
Networks of Mealy Multiset Automata

Gabriel Ciobanu and Mihai Gontineac

“A.I.Cuza” University of Iaşi, Romania

Faculty of Computer Science and Faculty of Mathematics

gabriel@info.uaic.ro, gonti@uaic.ro

Abstract

We introduce the networks of Mealy multiset automata, and study their
computational power. The networks of Mealy multiset automata are computa-
tionally complete.

1 Learning from Molecular Biology

Systems biology represents a new cross-disciplinary approach in biology which has
only recently been made possible by advances in computer science and technology.
As it is mentioned in [10], it involves the application of experimental, theoretical,
and modelling techniques to the study of biological organisms at all levels. Adding
new abstractions, discrete models and methods able to help our understanding of
the biological phenomena, systems biology may provide predictive power, useful
classifications, new paradigms in computing and new perspectives on the dynamics
of various biological systems.

Recent promising work [1] employs automata theory as an efficient tool of de-
scribing and controlling gene expression (a small automaton is encoded by DNA
strands and then it is used in logical control of gene expression).

In [2], we present a way of interaction between gene machine and protein ma-
chine, namely the process of making proteins, in abstract terms of Mealy automata,
transformation semigroups and abstract operations.

The Mealy automaton proposed as a formal model of the genetic message trans-
lation is a minimal one that accepts the mRNA messages and terminates the trans-
lation process (according to [9], there is no appropriate formalism for the process of
translation).

However molecular biology “deals” not only with sequences, but also with mul-
tisets. The biological cells are “smart” enough to put together at work sequences
and multisets of atoms and molecules, so if we try to get models from their func-
tioning, we should not restrict ourselves to dealing only with sequential machines
(like classical automata). To deal with multisets, the main approach is given by
membrane systems [11]. There is also introduced and studied an automaton-like
machine to work with multisets [7], i.e. multiset automaton. At a first glance, it
seems that they are nothing else but weighted automata with weights in the semiring
of positive integers. In [8] it is proven that such automata (weighted automata with

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 52 - 63, 2007.

52

weights in the semiring of positive integers) have the same power as finite automata
(accept only regular languages). In fact, a careful reader should remark that a mul-
tiset automaton is not a sequential machine, and it is not working with sequences
of multisets as in the case of weighted automata. A multiset automaton accepts,
together with a sequence of multisets, an entire class, namely the class of that se-
quence obtained by “abelianization” (as an example, together with the sequence,
say aab, it accepts aba and baa). In this manner, multiset automata become very
powerful (see [7], for details). Mealy multiset automata, [3], can be viewed as the
corresponding Mealy machine. We study some of their (co)algebraic properties in
[3] and [4] and we connect these properties with various aspects of their behaviour.
In [5], we organize them in a P machine, in order to simulate a P system. How-
ever, the biological systems are not always organized in a hierarchical manner. This
means that we also have to organize sets of Mealy multiset automata in networks.
In order to obtain the computing power for networks of such automata, we relate
them to neural P systems, proving that networks of Mealy multiset automata are
computationally complete.

2 Networks of Mealy Multiset Automata

In order to define networks of Mealy multiset automata, we can connect these au-
tomata in many ways, having both parallel and serial connections. In [3] we define
the restricted direct product of MmA for the parallel case, and the cascade product
for a serial connection.

2.1 Multisets

The evolution rules performed by membranes are multiset operators; the multiset
operators are associative and commutative, and have also an identity.

A multiset over an alphabet A = {a1, a2, ..., an} is a mapping α : A → N. It
can be represented by {(a1, α(a1)), (a2, α(a2)), ..., (an,α(an))}. Inspired from formal
power polynomials, we denote by N 〈A〉 = {α : A → N | α is a mapping} the set
of all multisets on A . The structure of N 〈A〉 is mainly an additive one, since
we add multiplicities of appearance (in fact, it is induced by the addition in N).
This argument is sustained also by the chemical reactions that are the base of the
biological modelling. They provide a notation for defining the way a biological
system evolves.

If α, β ∈ N 〈A〉, then their sum is the multiset (α + β) : A → N defined by
(α + β)(ai) = α(ai) + β(ai), i = 1, n. Moreover, if we consider the letters from A as
multisets, i.e. ai is given by µai

, where µai
: A→ N, µai

(ai) = 1 and µai
(aj) = 0 for

all j 6= i, then we can express every multiset α ∈ N 〈A〉 as a linear combination of

ai, i.e. α =

n
∑

i=1

α(ai) · ai (see also [3]). The length of a multiset α, denoted by |α|, is

defined by |α| =
n

∑

i=1

α(ai).

Networks of Mealy multiset automata

53

We can define an external operation mα =
n

∑

i=1

(mα(ai)) · ai, for all m∈ N and

α ∈ N 〈A〉.

Proposition 1 N 〈A〉 has a structure of N-semimodule (semimodule over the semir-
ing of positive integers).

2.2 Mealy multiset automata

Roughly speaking, a Mealy multiset automaton (MmA) consists of a storage location
(a box for short) in which we place a multiset over an input alphabet and a device to
translate the multiset into a multiset over an output alphabet. We have a detection
head that detects whether or not a given multiset appears in the multiset available
in the box. The multiset is removed from the box whenever it is detected, and
the automaton inserts a multiset over the output alphabet. The output alphabet
should be different from the input alphabet; if they are the same, we mark the
output symbols just to make different the output and input alphabet. In this way
the output symbols cannot be viewed by the detection head. This automaton stops
when no further move is possible. We say that the sub-multiset read by the head was
translated to a multiset over the output alphabet. We give here only the definitions
and the properties that we need for networks of MmA. For more informations see
[3] or [4].

From the formal point of view, a Mealy multiset automaton is a construct A =
(Q,V,O, f, g, q0) where

1. Q is a finite set, the set of states;

2. q0 ∈ Q is special state, which is both initial and final;

3. V is a finite set of objects, the input alphabet ;

4. O is a finite set of objects, the output alphabet, such that O ∩ V = ∅;

5. f : Q× N 〈V 〉 → P(Q) is the state-transition (partial) mapping ;

6. g : Q× N 〈V 〉 → P(N 〈O〉) is the output (partial) mapping.

If | f(q, a) |≤ 1 we say that A is Q- deterministic and if | g(q, a) |≤ 1 our automaton
is O-deterministic.

An MmA A receives a multiset in its box, and processing this multiset it passes
through different configurations. It starts with a multiset from N 〈V 〉 and ends
with a multiset from N 〈V ∪O〉. A configuration of A is a triple (q, α, β̄) where
q ∈ Q,α∈ N 〈V 〉, β̄∈ N 〈O〉. We say that a configuration (q, α, β̄) passes to (s, α −
a, β̄+ b̄) (or, that we have a transition between those configurations) if there is a ⊆ α
such that s ∈ f(q, a), b̄ ∈ g(q, a). We denote this by (q, α, β̄) ⊢ (s, α − a, β̄ + b̄),
and by ⊢∗ the reflexive and transitive closure of ⊢. We can alternatively define a
configuration to be a pair (q, α) where α ∈ N 〈V ∪O〉 and the transition relation is
(q, α) ⊢ (s, α− a + b̄), with the same conditions as above.

G. Ciobanu, M. Gontineac

54

Behaviour is often appropriately viewed as consisting of both dynamics and
observations, which have to do with change of states and partial access to states,
respectively. The main advantage of an MmA is that it has an output function that
can play the main role in observability, i.e. we do not have to construct an other
machine to describe the MmA’ s behaviour.

Definition 1 Let A = (Q,V,O, f, g) be a Mealy multiset automaton. The general
behaviour of a state q ∈ Q is a function beh(q) assigning to every multiset α∈N 〈V 〉
the output multiset obtained after consuming α starting from q.

When talking about the behaviour, we consider a specific order of consuming mul-
tisets, i.e. in terms of strings of multisets.

Definition 2 Let A = (Q,V,O, f, g) be a Mealy multiset automaton. The sequen-
tial behaviour of a state q ∈ Q is a function seqbeh(q) that assigns to every multiset
α∈N 〈V 〉 all the sequences of the output multisets obtained after consuming α starting
from q.

Example 1 Suppose that we have the following sequence of transitions (q, α, ε) ⊢
(q1, α− a1, b1) ⊢ (q2, α− a1 − a2, b1 + b2) ⊢ . . . ⊢ (qn, α− a1 − . . .− an, b1 + . . . + bn)
and MmA stops. Then beh(q)(α) = b1 + . . . + bn and seqbeh(q)(α) ∋ b1 . . . bn.
Moreover, b1 + . . . + bn belongs to N 〈O〉, while b1 . . . bn belongs to (N 〈O〉)∗.

Consider the canonical inclusion i : N 〈O〉 → (N 〈AO〉)∗ and the identity map
id : N(O) → N(O). By the universal property of the free monoid, we know that
there exists a unique homomorphism of monoids IO : (N 〈O〉)∗ → N 〈O〉 defined
by IO(b1 . . . bn) = b1 + . . . + bn such that IO ◦ i = id. Since id is onto, it follows
that I is onto, and so, applying the isomorphism theorem for monoids, we obtain
that (N 〈O〉)∗/kerIO ⋍ N 〈O〉. Moreover, for all the states q of a Mealy multiset
automaton we have

IO ◦ seqbeh(q) = beh(q).

Let Ai = (Qi, V,O, fi, gi), and Bi their corresponding boxes, i = 1, n, a finite
family of Mealy multiset automata. We can connect them in parallel in order to
obtain a new MmA defined by A =

∧n
i=1Ai = (×n

i=1Qi, V,On, f, g), called the
restricted direct product of Ai, where:

• f((q1, q2, . . . , qn), a) = (f1(q1, a), f2(q2, a), . . . , fn(qn, a)),

• g((q1, q2, . . . , qn), a) = (g1(q1, a), g2(q2, a), . . . , gn(qn, a)),

• box of A is the disjoint union
⊔n

i=1 Bi of {Bi | i = 1, n},

• a configuration of A is a triple (q, α, β̄), where q = (q1, q2, . . . , qn), α =
(α1, α2, . . . , αn), and β̄ = (β̄1, β̄2, . . . , β̄n),

• the transition relation of A: (q, α, β̄) ⊢ (s, α − a, β̄ + b̄) iff si ∈ fi(qi, ai) and
b̄i ∈ gi(qi, ai) for all i ∈ 1, n.

Networks of Mealy multiset automata

55

The cascade product is useful to describe a serial connection, and provide also
some results in decompositions of such machines in irreducible ones.

Let A = (Q,V,O, f, g), A′ = (Q′, V ′, O′, f ′, g′) be two Mealy multiset automata.
In order to connect them, we need a multiset mapping linking the output of one of
them to the input of the other. This can be done using a N-homomorphism from
N 〈O′〉 to N 〈V 〉 (this homomorphism can be obtained by using a mapping from O′

to V). We denote by Λ : N 〈O′〉 → N 〈V 〉 this homomorphism. Then we can define
a mapping Ω : Q′ × N 〈V ′〉 → N 〈V 〉 by Ω(q′, a′) = Λ(g′(q′, a′)).

• This mapping gives us the cascade product induced by Ω:

AΩA′ = (Q×Q′, V ′, O, fΩ, gΩ)

where fΩ((q, q′), a′) = (f(q,Ω(q′, a′)), f ′(q′, a′)), gΩ((q, q′), a′) = g(q,Ω(q′, a′)),
for all a′ ∈ N 〈V ′〉 , (q, q′) ∈ Q×Q′.

• The transition relation becomes ((q, q′), α′, β̄) ⊢ ((s, s′), α′−a′, β̄+ b̄) if there is
a′ ⊆ α′ such that (s, s′) = fΩ((q, q′), a′) and b̄ = gΩ((q, q′), a′), where a′, α′ ∈
N 〈V ′〉, (q, q′) ∈ Q×Q′, and β̄ ∈ N 〈O〉.

We can alternatively define the transition relation by

((q, q′), α′, β̄) ⊢ ((s, s′), α′ − a′, β̄ + b̄),

if there is a′ ⊆ α′ such that s=f(q,Λ(g′(q′, a′))), s′=f ′(q′, a′), b̄=g(q,Λ(g′(q′, a′))),
where a′, α′ ∈ N 〈V ′〉, (q, q′) ∈ Q×Q′, β̄ ∈ N 〈O〉.

The graphical representation of the cascade product is given in the following
figure:

In order to obtain the behaviour of a network of MmA’s, we should also consider
the behaviour of the cascade product. Roughly speaking, the two types of behaviour
depends mainly on the corresponding behaviours of A′. On the other hand, when
we have a cascade product, the observable part is strongly connected with the ob-
servations that could be made after we pass through A. We may also emphasize the
important role played by the connection homomorphism given by Λ.

Theorem 2 Let A = (Q,V,O, f, g), A′ = (Q′, V ′, O′, f ′, g′) be two MmA’s, AΩA′

their cascade product, and (q, q′) a state of this product. The behaviour of (q, q′) is
beh((q, q′)) = beh(q) ◦ Λ ◦ beh(q′).

If we want to get the sequential behaviour starting from beh((q, q′)) = beh(q) ◦Λ ◦
beh(q′), then (I, I′) ◦ seqbeh((q, q′)) = (I ◦ seqbeh(q)) ◦ Λ ◦ (I′ ◦ seqbeh(q′)).

Other properties of MmA’s, their behaviours and bisimulation relations are pre-
sented in [3] and [4].

G. Ciobanu, M. Gontineac

56

2.3 Networks of automata

The formal description of a network of Mealy multiset automata is not intuitive.
On the other hand, these networks could be very powerful, so we think that they
deserve our attention. We can consider several variants of such networks. Some of
them can have no inter-communication and, in this case, the network is, in fact, a
bigger MmA. The same remark can be done if we have only MmA connected in a
serial manner, without any ramifications. The case that we consider in this paper
is inspired by the definition of neural P systems (nP systems). Neural P systems
are defined in [11] as a computing model inspired by the network of cells. Each
cell has a finite state memory, and processes multisets of symbol (impulses); it can
send some impulses (called excitations) to the neighbouring cells. It is proved that
such networks are rather powerful: they can simulate Turing machines using a small
number of cells, every cell having in a small number of states. It is also proved that,
in appropriate organization, such a network can solve in linear time the Hamiltonian
Path Problem.

We consider a set of MmA that can communicate by means of some commu-
nication channels. All of them have the same input alphabet V , and their boxes
contain an input multiset over V (they can also have an empty multiset ε as input).
The output alphabet has a “real” part O of output alphabet, and a “specific” part
used for communication. The specific part is, in fact, a Cartesian product between
the input alphabet V and the set of targets T (the set of the indexes of the MmA
forming the net). We can also have a special MmA to collect in its box the result of
the computation (i.e. a multiset over O) for such a network. Alternatively, we can
consider as result of the computation the tuple of multisets obtained in the box of
every MmA of the net.

Definition 3 A network of Mealy multiset automata (shortly, nMmA) is a con-
struct N = (V,O, {Ai}i=1,n , {Λi}i=1,n , B) where:

• V = {a1, a2, . . . , am} is a finite set of objects, the input alphabet;

• O is the output alphabet such that O ∩ V = ∅;

• Ai = (Qi, V,O, fi, gi, s0,i) are MmA’s connected in the network. Their output
alphabets are of the form O = O ∪ (V × T), where T = {1, 2, . . . , n};

• B is a box where N “receives” the output multiset. Depending on features
that we consider for the net, B can be a specific box of a specific MmA in the
network, or B can be the Cartesian product of all the boxes.

• Λi : N
〈

O
〉

→ (N 〈O〉 ∪N 〈V 〉)n are the communication mappings associated to
all the Ai, i ∈ T .

A computation starts with some input multisets w0,i in the boxes of the MmA’s that
are in their initial states, s0,i; then we have a big step given by a translation (made by
the MmA’s, in fact by their restricted direct product

∧n
i=1Ai) and a communication

(done by {Λi}) - a kind of “parallel cascade product”, since every MmA is in cascade
with the restricted direct product of itself and the other MmA.

Networks of Mealy multiset automata

57

A configuration of the network is of the form (s,w), where s = (s1, s2, . . . , sn)
with si ∈ Qi is the global state, and w = (w1, . . . , wn) where wi ∈ N 〈O〉 ∪ N 〈V 〉.

A transition between configurations is denoted by (s,w) ⊢ (s′, w′) and is defined
in the following manner:

s′ = (s′1, s
′

2, . . . , s
′

n), where s′i ∈ fi(si, ai) with ai ∈ N 〈V 〉; we allow some of the
a′s to be ε if in the corresponding MmA there is no transition.

w′ = Λ1(b1) + Λ2(b2) + . . . + Λn(bn) + (w1 − a1, w2 − a2, . . . , wn − an), where
bi ∈ gi(si, ai).

A network of MmA can be used in various modes. We can use it as a generative
system, looking to the number of output objects that we find in the boxes (without
considering the final state for the MmA). It can be used also to compute functions
from N 〈V 〉 to N 〈O〉.

An example of such a network used as a generative system could clarify these
aspects:

Example 2 Let

N = (V,O, {Ai}i=1,3 , {Λi}i=1,3 , B1)

where:

• V = {a} is the input alphabet;

• O = {b} is the output alphabet b 6= a;

• Ai = ({si} , V,O, fi, gi, si), are the MmA’s connected in the network. Their
output alphabet is O = {b, (a, 1), (a, 2), (a, 3)}

• B1 is the box where N “receives” the output multiset.

• Λi : N
〈

O
〉

→ (N 〈O〉 ∪N 〈V 〉)3 are the communication mappings associated to
all the Ai, i ∈ T = {1, 2, 3}.

We describe now the mappings. The transition mappings are

• fi(si, a) = si, i = 1, 3.

The output mappings:

• g1(s1, a) ∈ {b, (a, 2) + (a, 3)}, so is a nondeterministic mapping;

• g2(s2, a) = (a, 1);

• g3(s3, a) = (a, 1).

The communication mappings:

• Λ1(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (nb + k1a, k2a, k3a));

• Λ2(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (k1a, ε, ε));

G. Ciobanu, M. Gontineac

58

• Λ3(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (k1a, ε, ε)).

Since A1 has a nondeterministic output mapping, the behaviour of our network
is nondeterministic. We denote the global state by s = (s1, s2, s3). We start our
computation from (s, (a, ε, ε)) Applying the restricted direct product we can obtain
(s, (b, ε, ε)) or (s, (ε, a, a)).

In the first case we obtain one b, so we generate 1. In the second case, the compu-
tation continues with communication, and we obtain (s, (a+a, ε, ε) = (s, (2a, ε, ε),
and, again, we have various possibilities to choose. Anyway, it should be clear now
that we can generate any number of b′s, so N can generate every positive integer.

In order to study the computational power of nMmA, we are trying to simulate
neural-like P systems. To be more specific, we try to simulate the neural P systems
working in minimal mode and replicative manner. To keep the paper self-contained,
we remember some facts about neural P systems and adapt the notations from [11].

3 Neural P Systems

The former tissue P systems were called neural-like P systems in [11]. We start with
the classical definition, and later we adapt the notation to our needs. We consider
a class of networks of membranes inspired by the way the neurons cooperate to
process impulses in the complex net established by synapses. A possible model of
this symbol processing machinery can be given by a network of membranes, each
of them containing a multiset of objects and a state according to which the objects
are processed. The membranes can communicate along “axons” channels. We make
some minor modifications to the original notations, having in mind that in the Mealy
multiset automata we distinguish between multisets and strings that could represent
them (since we can deal with two kinds of behaviours, a global one and a sequential
one). We also restrict our presentation of neural P systems working in minimal mode
and replicative manner.

Definition 4 A neural P system (nP system) of degree m ≥ 1 is a construct

Π = (V, σ1, σ2, . . . , σm, syn, iout),

where

1. V is a finite non-empty alphabet (of objects);

2. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} (synapses among cells);

3. iout ∈ {1, 2, . . . ,m} indicates the output cell; we can put iout = 1;

4. σ1, σ2, . . . , σm are cells of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ m,

where:

• Qi is a finite set (of states);

Networks of Mealy multiset automata

59

• Ri is a finite set of rules of the form sw → s′(x + ygo + zout), where s, s′ ∈ Qi,
w, x ∈ N 〈V 〉, ygo ∈ N 〈V × {go}〉 , zout ∈ N 〈V × {out}〉, with the restriction
that zout = ε for all i different from 1.

The objects that appears in the left hand multiset w of the rule sw → s′w′ are called
impulses, while those from w′ are called excitations.

Such a system is called to be cooperative if it contains at least one rule sw → s′w′

such that |w| > 1, and non-cooperative in the opposite case.
An m-tuple of the form (s1w1, s2w2, . . . , smwm) is called a configuration of Π.

Using the rules defined above, we can define transitions among the configurations of
the system. To this end, there are considered three modes of processing the impulse-
objects and three modes of transmitting excitation-objects from one cell to another
one. As we already mentioned, we restrict ourselves to the minimal processing mode.

Notation: Vgo = {(a; go) | a ∈ V }, Vout = {(a; out) | a ∈ V }, and Vtot = V ∪ Vgo ∪
Vout. For s, s′ ∈ Qi, x ∈ N 〈V 〉 and y ∈ N 〈Vtot〉, we write sx ⇒min s′y iff sw →
s′w′ ∈ Ri, w ⊆ x and y = (x − w) ∪ w′. In this case, only one occurrence of the
multiset from the left-hand side of a rule is processed, being replaced by the multiset
from the right-hand of the rule, and at the same time changing the state of the cell.

We also write sx ⇒min sx for s ∈ Qi and x ∈ N 〈V 〉 whenever there is no
rule sw → s′w′ ∈ Ri such that w ⊆ x. This encodes the case when a cell cannot
process the current objects in a given state (it can be “unblocked” after receiving
new impulses from the cells which are active and can send objects to it).

Now, recall that the multiset w′ from a rule sw → s′w′ contains symbols from
V , but also symbols of the form (a, go) (or, in the case of the cell 1, of the form
(a, out)). Such symbols are sent to the cells related by synapses to the cell σi where
the rule sw → s′w′ is applied, according to various manners of communication. As
we already mentioned, we choose the replicative manner, i.e. each symbol a from
(a, go) appearing in w′, it is sent to each of the cells σj such that (i; j) ∈ syn.

In order to formally define the transition among the configurations of Π, some
further notations are needed. For a multiset w over Vtot, we consider the projections
on V , Vgo and Vout, namely prV (w); prVgo

(w), and prVout
(w) (see [11] for details). For

a node i in the graph defined by syn, the ancestors and the successors of node i are
denoted by anc(i) = {j | (j, i) ∈ syn} and succ(i) = {j | (i, j) ∈ syn}, respectively.

Each transition lasts one time unit, and the network is synchronized: a global
clock define the passage of time for all the cells.

For two configurations C1 = (s1w1, . . . , smwm) and C2 = (s′1w
′′

1 , . . . , s′mw′′

m) we
write C1 ⇒ C2 if there are w′

1, . . . , w
′

m in N 〈Vtot〉 such that

siwi ⇒ s′iw
′

i, 1 ≤ i ≤ m,

and
w′′

i = prV (w′

i) +
∑

j∈anc(i)

prVgo
(w′

j).

Obviously, objects are always sent to a cell i only from its ancestors, namely
from cells j such that a direct synapse exists from j to i. In the case of the cell 1, we

G. Ciobanu, M. Gontineac

60

remove from w′

1 all the symbols a ∈ V which appear in w′

1 in the form (a, out). If
during a transition a cell does nothing (no rule is applicable to the available multiset
of objects in the current state), then the cell waits until new objects are sent to it
from its ancestor cells.

A sequence of transitions among the configurations of Π is called a computation
of Π. A computation ending in a configuration where no rule in no cell can be used is
called a halting computation. The result of a halting computation is the number of
objects in the output cell 1 (or sent to the environment from the output cell 1). We
denote by N(Π) the set of all natural numbers computed in this way by a system Π.
We denote by NOnPm,r(coo) the family of sets N(Π) computed by all cooperative
neural-like P systems with at most m ≥ 1 cells, each of them using at most r ≥ 1
states. When non-cooperative systems are used, we write NOnPm,r(ncoo) for the
corresponding family of sets N(Π).

3.1 Computational power

We denote by NRE the family of Turing computable sets of natural numbers.
Following [11], we mention that the minimal mode of using the rules turns out

to be computationally universal. If we consider the apparently weak neural-like P
systems, then the fact that we obtain universality even in the non-cooperative case
when using the mode min of applying the rules is rather unexpected. The same
result holds true also when using cooperative rules. Among the results presented in
[11] we mention here only those for minimal mode and for replicative manner.

Theorem 3 NOnP2,5(ncoo) = NRE.

For the cooperative rules, the number of states can be decreased.

Theorem 4 NOnP2,2(coo) = NRE.

4 Universality of the Networks

In order to obtain the generative power of a network of MmA, we give the following
result.

Theorem 5 Any nP System working in min mode and replicative manner can be
simulated by a network of MmA (possibly nondeterministic).

Proof. Let Π = (V, σ1, σ2, . . . , σm, syn, 1) be an nP system with its components
described as in the previous section. We remind that σ1, σ2, . . . , σm are cells of the
form σi = (Qi, si,0, wi,0, Ri) (1 ≤ i ≤ m), where Qi is a finite set (of states) and Ri is
a finite set of rules of the form sw → s′(x + ygo + zout) with s, s′ ∈ Qi, w, x ∈ N 〈V 〉,
ygo ∈ N 〈V × {go}〉, zout ∈ N 〈V × {out}〉 (with the restriction that zout = ε for all i
different from 1).

We can build a nMmA N = (V,O, {Ai}i=1,m , {Λi}i=1,m , B1) where:

• the output alphabet O is Vout;

Networks of Mealy multiset automata

61

• Ai = (Qi, V,O, fi, gi, s0,i) is the MmA simulating the activity of cell σi. The
output alphabets are of the form O = O ∪ (V × T), where T = {1, 2, . . . ,m};

• B1 is the box where N collects the output multisets;

• Λi : N
〈

O
〉

→ (N 〈O〉 ∪N 〈V 〉)n are the communication mappings associated to
Ai, i ∈ T .

Consider a rule sw → s′(x + ygo + zout) from Ri. We can simulate this rule with
fi and gi by defining them in the following manner:

• fi(s,w) = s′;

• gi(s,w) = (zout + x + k1(y, 1) + k2(y, 2) + . . . + km(y,m)),

with the following restrictions in gi:

• if i 6= 1, then zout = ε;

• if there is no synapse from σi to σj , we define kj = 0, else kj = 1.

In this manner we can also simulate the replicative manner of applying the rules,
since y is marked to be sent to all the cells having synapse from σi. It is easy to see
that we have a transition (s1w1, . . . , smwm) ⇒ (s′1w

′′

1 , . . . , s′mw′′

m) in Π if and only if
((s1, s2, . . . , sn), (w1, . . . , wn)) ⊢ ((s′1, s

′

2, . . . , s
′

n), (w′′

1 , . . . , w′′

n)). �

As an immediate consequence of this result we get the following

Theorem 6 Nondeterministic networks of Mealy multiset automata are universal.

Proof. We already know that NOnP2,2(coo) = NRE. Applying the previous theo-
rem we obtain that the generative power of a nondeterministic network of MmA is
NRE.

Moreover, according to the proof for NOnP2,2(coo) = NRE ([11], page 261), the
universality is obtained for a network with two Mealy multiset automata, the first
one having two states, while the second one has only one state. �

Therefore a network of Mealy multiset automata is able to simulate Turing machines,
and so it is computationally complete. The number of cells and states sufficient to
characterize the power of Turing machines is rather small.

P systems are simulated on a cluster (network) of computers [6]. It would be
interesting to see whether such an implementation can be related to the network of
Mealy multiset automata.

References

[1] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro. An autonomous molec-
ular computer for logical control of gene expression. Nature 429:423-429, 2004.

[2] G. Ciobanu, M. Gontineac. An Automata Description of the Genetic Message
Translation. Fundamenta Informaticae, 64:93-107, 2005.

G. Ciobanu, M. Gontineac

62

[3] G. Ciobanu, M. Gontineac. Mealy Multiset Automata. International Journal of
Foundations of Computer Science, 17(1):111-126, 2006.

[4] G. Ciobanu, M. Gontineac. Algebraic and Coalgebraic Aspects of Membrane
Computing. In volume 3850 of Lecture Notes in Computer Science, pages 181-
198, Springer-Verlag, 2006.

[5] G. Ciobanu, M. Gontineac. P Machines: An Automata Approach to Membrane
Computing. In volume 4361 of Lecture Notes in Computer Science, pages 314-
329, Springer-Verlag, 2006.

[6] G. Ciobanu, W. Guo. P Systems Running on a Cluster of Computers. In vol-
ume 2933 ofLecture Notes in Computer Science, pages 123-139, Springer-Verlag,
2004.

[7] E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana. Multiset Automata. In Multiset
Processing, volume 2235 of Lecture Notes in Computer Science, pages 69-83,
Springer-Verlag, 2001.

[8] S. Eilenberg. Automata, Languages and Machines. Vol. A, Academic Press,
1976.

[9] H. de Jong. Modelling and Simulation of Genetic Regulatory Systems: A Lit-
erature Review. Journal of Computational Biology, 9:67-103, 2002.

[10] H. Kitano. Computational Systems Biology. Nature, 420:206-210, 2002.

[11] Gh. Păun. Membrane Computing: An Introduction. Springer-Verlag, 2002.

Networks of Mealy multiset automata

63

