
Properties of Eco-colonies

Šárka Vavrečková, Alica Kelemenová

Institute of Computer Science, Faculty of Philosophy and Science

Silesian University in Opava

Bezručovo nám. 13, Opava, Czech Republic

{sarka.vavreckova,alica.kelemenova}@fpf.slu.cz

Abstract

Eco-colonies are new grammar systems with very simple grammars called
agents placed in a common dynamic environment. Every agent generates its
own finite language, all agents cooperate on the shared environment. The envi-
ronment is developing not only by the action of agents, but also using its own
developmental rules.

The generative power of eco-colonies was discussed in several papers, eco-
colonies were compared especially with various types of colonies, but not all
relations were proved. In this paper we summarize previous results and present
some new results about the generative power of eco-colonies.

1 Introduction

Colonies were introduced in [5] as collections of simple grammars (called compo-
nents) working on a common environment. A component is specified by its start
symbol and by its finite language. This language determines actions to do with the
start symbol, it is usually a list of words, the component substitutes its start symbol
by some of these words. The environment is static itself, only the components can
modify it.

There exist several variants of colonies with various types of derivation. The
original model was sequential (only one component works in one derivation step),
the other basic types of derivation are sequential with parallely working components
or parallel. Parallel colonies were introduced in [4], the parallel behavior of a colony
means the working of all the components that can work (the components whose start
symbols are in the environment and no other component is occupying this symbol
for the actual derivation step), one component processes one occurrence of its start
symbol.

Eco-colonies were first studied in [10], their E0L form in [11] and [12]. Eco-
colonies are colonies with developing environment. The concept of developing of the
environment is inspired by another type of grammar systems, eco-grammar systems
([3]). The environment of eco-colonies is specified not only by its alphabets but
as 0L or E0L scheme. Every symbol of the environment not processed by agents
(components) is overwritten by some of the developing rules of this scheme.

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 129 - 143, 2007.

129

In [1] there is defined a related system, e-colonies (extended colonies). Similarly
as eco-colonies are based on parallel colonies and their environment is 0L- or E0L-
scheme, e-colonies in [1] are based on sequential colonies and their environment is
T0L-scheme.

The presented paper consists of four parts. In Section 2 preliminaries are men-
tioned, than in Section 3 we introduce eco-colonies with two different derivation
modes and illustrate these systems on the examples.

In Section 4 we deal with the derivation power of eco-colonies. We compare them
mutually, and we compare the generative power of various types of colonies with the
generative power of the both types of eco-colonies. We will discuss the systems with
single alphabet and also the systems with terminal alphabets.

Section 5 is devoted to the conclusions.

2 Preliminaries

In this section we define colonies and the types of derivation in colonies, and we
preface lemmas used in the next sections. For other prerequisites from the theory
of formal languages and grammars we refer to [9], related information about theory
of grammar systems can be found in [2]. L-systems, 0L-, E0L-, ET0L- and T0L-
systems are defined in [8]. For definitions of some properties of languages (e.g.
logarithmically clustered, pump-generated) see the paper [7].

In this paper we denote by |w|S the number of occurrences of S in w for a word
w and a symbol S.

Definition 1 A colony is a (n+3)-tuple C = (V, T,A1, . . . An, w0), where

• V is a total (finite and non-empty) alphabet of the colony,

• T is a non-empty terminal alphabet of the colony, T ⊂ V,

• Ai = (Si, Fi), 1 ≤ i ≤ n, is a component, where

– Si ∈ V is the start symbol of the component,

– Fi ⊆ (V − {Si})
∗, Fi is the finite language of this component,

• w0 is the axiom.

The derivations for colonies were introduced in several ways. Basic of them are
following modes:

b-mode is sequential type of derivation, one component is active in one derivation
step, the active component replaces one occurrence of its start symbol by some
word of its finite language F ,

t-mode is sequentially-parallel – one component is active in one derivation step
and this component rewrites all occurrences of its start symbol by words of its
language,

Š. Vavrečková, A. Kelemenová

130

wp-mode is parallel mode, where every component which can work must work in
the following sense: each component rewrites at most one occurrence of its
start symbol, a component is active if its start symbol is in the environment
and no other component with the same start symbol occupies this occurrence
of the symbol,

sp-mode is parallel mode similar to wp, but if there is an occurrence of a symbol
in the environment, every component with this start symbol has to be active
– if all occurrences of this symbol are occupied by another components with
the same start symbol, the derivation is blocked.

Definition 2 We define a basic derivation step (b mode) in a colony C,

C = (V, T,A1, . . . , An, w0) as the relation
b
⇒ – α directly derives β in b mode of

derivation (written as α
b
⇒ β) if

• α = v1Sv2, β = v1fv2, where v1, v2 ∈ V ∗, S ∈ V, f ∈ (V − {S})∗,

• there exists a component (S,F) in C such as f ∈ F.

Definition 3 We define a terminal derivation step (t mode) in a colony C,

C = (V, T,A1, . . . , An, w0) as the relation
t
⇒ – α directly derives β in t mode of

derivation (written as α
t
⇒ β) if

• α = v0Sv1Sv2 . . . vn−1Svk,

• β = v0f1v1f2v2 . . . vn−1fkvk,

• where vi ∈ (V − {S})∗, 0 ≤ i ≤ k, S ∈ V, fi ∈ (V − {S})∗,

• there exists a component (S,F) in C such as for all strings fi, 1 ≤ i ≤ k, is
fi ∈ F.

Definition 4 We define a strongly parallel derivation step (sp mode) in a colony

C = (V, T,A1, . . . , An, w0) as the relation
sp

=⇒ – α directly derives β in sp mode of

derivation (written as α
sp

=⇒ β) if

• α = v0Si1v1Si2v2 . . . vk−1Sikvk,

• β = v0fi1v1fi2v2 . . . vk−1fikvk,

• where vj ∈ V ∗, 0 ≤ j ≤ k, Sij ∈ V, 1 ≤ j ≤ k, fij ∈
(

V − {Sij}
)

∗

, 1 ≤ j ≤ k,

• there exist components (Sij , Fij) in C such as fij ∈ Fij , 1 ≤ j ≤ k,

• it 6= is for all t 6= s, 1 ≤ t, s ≤ k (one component can rewrite at most one
occurrence of its start symbol),

• if |α|S > 0 for some symbol S ∈ V, then for every component (St, F), where
St = S, is t = ij for some j, 1 ≤ j ≤ k (if some symbol occurs in environment,
then all components with this symbol as the start symbol must work).

Definition 5 We define a weakly parallel derivation step (wp mode) in a colony

C = (V, T,A1, . . . , An, w0) as the relation
wp
=⇒ – α directly derives β in wp mode of

derivation (written as α
wp
=⇒ β) if

Properties of eco-colonies

131

• α = v0Si1v1Si2v2 . . . vk−1Sikvk,

• β = v0fi1v1fi2v2 . . . vk−1fikvk,

• where vj ∈ V ∗, 0 ≤ j ≤ k, Sij ∈ V, 1 ≤ j ≤ k, fij ∈
(

V − {Sij}
)

∗

, 1 ≤ j ≤ k,

• there exist components (Sij , Fij) in C such as fij ∈ Fij , 1 ≤ j ≤ k,

• it 6= is for all t 6= s, 1 ≤ t, s ≤ k (one component can rewrite at most one
occurrence of its start symbol),

• for every S ∈ V, if the number of agents with the start symbol S is denoted
by t, then

r
∑

j=1
Sij

=S

|α|Sij
= min (|α|S , t)

(all components which can work – their start symbol is in the environment and
some of the occurrences of this symbol is not occupied by any other agent –
they must work; the left side of the equation means the number of components
with the start symbol S which work in the given derivation step).

The formal definitions of an eco-grammar system and its type of derivation are in
[3].

For all the relations
x

=⇒, x ∈ {b, t, wp, sp}, we define the reflexive and transitive

closure
x

=⇒
∗

.

Definition 6 Let C be a colony and C = (V, T,A1, . . . An, w0). The language gener-
ated by the derivation step x, x ∈ {b, t, wp, sp} in C is

L(C, x) = {w ∈ T ∗ : w0
x ∗

=⇒ w}.

For more information about languages of colonies see [6].
We use the notations for colonies with various types of derivation:

COLx for class of languages generated by colonies with x type of derivation,
x ∈ {b, t, wp, sp},

COLT
x for class of languages generated by colonies with T = V and x type of

derivation, x ∈ {b, t, wp, sp}.

Lemma 1
COLT

x ⊆ COLx

where x ∈ {b, t, wp, sp}.

Proof. Colonies generating the class COLT
x are colonies with only one alphabet

(T = V), it is a special type of colonies generating COLx. �

Let C be a colony, C = (V, T,A1, . . . An, w0), with n components. Denote by m the
length of the longest word in the languages of components, over the all components
A1, . . . , An:

m = max {|u| : u ∈ Fi, Ai = (Si, Fi), 1 ≤ i ≤ n} .

Š. Vavrečková, A. Kelemenová

132

Lemma 2 (Pumping lemma for parallel colonies) Let L be an infinite lan-
guage generated by a colony C with x ∈ {wp, sp} derivation mode. Then the length
set of L contains infinite linearly dependent subsets, i.e.

{a · i + b : i ≥ 0} ⊆ {|w| : w ∈ L}

for some natural numbers a, b > 0.

Proof. Let C = (V, T,A1, . . . An, w0) be a colony with x ∈ {wp, sp} derivation mode
and L(C, x) = L for some infinite language L. Let m be length of the longest word
in the languages of components A1, . . . , An,

m = max {|u| : u ∈ Fi, Ai = (Si, Fi), 1 ≤ i ≤ n} .

Let us choose some w in L, |w| ≥ |w0| ·m · n · 2n, the derivation of word w from
the axiom consists of at least 2n steps. Since in one derivation step wi

x
=⇒ wi+1 we

have |wi+1| − |wi| ≤ m ·n. Therefore there are indices i, j, i < j, such that the same
set of agents is active in the derivation steps wi

x
=⇒ wi+1 and wj

x
=⇒ wj+1.

We split this derivation to the parts

w0
x

=⇒
∗

wi
x

=⇒
∗

wj
x

=⇒
∗

w

Denote by

• n0 number of terminal symbols generated in the subderivation w0
x

=⇒
∗

wi,
which are not rewritten in any next derivation step,

• ni the same for the subderivation wi
x

=⇒
∗

wj,

• nj the same for the subderivation wj
x

=⇒
∗

w.

Now we transform the derivation as follows:

• in the derivation step wj
x

=⇒ . . . we use the same components and words of

languages of these components as in the derivation step wi
x

=⇒ . . .,

• in this way we link up a copy of processing the sets of symbols from the
subderivation wi

x
=⇒

∗

w to the subderivation wj
x

=⇒ . . . (we link up only the
way of rewriting symbols, the other symbols stay in the word),

• we apply the previous operation z-times, z ≥ 0,

• the word derived using the described method of “pumping” the derivation is
denoted by w′

z.

The described derivations for the numbers z generate the words with the follow-
ing length:

|w| = |w′

1| = n0 + ni + nj, (1)

|w′

z| = n0 + z · ni + nj. (2)

We can construct the derivation of w′

z for any z ≥ 0, so w′

z ∈ L. Linear depen-
dence is obvious. �

Properties of eco-colonies

133

The following theorems are used in the proof of Theorem 7.

Theorem 1 ([7]) If K is an infinite ET0L[1] language1 then either K contains an
infinite logarithmically clustered language or K contains a pump-generated language.

Theorem 2 ([4])
COLt = ET0L[1].

3 Eco-Colonies

In this section we define two types of eco-colonies and then two types of derivation
in eco-colonies.

Definition 7 An E0L eco-colony of degree n, n ≥ 1, is an (n + 2)-tuple
Σ = (E,A1, A2, . . . , An, w0), where

• E = (V, T, P) is E0L scheme, where

– V is an alphabet,

– T is a terminal alphabet, T ⊆ V,

– P is a finite set of E0L rewriting rules over V,

• Ai = (Si, Fi), 1 ≤ i ≤ n, is the i-th agent, where

– Si ∈ V is the start symbol of the agent,

– Fi ⊆ (V −{Si})
∗ is a finite set of action rules of the agent (the language

of the agent),

• w0 is the axiom.

An 0L eco-colony is defined similarly, the environment is 0L scheme E = (V, P), P
is a finite set of 0L rewriting rules over V .

As we can see, agents are defined in the same way as components in colonies, an
environment is determined by the alphabets in colonies, and by E0L or 0L scheme
in eco-colonies.

We define two derivation modes for eco-colonies – the first one, wp, is inspired
by the wp mode for colonies, we only add the possibility of developing for the
environment. In every derivation step each agent (S,F) looks for its start symbol
S. If it finds some occurrence of this symbol not occupied by any other agent, the
agent becomes active, occupies this symbol and rewrites it by some of words of its
language F .

Definition 8 We define a weakly competitive parallel derivation step in an eco-
colony Σ = (E,A1, A2, . . . , An, w0) as the relation

wp
=⇒ – α directly derives β in wp

mode of derivation (written as α
wp
=⇒ β) if

1ET0L[1] languages are languages generated by 1-restricted ET0L systems: 1-restricted ET0L

system is ET0L system G = (Σ,P , S, ∆) such that for every table P ∈ P there exists a letter b ∈ Σ
such that if c ∈ Σ− {b} and (c → α) ∈ P then α = c (in every table only one rule is not static).

Š. Vavrečková, A. Kelemenová

134

• α = v0Si1v1Si2v2 . . . vr−1Sirvr, r > 0,

• β = v′0fi1v
′

1fi2v
′

2 . . . v′r−1firv
′

r, for Aik = (Sik , Fik), fik ∈ Fik , 1 ≤ k ≤ r,

• ik 6= im for every k 6= m, 1 ≤ k,m ≤ r (the agent Aik is active in this
derivation step),

• {i1, i2, . . . , ir} ⊆ {1, 2, . . . , n},

• for every S ∈ V , if the number of agents with the start symbol S is denoted by
t, then

r
∑

j=1
Sij

=S

|α|Sij
= min (|α|S , t)

(all agents which can work – their start symbol is in the environment and some
of the occurrences of this symbol is not occupied by any other agent – they must
work; the left side of the equation means the number of agents with the start
symbol S which work in the given derivation step),

• vk
E

=⇒ v′k, vk ∈ V ∗, 0 ≤ k ≤ r, is the derivation step of the scheme E.

The second type of derivation step, ap, means that all agents must work in every
derivation step and if some agent is not able to work (there is not any free occurrence
of its start symbol), the derivation is blocked. This type of derivation is inspired by
the basic type of derivation in eco-grammar systems.

Definition 9 We define a derivation step ap (all are working parallely) in an eco-

colony Σ = (E,A1, A2, . . . , An, w0) as the relation
ap

=⇒ – α directly derives β in ap

mode of derivation (written as α
ap

=⇒ β) if

• α = v0Si1v1Si2v2 . . . vn−1Sinvn,

• β = v′0fi1v
′

1fi2v
′

2 . . . v′n−1finv′n, for Aik = (Sik , Fik), fik ∈ Fik , 1 ≤ k ≤ n,

• {i1, i2, . . . , in} = {1, 2, . . . , n} (every agent works in every derivation step),

• vk
E

=⇒ v′k, vk ∈ V ∗, 0 ≤ k ≤ n, is the derivation step of the scheme E.

For the relations
x

=⇒, x ∈ {wp, ap}, we define the reflexive and transitive closure
x

=⇒
∗

.

Definition 10 Let Σ be an 0L eco-colony, Σ = (E,A1, A2, . . . , An, w0). The lan-
guage generated by the derivation step x, x ∈ {wp, ap}, in Σ is

L(Σ, x) = {w ∈ V ∗ : w0
x ∗

=⇒ w}.

Let Σ be an E0L eco-colony, Σ = (E,A1, A2, . . . , An, w0). The language gener-
ated by the derivation step x, x ∈ {wp, ap}, in Σ is

L(Σ, x) = {w ∈ T ∗ : w0
x ∗

=⇒ w}.

Properties of eco-colonies

135

Example 1 Let Σ = (E,A1, A2, AbB) be an E0L eco-colony, where

E = ({A,B, a, b}, {a, b}, {a → a, b → bb,A → A,B → B}),

A1 = (A, {aB, ε}), A2 = (B, {aA, ε}).

Let us construct derivations with ap and wp types of derivations:

AbB
ap

=⇒ aBb2aA
ap

=⇒ a2Ab4a2B
ap

=⇒ . . .
ap

=⇒ anAb2n

anB
ap

=⇒ anb2(n+1)
an,

AbB
wp
=⇒ aBb2aA

wp
=⇒ a2Ab4a2B

wp
=⇒ a2b8a3A

wp
=⇒ a2b16a4B

wp
=⇒ . . .

The wp derivation allows “resting” of non-active agents. If we use the ap type of
derivation, a terminal word is generated only if the both agents use the ε-rule in the
same derivation step, otherwise the derivation is blocked without creating the final
word.

The generated languages are:

L(Σ, ap) =
{

anb2(n+1)
an : n ≥ 0

}

,

L(Σ, wp) =
{

aib2n

aj : 0 ≤ i, j < n
}

.

4 Generative Power of Eco-Colonies

We compare the generative power of eco-colonies and colonies, for systems with
terminal alphabets as well as for special systems with the terminal alphabet equal
to the alphabet of the system. For eco-colonies we use the notations:

0ECx for the class of languages generated by 0L eco-colonies with x type of
derivation, x ∈ {wp, ap},

EECx for the class of languages generated by E0L eco-colonies with x type of
derivation, x ∈ {wp, ap}.

Theorem 3

COLwp ⊂ EECwp. (3)

Proof. The relation COLwp ⊆ EECwp is trivial, colonies with wp derivation are a
special version of E0L eco-colonies with a static environment (with rules a → a for
every letter from V). To prove the proper inclusion we use the language

L1 =
{

a2n

: n ≥ 0
}

.

The language L1 is generated by the eco-colony Σ = (E,A, b), where

E = ({a, b}, {a}, {a → aa, b → b}), A = (b, {a}).

The language L1 does not include infinite subsets of words with linearly depen-
dent length so according to Lemma 2 there is no colony C with wp derivation which
generates the language L1. �

Š. Vavrečková, A. Kelemenová

136

Corollary 1

COLb ⊂ EECwp, (4)

COLT
b ⊂ EECwp, (5)

COLT
wp ⊂ EECwp. (6)

Proof. Equation (4) follows from COLb ⊂ COLwp ([4]) and from Equation (3).
Equations (5) and (6) follow from Lemma 1 and from Equations (3) and (4). �

Theorem 4

0ECwp ⊂ EECwp. (7)

Proof. The relation 0ECwp ⊆ EECwp is trivial, 0L eco-colonies are the special type
of E0L eco-colonies with the terminal alphabet T = V .

We can find a language L2 ∈ EECwp − 0ECwp:

L2 =
{

a2i

: i ≥ 0
}

∪
{

b3i

: i ≥ 0
}

.

This language is generated by the E0L eco-colony Σ = (E,A, S), where

E = ({S, a, b}, {a, b}, {a → aa, b → bbb, S → S}),

A = (S, {a, b}) (this agent is active only in the first derivation step),

S
wp
=⇒ a

wp
=⇒ a2 wp

=⇒ a4 wp
=⇒ a8,

S
wp
=⇒ b

wp
=⇒ b3 wp

=⇒ b9 wp
=⇒ b27.

Assume that some 0L eco-colony Σ0 = (E,A1, A2, . . . , An, w0), E = (V, P),
generates the language L2. Every state in the environment including the axiom is
one of the elements of the language of Σ0.

Let the rule a → ε is in P (the case for b is analogous). If we have only the ε-
rule for a there, the exponential growing would be carried by agents, but the agents
work similarly to the components in colonies. Components are not able to ensure
exponential growing (see Lemma 2), nor agents in this eco-colony.

If there are some non-ε-rules in the environment, the ε-rule is not allowed, be-
cause the random application of this rule would mean random disappearing of sym-
bols in the environment, so some words not contained in L2 could be generated.
That is why the axiom is one of the two shortest words – a or b.

Suppose the axiom a. We need to generate every word of the language L2

including the words b3i

, so the rule a → b is in the language of some agent or it is a
rule of the 0L scheme in the environment.

If this rule is used by some agent, the eco-colony can generate only the words
a ∪ b3i

, because the agent must work whenever it can work. If some another agent
rewrites symbols b to a, it is able to do it in the next derivation step, but every state
of the environment belongs to the language generated by Σ0, including the states
before and after application of this derivation step. In this case only one derivation
is possible, a

wp
=⇒ b

wp
=⇒ a

wp
=⇒ b

wp
=⇒ . . ., it generates the language {a, b}.

Properties of eco-colonies

137

The superior indexes 2 and 3 in the definition of L2 have not any common divisor,
so the alternate rewriting of all the symbols a to b and then b to a with the growing
length of the words by the environment is not possible.

So if the rule a → b (or some rule rewriting a to more than one b) is in the 0L
scheme of the environment and the 0L scheme is deterministic, the eco-colony is not
able to generate any word of the form a2i

longer than the power of the number of
agents in this system, because the deterministic 0L scheme does not contain any
rule rewriting a to a sequence of a. The rules rewriting b to a sequence of a are not
usable as suggested in the previous paragraph.

If the 0L scheme is not deterministic, this situation allows to have more than
one rule for rewriting the symbol a – one rule a → b and some rule rewriting a to a
sequence of a. But in this case the eco-colony can generate some words containing
both the symbols a and b, and these words are not elements of the language L2.

The case of the axiom b can be solved similarly, so any 0L eco-colony cannot
generate the language L2. �

Theorem 5

0ECap ⊂ EECap. (8)

Proof. 0L eco-colonies are special types of E0L eco-colonies where T = V , so the
relation 0ECap ⊆ EECap is trivial.

To prove the proper subset we use language

L3 = L1 − {a} =
{

a2n

: n ≥ 1
}

.

This language is generated by the E0L eco-colony Σ = (E,A1, A2, UV a), where
E = ({a,U, V }, {a}, {a → aa,U → U, V → V }), A1 = (U, {V, ε}), A2 = (V, {U, ε}).

UV a
ap

=⇒ V Ua2 ap
=⇒ UV a4 ap

=⇒ . . .
ap

=⇒ UV a2n−1 ap
=⇒ a2n

.

Each agent generates the empty word only and using the ap derivation agents
A1 and A2 are active in every derivation step and they alternate symbols U, V until
the terminal word is generated.

Suppose that the language L3 can be generated by some 0L eco-colony Σ with
ap derivation. Σ contains at least one agent, which is active in every derivation
step. V = {a}, so the start symbol of each agent is a. The agent generates a finite
language over V − {a}, so we have A = (a, {ε}) for each agent in Σ.

P is deterministic, it contains exactly one rule for a. (Otherwise the system
generates an infinite set of pairs of words with the constant difference of their length
and there is no such an infinite subset in L3.)

The language generated with the 0L eco-colony where P = {a → as} with n
agents A = (a, {ε}) using the ap mode from the axiom am is equal to

{

a2n
: n ≥ 1

}

for no parameters m,n, s and L3 /∈ EECap. �

Theorem 6 The classes of languages 0ECwp and 0ECap are incomparable.

Š. Vavrečková, A. Kelemenová

138

Proof. 1) 0ECwp − 0ECap 6= ∅:
In Theorem 5 we proved that the language L3 =

{

a2n
: n ≥ 1

}

is not generated
by any 0L eco-colony with ap derivation. This language is generated by the following
0L eco-colony with wp derivation: Σ = (E,A, a), where E = ({a, b}, {a}, {a →
aa, b → b}), A = (b, {a}).

We need at least one agent, but using wp derivation this agent does not work if
its start symbol is not in the environment.

2) 0ECap − 0ECwp 6= ∅:
To prove this we use language

L4 =
{

a15−2nbncbnd : 0 ≤ n < 7, n is even
}

∪
{

a15−2nbndbnc : 0 < n ≤ 7, n is odd
}

.

This language is generated by the 0L eco-colony Σ = (E,A1, A2, A3, A4, a
15cd) with

ap derivation, where

E = ({a, b, c, d}, {a → a, b → b, c → c, d → d}),

A1 = (a, {ε}), A2 = (a, {ε}), A3 = (c, {bd}), A4 = (d, {bc}).

This language consists only of eight words derived as follows:

a15cd
ap

=⇒ a13bdbc
ap

=⇒ a11b2cb2d
ap

=⇒ a9b3db3c
ap

=⇒ a7b4cb4d
ap

=⇒ a5b5db5c
ap

=⇒

ap
=⇒ a3b6cb6d

ap
=⇒ ab7db7c.

Assume that there exists an 0L eco-colony Σ0 with wp derivation generating L4.
Suppose that the axiom is a15−2ibicbid for some i, 0 ≤ i ≤ 7, i is even (the proof for
the axiom with odd number i is analogous). Σ0 generates all words of the language
for n > i and/or n < i.

a) Words for n < i : a15−2ibicbid
wp
=⇒

+
a15dc . . .

The number of a-s increases, the number of b-s decreases. But with using the
wp type of derivation the system is not able to stop growing of a-s, so it is
possible to generate words not included in L4 such as a19cd.

b) Words for n > i : a15−2ibicbid
wp
=⇒

+
a13−2ibi+1dbi+1c . . .

The number of a-s decreases, the number of b-s increases. As in the previous
part of this proof, the system is not able to stop growing of b-s, the words
b8cb8d, etc. not included in L4 are generated.

The outcome is identical for growing by agents as well as by the environment. �

Theorem 7

xECy − COLz 6= ∅ (9)

where x ∈ {0, E}, y ∈ {wp, ap}, z ∈ {b, t, wp, sp}.

Properties of eco-colonies

139

Proof. In this proof we use language

L5 =
{

cda22n

b22n

: n ≥ 0
}

∪
{

dca22n+1
b22n+1

∣

∣

∣
n ≥ 0

}

.

This language can be generated by the eco-colony Σ = (E,A1, A2, cdab), where
E = ({a, b, c, d}, {a → aa, b → bb, c → c, d → d}), A1 = (c, {d}), A2 = (d, {c}).

cdab ⇒ dca2b2 ⇒ cda4b4 ⇒ dca8b8 ⇒ cda16b16 ⇒ . . .

Considering T = V this is 0L as well as E0L eco-colony. Both agents are active
for all words, i.e. in every derivation step so wp and ap coincide in it.

The language L5 is not context-free, so L5 /∈ COLb and it grows exponentially
so L5 /∈ COLwp and L5 /∈ COLsp according to Lemma 2.

L5 /∈ COLt according to the results of Kleijn and Rozenberg, see Theorems 1
and 2 in Preliminaries. �

Corollary 2

xECy − COLT
z 6= ∅ (10)

where x ∈ {0, E}, y ∈ {wp, ap}, z ∈ {b, t, wp, sp}.

Proof. Follows from Theorem 7 and Lemma 1. �

Corollary 3

COLT
wp ⊂ 0ECwp, (11)

COLT
b ⊂ 0ECwp. (12)

Proof. Colonies COLT
wp are a special type of eco-colonies 0ECwp with the static

environment (only rules of type a → a), so COLT
wp ⊆ 0ECwp. Equation (11) follows

from this fact and from Corollary 2.
Colonies COLT

b can be simulated by colonies COLT
wp where every possible pair

of components has different start symbols, so COLT
b ⊆ COLT

wp. This gives inclusion
(12). �

Theorem 8

COLx − 0ECwp 6= ∅, x ∈ {b, t, wp, sp}. (13)

Proof. In Theorem 6 we proved that the language

L4 =
{

a15−2nbncbnd : 0 ≤ n < 7, n is even
}

∪
{

a15−2nbndbnc : 0 < n ≤ 7, n is odd
}

is not in 0ECwp. It is a finite language, so L4 ∈ COLx for x ∈ {b, t, wp, sp}. �

Theorem 9

COLx − 0ECap 6= ∅, x ∈ {b, t, wp, sp}. (14)

Š. Vavrečková, A. Kelemenová

140

Proof. The finite language
L6 = {a, aa}

is produced by a colony with one component (S, {a, aa}) and axiom S for any deriva-
tion mode x, x ∈ {b, t, wp, sp}, therefore L6 ∈ COLx.

In an 0L eco-colony we have only one alphabet. So all active agents have the
start symbol a and the form (a, {ε}). The axiom is one of the words of the language
– a or aa.

Assume that the axiom is a. There exists at least one agent rewriting a to ε, so
the generated language is {a, ε}. But the empty word ε /∈ L6.

Suppose that the axiom is aa. There exists some agent rewriting one of the both
a-s to ε, so the word a can be generated. But this agent works in the next derivation

step (or steps) too: aa
ap

=⇒
∗

a
ap

=⇒
∗

ε, and the word not contained in L6 is generated.
So L6 /∈ 0ECap. �

Theorem 10
COLb ⊂ EECap. (15)

Proof. We have a colony with the b mode of derivation C = (V, T,A1, . . . An, w0),
and we create an equivalent E0L eco-colony Σ = (E,A1, A2, BCw0) with the ap
derivation and agents A′

1 = (B, {C, ε}), A′

2 = (C, {B, ε}).
We create rules of the environment from the components A1, . . . An. We can

suppose that all these components have different start symbols.
For each component (a, {α1, α2, . . . , αk}) we create developing rules for the en-

vironment:
a → a | α1 | α2 | . . . | αk

and for every symbol b which is not the start symbol in any component we create
one rule b → b.

So the environment simulates the action of the components in the colony. The
simulation of a sequential derivation is possible using the identical rules rewriting
symbol to itself for all but one letter of the word.

From the construction it follows that w0
b
⇒

∗

w implies BCw0
ap

=⇒
∗

w and

BCw0
ap

=⇒
∗

w implies w0
b
⇒

∗

w.
The proper subset comes from Theorem 5. �

Example 2 We demonstrate the construction of the proof on the colony generating
the language

L7 =
{

wawRai : w ∈ {0, 1}∗, i > 0
}

.

We have a colony C = ({S,H,H ′, A,A′, 0, 1, a}, {0, 1, a}, A1 , A2, A3, A4, A5, S)
generating the language L7 where

A1 = (S, {HA}), A2 = (H, {0H ′0, 1H ′1, a}),
A3 = (H ′, {H}),

A4 = (A, {aA′, a}),
A5 = (A′, {A}).

Now we create an E0L eco-colony with ap derivation Σ = (E,A1, A2, BCS), E =
({B,C, S,H,H ′, A,A′, 0, 1, a}, {0, 1, a}, P), A1 = (B, {C, ε}), A2 = (C, {B, ε}), the
set of rules P in the environment is

Properties of eco-colonies

141

P = { H → H | 0H ′0 | 1H ′1 | A,
A → A | aA′ | a,

H ′ → H ′ | H,
A′ → A′ | A,

1 → 1,
0 → 0,

a → a,
S → S | HA }.

One of the derivations in C:

S
b
⇒ HA

b
⇒ 1H ′1A

b
⇒ 1H1A

b
⇒ 10H ′01A

b
⇒ 10H01A

b
⇒ 10a01A

b
⇒

b
⇒ 10a01aA′ b

⇒ 10a01aA
b
⇒ 10a01aa.

Two of possible derivations of the same word in Σ:

BCS
ap

=⇒ CBHA
ap

=⇒ BC1H ′1A
ap

=⇒ CB1H1A
ap

=⇒ BC10H ′01A
ap

=⇒

ap
=⇒ CB10H01A

ap
=⇒ BC10a01A

ap
=⇒ CB10a01aA′

ap
=⇒ BC10a01aA

ap
=⇒

ap
=⇒ 10a01aa, and

BCS
ap

=⇒ CBHA
ap

=⇒ BC1H ′1aA′
ap

=⇒ CB1H1aA
ap

=⇒ BC10H ′01aa
ap

=⇒

ap
=⇒ CB10H01aa

ap
=⇒ 10a01aa.

Corollary 4
COLT

b ⊂ EECap. (16)

Proof. Follows from Theorem 10 and Lemma 1. �

5 Conclusions

In this paper we study the type of grammar systems, eco-colonies based on colonies
and eco-grammar systems. We summarize the results in the table 1. The symbol
T<number> means Theorem with the referred number, the symbol C<number>
means Corollary with the referred number. The symbol ©© in the table means
incomparable classes of languages.

References

[1] E. Csuhaj-Varjú. Colonies – A Multi-agent Approach to Language Generation.
In Proc. ECAI’96 Workshop on Finite State Models of Languages, pages 12–16.
NJSZT, Budapest, 1996.

[2] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun. Grammar Systems. A
Grammatical Approach to Distribution and Cooperation. Gordon & Beach, Lon-
don, 1994

[3] E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun. Eco-grammar Sys-
tems. Grammatical Framework for Studying Lifelike Interactions. Artificial Life,
3:1–28, 1997.

Š. Vavrečková, A. Kelemenová

142

0ECwp 0ECap EECwp EECap

COLb ©© T7,T8 ©© T7,T9 ⊂ C1 ⊂ T10

COLt ©© T7,T8 ©© T7,T9 6⊇ T7 6⊇ T7

COLwp ©© T7,T8 ©© T7,T9 ⊂ T3 6⊇ T7

COLsp ©© T7,T8 ©© T7,T9 6⊇ T7 6⊇ T7

COLT
b ⊂ C3 6⊇ C2 ⊂ C1 ⊂ C4

COLT
t 6⊇ C2 6⊇ C2 6⊇ C2 6⊇ C2

COLT
wp ⊂ C3 6⊇ C2 ⊂ C1 6⊇ C2

COLT
sp 6⊇ C2 6⊇ C2 6⊇ C2 6⊇ C2

0ECwp = ©© T6 ⊂ T4

0ECap ©© T6 = ⊂ T5

EECwp ⊃ T4 =

EECap ⊃ T5 =

Table 1: Results from theorems and corollaries

[4] J. Dassow, J. Kelemen, Gh. Păun. On Parallelism in Colonies. Cybernetics and
Systems, 24:37–49, 1993.

[5] J. Kelemen, A. Kelemenová. A Grammar-theoretic Treatment of Multiagent
Systems. Cybernetics and Systems, 23:621–633, 1992.

[6] A. Kelemenová, E. Csuhaj-Varjú. Languages of Colonies. Theoretical Computer
Science, 134:119–130, 1994.

[7] H. C. Kleijn, G. Rozenberg. A Study in Parallel Rewriting Systems. Information
and Control, 44:134–163, 1980.

[8] G. Rozenberg, A. Salomaa. The Mathematical Theory of L Systems. Academic
Press, New York, 1980.

[9] A. Salomaa.Formal Languages. Academic Press, New York, 1973.

[10] Š. Vavrečková. Eko-kolonie. In J. Kelemen, V. Kvasnička, J. Posṕıchal, editors,
Kognice a umělý život V, pages 601–612. Silesian University, Opava, 2005.

[11] Š. Vavrečková. Eco-colonies. In L. Matyska, A. Kučera, T. Vojnar, Y. Kotásek,
D. Antoš, editors, MEMICS 2006, Proceedings of the 2nd Doctoral Workshop,
pages 253–259. University of Technology, FIT, Brno, 2006.

[12] Š. Vavrečková. Properties of Eco-colonies. In A. Kelemenová, D. Kolář,
A. Meduna, J. Zendulka, editors, Information Systems and Formal Models 2007,
pages 235–242. Silesian University, Opava, 2007.

Properties of eco-colonies

143

