S′

1,mark+ S′

1 → S1, in+ (10)

1 S1 → S2 (11)

Counting algorithm:

5 S2 → S′

2,mark+ S′

2a → S2, in+ (12)

4 a → a, in+ (13)

3 S′

2 → S2, in+ (14)

2 S2 → S2, out; a, out a → a, out (15)

1 S2 → S3, here a → b, here (16)

Distribution:

2 S3b → S3, in!;S4, here b → b, in!; b′, here (17)

1 S3b → S5, here (18)

Counting down:

2 S4b
′ → S4, here S5b → S5, here (19)

1 S4 → F, here S5 → F, here (20)

Let us discuss the functioning of the above system. Rules (10) permit to move
the symbol S1 down until it reaches a leaf. This corresponds to the step 2 of
Algorithm 2. When the leaf is reached, the rule (11) becomes applicable and S1 is
transformed to S2. This corresponds to the step 3 of Algorithm 2. Rules (12)-(15)
permit to implement the steps 2-4 of Algorithm 2 when counting is equal to true.
Indeed, a membrane having polarization 0 (not yet visited) is chosen and height
is decreased (the value of height is represented by the number of symbols a) by
rules (12) and (13). If height is equal to zero, then rule (14) is applicable which
simply moves symbol S2 down. Rules (15) are applicable only if we are at a leaf or
all inner membranes have the polarization −. In this case S2 is moved up and the
number of a’s is increased by one. This corresponds to the step 4 of the algorithm.
Rules (16) are applicable only at the root node when all children were visited. This
corresponds to rule 5 of the algorithm 2 and the number of a’s corresponds to the
height of the tree. So, rules(16) rename a to b and change S2 to S3.

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

20



Now a propagation phase, similar to the non-deterministic solution, starts. Rules
(17) propagate down the counter b and decrease it at the same time, while rules (19)
decrement the local copy of b (consisting of symbols b′). Like in the non-deterministic
case, rules (20) will be applicable after h steps from the beginning of the propagation
phase, where h is the height of the tree of the P system, and the final symbol F will
be synchronously introduced in all membranes.

Theorem 3. The time complexity of the just considered algorithm is 3h, where h is

the height of the tree of µ, the membrane structure.

Proof. It is exactly the same as for the non-deterministic algorithm. To detect the
longest branch, we have at most to go down to the farthest leaf and then to go back
to the root.

We have the same remarks on the time complexity and on h as for theorem 3.1.

5 Conclusions

In this paper, we indicated two algorithms to perform the synchronization of all the
membranes of a given P system. It is also interesting to notice that the algorithms
are not only linear, they are in 3h, h being the height of the tree defined by the
membrane structure of the P system. In the case of a linear structure, h = n. Now,
the time of 3n is the time of many algorithms for the FSSP in the case of cellular
automata on the line with n cells. In this domain, the optimal time is 2n. And so,
a natural question is: why not trying to do reach 2h for a P system?

Other directions are in a possible reduction in the number of rules used by the
algorithms. Another direction is to look at the possibility to define a deterministic
synchronization algorithm without using priority rules. As an example, it would be
interesting to see whether there is specific solution with symport/antiport P systems
which are considered as very close to the real activity of the cell membranes. Another
direction is the extension of the result to tissue P systems. It is not difficult to adapt
our algorithms to the case a convex graph in which it is possible to implement a tree
structure. Taking an exploring algorithm, it is possible to cut the possible cycles
in order to get a covering tree of the graph which would be in bijection with the
vertices of the graph, see [4, 9], and then we can apply the algorithms described in
the previous sections to solve the synchronization problem.

For sure, new results in any of the above mentioned direction would have direct
consequences of the scope of application of the problem. It seems to us that the
possibility to synchronize the membranes of a P system in a rather reasonable time
is a serious argument in favour of the suitability of the model for biology.

We would not be surprised to see the possibility to closer mimic real biological
phenomena at the level of a cell with P systems in a near future.

Acknowledgements

The research of Francesco Bernardini is supported by NWO, Organization for Sci-
entific Research of the Netherlands, project 635.100.006 VIEWS.

How to synchronize the activity of all components of a P system?

21



References

[1] F. Bernardini, V. Manca. P systems with boundary rules. In Gh. Păun, G.
Rozenberg, A. Salomaa, C. Zandron, editors, Membrane Computing, Interna-

tional Workshop, WMC-CdeA 02, Curteă de Arge s, Romania, August, 19-23,

2002, Revised Papers, volume 2597 of Lecture Notes in Computer Science, pages
107-118. 2003.

[2] E. Goto. A Minimum Time Solution of the Firing Squad Problem. Course Notes

for Applied Mathematics, 298. Harvard University, 1962.

[3] Ch. Iwamoto, M. Margenstern. Time and Space Complexity Classes of Hy-
perbolic Cellular Automata. IEICE Transactions on Information and Systems,
387-D(3):700–707, 2004.

[4] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7:48-50,
1956.

[5] M. Margenstern. An algorithm for building intrinsically universal cellular au-
tomata in hyperbolic spaces. FCS 2006, Las Vegas, June, 2006.

[6] J. Mazoyer. A Six-State Minimal Time Solution to the Firing Squad Synchro-
nization Problem. Theoretical Computer Science, 50:183-238, 1987.

[7] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

[8] Gh. Păun. Membrane Computing. An Introduction. Springer-Verlag, 2002.

[9] R.C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389-1401, 1957.

[10] P.T. Spellman, G. Sherlock. Reply: whole-cell synchronization - effective tools
for cell cycle studies. Trends in Biotechnology, 22(6):270-273, 2004.

[11] H. Umeo, M. Maeda, N. Fujiwara. An Efficient Mapping Scheme for Embed-
ding Any One-Dimensional Firing Squad Synchronization Algorithm onto Two-
Dimensional Arrays. In ACRI 2002, volume 2493 of Lecture Notes in Computer

Science, pages 69-81. 2002.

[12] H. Schmid, T. Worsch. The Firing Squad Synchronization Problem with Many
Generals For One-Dimensional CA. In IFIP TCS 2004, pages 111-124. 2004.

[13] J.-B. Yunès. Seven-state solution to the firing squad synchronization problem.
Theoretical Computer Science, 127(2):313-332, 1994.

[14] The P systems web page. http://psystems.disco.unimib.it.

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

22


