
Extended Spiking Neural P Systems with Decaying

Spikes and/or Total Spiking

Rudolf Freund1, Mihai Ionescu2, and Marion Oswald1

1Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9–11, A–1040 Vienna, Austria

{rudi,marion}@emcc.at
2 Research Group on Mathematical Linguistics

Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

armandmihai.ionescu@urv.cat

Abstract

We consider extended variants of spiking neural P systems with decaying
spikes (i.e., the spikes have a limited lifetime) and/or total spiking (i.e., the
whole contents of a neuron is erased when it spikes). Although we use the
extended model of spiking neural P systems, these restrictions of decaying spikes
and/or total spiking do not allow for the generation or the acceptance of more
than regular sets of natural numbers.

1 Introduction

Spiking neural P systems (in short SNP systems) are a growing research direction
in the membrane computing community and have as core concept the idea of neural
communication through electrical pulses called spikes, or action potential. It is
known that the spikes of a given neuron all look alike, so the form of the action
potential does not carry any information. But what matters is the timing and the
number of spikes entering a (postsynaptic) neuron (for details on spiking neurons
we refer to [5], [8] or [9]).

Initially defined in [7], SNP systems are represented as a graph with the neurons
placed in the nodes of the graph. They are sending signals (spikes) along the synapses
(the edges of the graph) if the firing rules inside each neuron can be activated. Hence,
the structure is that of a tissue-like P system (e.g., see [4]) where the objects are
all of the same form (an introduction to membrane computing can be found at [10]
and an up-to-date information on this area is available online at [12]).

The functioning of an SNP system is rather simple. A global clock is assumed,
and in each time unit each neuron which can use a rule should use it. The system is
synchronized but it works sequentially at the level of the neurons: in every step at
most one rule is used in each of them. In a generating system, one of the neurons
is the designated output neuron, from which spikes are sent to the environment –

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 64 - 75, 2007.

64

eventually only the difference between the first two spikes is considered to be the
output number, see [7] – or else are collected as output, whereas in an analyzing
(or accepting) system (spiking neural P automaton) the designated input neuron
contains the initial number to be analyzed (accepted) as the number of spikes in the
cell or else we take the difference between the first two input spikes as input.

Going back to neural biology, it is worth mentioning that the effect of a spike
on the postsynaptic neuron can be measured, and is called the membrane potential
(the potential difference between the interior of the cell and its surroundings). If
the neuron has no electrical activity, its membrane potential is constant. After
the arrival of a single spike, the potential changes and finally decays back to the
resting potential. Hence, if no other spikes arrive in a certain amount of time in the
postsynaptic neuron, the initial spike is lost (disappears) and has no further effect
on the neuron.

In this paper we incorporate this phenomenon in SNP systems. We also model
the threshold of the neuron in a different way than it was considered before. More
precisely, if the threshold of a neuron is k, then if at any time during the computation
the neuron has inside a number of spikes greater or equal to k the neuron must
fire, and then erase its whole contents; in a more general way, we here consider
total firing where a neuron has to empty its whole contents when firing provided its
current contents belongs to a given regular set. As the underlying model in which we
shall elaborate these ideas of decaying spikes and total firing we shall take extended
spiking neural P systems, see [1], and we shall show that even this extended model
does not allow us to go beyond regularity when using decaying spikes and/or total
firing.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we refer
to any monograph in this area, in particular, to [3] and [11]. We just list a few
notions and notations: V ∗ is the free monoid generated by the alphabet V under
the operation of concatenation and the empty string, denoted by λ, as unit element.
N+ denotes the set of positive integers, N is the set of non-negative integers (natural
numbers), i.e., N = N+∪{0}. For 0 ≤ k ≤ m, the interval of natural numbers
between k and m is denoted by [k..m]. Observe that there is a one-to-one corre-
spondence between a set N ⊆ N and the one-letter language L (N) = {an | n ∈ N},
hence, N is a regular (semilinear) set of non-negative integers if and only if L (N)
is a regular language; on the other hand, for a given one-letter language L the
corresponding set of natural numbers {n | an ∈ L} is denoted by N (L). By FIN
and REG we denote the families of finite sets and regular sets of natural numbers,
respectively. For a finite set N , |N | denotes the cardinality of N .

A deterministic finite automaton M is a construct (Q,T, δ, q0, F) where Q is a set
of states, T is a set of terminal symbols, δ : Q×T → Q is the transition function, q0 is
the initial state, and F ⊆ Q is a set of final states; in the case of a non-deterministic
finite automaton, δ is a finite subset of Q×T ∗×Q. The language accepted by M is
denoted by L (M). The regular grammar G corresponding to the non-deterministic

Extended spiking neural P systems with decaying spikes and/or total spiking

65

finite automaton is G = (Q,T, P, q0) where P is the set of productions with P =
{p → wq | (p,w, q) ∈ δ}∪{p → λ | p ∈ F}. As is well known, the family of languages
accepted by (deterministic or non-deterministic) finite automata coincides with the
family of regular languages and equals the family of languages generated by regular
grammars; hence, the families of one-letter languages accepted by (deterministic or
non-deterministic) finite automata or generated by regular grammars coincide with
REG.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [10]; comprehensive information can be found on the P systems web page
[12]. Moreover, for the motivation and the biological background of spiking neural
P systems we refer the reader to [7]. The following definition is mainly taken from
[1]:

An extended spiking neural P system (of degree m ≥ 1) (in the following we shall
simply speak of an ESNP system) is a construct

Π = (m,S,R)

where

• m is the number of cells (or neurons); the neurons are uniquely identified by
a number between 1 and m (obviously, we could instead use an alphabet with
m symbols to identify the neurons);

• S describes the initial configuration by assigning an initial value (of spikes)
to each neuron; for the sake of simplicity, we assume that at the beginning
of a computation we have no pending packages along the axons between the
neurons;

• R is a finite set of rules of the form
(

i, E/ak → P ; d
)

such that i ∈ [1..m]
(specifying that this rule is assigned to cell i), E ⊆ REG is the checking set
(the current number of spikes in the neuron has to be from E if this rule
shall be executed), k ∈ N is the “number of spikes” (the energy) consumed
by this rule, d is the delay (the “refraction time” when neuron i performs this
rule), and P is a (possibly empty) set of productions of the form (l, w, t) where
l ∈ [1..m] (thus specifying the target cell), w ∈ N is the weight of the energy
sent along the axon from neuron i to neuron l, and t is the time needed before
the information sent from neuron i arrives at neuron l (i.e., the delay along
the axon).

A configuration of the ESNP system is described as follows:

• for each neuron, the actual number of spikes in the neuron is specified;

• in each neuron i, we may find an “activated rule”
(

i, E/ak → P ; d′
)

waiting to
be executed where d′ is the remaining time until the neuron spikes;

R. Freund, M. Ionescu, M. Oswald

66

• in each axon to a neuron l, we may find pending packages of the form (l, w, t′)
where t′ is the remaining time until w spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

• for each neuron i, we first check whether we find an “activated rule”
(

i, E/ak → P ; d′
)

waiting to be executed; if d′ = 0, then neuron i “spikes”,
i.e., for every production (l, w, t) occurring in the set P we put the corre-
sponding package (l, w, t) on the axon from neuron i to neuron l, and after
that, we eliminate this “activated rule”

(

i, E/ak → P ; d′
)

;

• for each neuron l, we now consider all packages (l, w, t′) on axons leading
to neuron l; provided the neuron is not closed, i.e., if it does not carry an
activated rule

(

i, E/ak → P ; d′
)

with d′ > 0, we then sum up all weights w in
such packages where t′ = 0 and add this sum to the corresponding number of
spikes in neuron l; in any case, the packages with t′ = 0 are eliminated from
the axons, whereas for all packages with t′ > 0, we decrement t′ by one;

• for each neuron i, we now again check whether we find an “activated rule”
(

i, E/ak → P ; d′
)

(with d′ > 0) or not; if we have not found an “activated
rule”, we now may apply any rule

(

i, E/ak → P ; d
)

from R for which the
current number of spikes in the neuron is in E and then put a copy of this
rule as “activated rule” for this neuron into the description of the current
configuration; on the other hand, if there still has been an “activated rule”
(

i, E/ak → P ; d′
)

in the neuron with d′ > 0, then we replace d′ by d′ − 1 and
keep

(

i, E/ak → P ; d′ − 1
)

as the “activated rule” in neuron i in the description
of the configuration for the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence of
configurations starting with the initial configuration given by S. A computation is
called successful if it halts, i.e., if no pending package can be found along any axon,
no neuron contains an activated rule, and for no neuron, a rule can be activated.

An ESNP is called finite if all the regular checking sets in the rules are finite.
In this paper, however, we will consider the following variants of the above

systems:

1. ESNP systems with decaying spikes:

The spikes in the system are decaying, i.e., they only have a limited lifetime
before disappearing. In this case, a spike a is now written in the form (a, e),
where e ≥ 1 is the decay that, from the moment a spike (a, e) arrives in
a neuron, is decremented by one in each step of the computation. As soon
as e = 0, the corresponding spike is lost and cannot be used anymore. There
could be different strategies with respect to the question which spikes should be
consumed when the neuron fires, but these considerations are of no importance
for the results elaborated below.

Extended spiking neural P systems with decaying spikes and/or total spiking

67

2. ESNP systems with total spiking:

In this case, the whole contents of the neuron is lost as soon as a spiking
rule (i, E/ → P ; d′) (we omit specifying the number of spikes to be consumed
when applying such a rule) can be applied in neuron i as the number of spikes
present in the cell is in E.

As a special case of ESNP systems with total spiking we could also consider
ESNP systems with thresholds where the regular sets E all are of the special
form {n ∈ N |n ≥ h} with h being the so-called threshold. In this case, the rule
(i, E/ → P ; d′) is also written as (i,≥ h/ → P ; d′). We postpone a thorough discus-
sion of these restricted variants for a longer version of this paper, yet we shall use
the notation in special examples for ESNP systems with total spiking.

For decaying spikes and total spiking and even a combination of these two, we
will consider ESNP systems as generating as well as accepting devices, where the
output (input in the case of accepting devices, respectively) is either given in a
specified output (input) neuron, or else as the distance between the first two spikes
exiting (entering) the system.

4 Results

As throughout this section we do not use delays in the rules and productions,
we simply shall omit them to keep the description of the systems concise, e.g.,
instead of

(

2,
{

ai
}

/ai →
{(

2, aj , 0
)

, (1, a, 0)
}

; 0
)

, in the following we shall write
(

2,
{

ai
}

/ai →
{(

2, aj
)

, (1, a)
})

.

First we investigate the generative power of extended spiking neural P systems
with decaying spikes and/or total spiking; in the following, for generating ESNP
systems we shall always assume that the output neuron contains no spiking rules;
moreover, the neurons except the output neuron are called actor neurons:

When we consider the output to be the number of spikes at the end of a successful
computation, then ESNP systems with decaying spikes can only generate finite sets,
because the number of spikes that can be added in one step to the contents of a
neuron is bounded, but the spikes in a neuron have a limited life-time, hence, at
any moment the number of spikes in a neuron is bounded. On the other hand,
every finite set of natural numbers can be generated by an extended spiking neural
P system with spikes of minimal decay with only two neurons:

Example 1 Any finite set of natural numbers N can be generated by a finite ESNP
system with spikes of minimal decay with only two neurons.

Let N be a finite set of natural numbers. We now construct the finite ESNP
system Π that generates an element of N by the number of spikes contained in the
output neuron 1 at the end of a successful computation:

Π = (2, S,R) ,
S = {(1, λ) , (2, (a, 1))} ,

R =
{(

2, {(a, 1)} / (a, 1) →
{(

1, (a, 1)j
)})

| j ∈ N
}

;

R. Freund, M. Ionescu, M. Oswald

68

after one step, every computation halts, the output neuron having received a number
of spikes corresponding to a number from N . We could even add the feature of total
spiking or minimal threshold 1 in order to obtain the same result; in this case, R
would be written as

{(

2, {(a, 1)} / →
{(

1, (a, 1)j
)})

| j ∈ N
}

or
{(

2,≥ 1/ →
{(

1, (a, 1)j
)})

| j ∈ N
}

.

For the sake of completeness, we should like to mention that the empty set is
generated by the ESNP system

Π0 = (2, S,R0) ,
S = {(1, λ) , (2, (a, 1))} ,
R0 = {(2,≥ 1/ → {(2, (a, 1))})} ,

which only has one infinite computation.

In sum, the ESNP systems with decaying spikes (even together with total spiking)
generating the result as the number of spikes in the output neuron at the end of a
successful computation characterize the finite sets of natural numbers:

Theorem 2 Any finite set of natural numbers N can be generated by a ESNP system
with spikes of minimal decay with only two neurons (even with total spiking, too).
On the other hand, every set of natural numbers generated in the output neuron by
an ESNP system with decaying spikes (even with total spiking, too) is finite.

If we only consider the output to be the difference between the first two spikes
arriving in the output neuron during a halting computation, then we obtain a char-
acterization of the regular sets of natural numbers even with ESNP systems with
decaying spikes:

Example 3 Let N be a regular set of natural numbers accepted by the deterministic
finite automaton M = (Q, {a} , δ, 1, F) with Q = [1..m]. Then L (M) is generated
as the difference between the (first) two spikes arriving in the output neuron by the
following ESNP system with decaying spikes and total spiking Π′ with the output
neuron 1:

Π′ = (2, S′, R′) ,

S′ =
{

(1, λ) ,
(

2, (a, 1)m+1
)}

,

R′ =
{(

2,
{

(a, 1)i
}

/ →
{(

2, (a, 1)j
)})

| i, j ∈ [1..m] , δ (i, a) = j
}

∪
{(

2,
{

(a, 1)i
}

/ → {(1, (a, 1))}
)

| i ∈ [1..m] , i ∈ F
}

∪
{(

2,
{

(a, 1)m+1
}

/ → {(1, (a, 1)) , (2, (a, 1))}
)}

.

Obviously, this system can also be interpreted as ESNP with having only one of the
features decaying spikes and total spiking.

Extended spiking neural P systems with decaying spikes and/or total spiking

69

If only the restricted variant of total spiking with thresholds is used, then we need
a more complicated ESNP system Π′′ (without or even with decaying spikes) where
each state i of M is represented by the neuron i + 1:

Π′′ = (m + 2, S′′, R′′) ,
S′′ = {(m + 2, (a, 1))} ∪ {(i, λ) | i ∈ [1..m + 1]} ,
R′′ = {(i,≥ 1/ → {(j, (a, 1))})

| i, j ∈ [2..m + 1] , δ (i− 1, a) = j − 1}
∪ {(i,≥ 1/ → {(1, (a, 1))}) | i ∈ [2..m + 1] , i− 1 ∈ F}
∪ {(m + 2,≥ 1/ → {(1, (a, 1)) , (2, (a, 1))})} .

In fact, the control set {n ≥ 1} could be replaced by the finite set {1}, i.e., Π′′

corresponds to a finite system.
A slight modification of the ESNP system Π′′ yields the ESNP system Π′′′ which

generates L (M) as the number of spikes in the output neuron even with the minimal
threshold, but obviously only without decays:

Π′′′ = (m + 1, S′′, R′′′) ,
S′′ = {(2, a)} ∪ {(i, λ) | i ∈ {1} ∪ [3..m + 1]} ,
R′′′ = {(i,≥ 1/ → {(1, a) , (j, a)})

| i, j ∈ [2..m + 1] , δ (i− 1, a) = j − 1}
∪ {(i,≥ 1/ → ∅) | i ∈ [2..m + 1] , i− 1 ∈ F} .

In [1] it was shown that every ESNP system where the number of spikes remains
bounded can only generate regular sets. The same arguments used to prove this
result immediately show that ESNP systems with decaying spikes can only generate
regular sets because the number of spikes is bounded in these cases and therefore
the behaviour of the ESNP systems can be modeled by a (non-deterministic) finite
automaton. Yet the same also holds true for ESNP systems with total firing:

Theorem 4 Every language generated by an ESNP system with total firing is reg-
ular.

Proof (sketch). Let Π be an ESNP system with total firing. Then the regular sets
used in the rules of Π are of a very special form, i.e., they are a finite union of
very simple sets which either are equal to {y} or of the form {xn + y | n ∈ N} with
x, y ∈ N and x 6= 0. Hence, it is sufficient to store the actual contents of a neuron
as a vector remembering for each of these sets either the value until it exceeds y for
{y} and the module class after exceeding y for {xn + y | n ∈ N}, i.e., in sum we only
have a finite number of possible states of each neuron we have to consider instead
of the actual values which eventually might go beyond any fixed bound.

Then the number of configurations differing in the actor neurons (i.e., the neurons
except the output neuron) and the packages along the axons, but without considering
the contents of the output neurons, is finite, hence, we can assign non-terminal
symbols Ak to each of these configurations and take all right-regular productions
Ai → akAj such that k is the number of spikes added the output neuron when
going from configuration i to configuration j. The initial configurations is the start

R. Freund, M. Ionescu, M. Oswald

70

symbol of the regular grammar G constructed in that way, and, finally, for all halting
configurations i we add the production Ai → λ. In that way we can construct a
regular grammar generating a one-letter language corresponding with the set of
natural number generated by Π in the output neuron.

These considerations can also be taken over to the case when the output is taken
as the difference between the (first) two spikes arriving in the output neuron: here
we use productions of the form Ai → Aj for the periods before the first spike appears
in the output neuron; afterwards we take productions Ai → aAj , i.e., for each time
step in Π we generate one symbol a in a derivation in G. After the second spike
has appeared in the output neuron we continue again with productions of the form
Ai → Aj , and as for the previous case we finish with productions Ai → λ for all
halting configurations i. �

Hence, we can summarize these results characterizing REG for the generating cases
as follows:

Theorem 5 Any regular set N ∈ REG can be generated by an ESNP system with
decaying spikes and/or total firing and the output taken as the difference between
the first two spikes arriving in the output neuron during a successful computation;
moreover, N can also be generated by an ESNP system with total firing and the
output given as the number of spikes in the output neuron at the end of a successful
computation. On the other hand, every language generated by an ESNP system with
total firing or by an ESNP system with decaying spikes and/or total firing and the
output being the difference between the first two spikes arriving in the output neuron
during a successful computation is regular.

Now we consider the accepting case where the case of the input being given as the
number of spikes in the input neuron (we always assume that the input neuron gets
its input only from the environment) is quite trivial:

Example 6 Let N be a regular set of natural numbers. Then N is accepted by the
ESNP system with decaying spikes and/or total firing

Π(N) = (2, {(1, λ) , (2, λ)} , R (N)) ,
R (N) = {(1, L (N−N) / → {(2, (a, 1))}) , (2, {a} / → {(2, (a, 1))})} .

The input n is given by (a, 1)n in the first neuron which fires if and only if n /∈ N ,
hence the infinite loop in the second neuron is only started in this case, whereas
for n ∈ N the system immediately halts. We should like to mention that the spike
consumed by the rule (2, {a} / → {(2, (a, 1))}) will always be a decaying spike (a, 1).

Example 7 Let N be a regular set of natural numbers accepted by the deterministic
finite automaton M = (Q, {a} , δ, 1, F) with Q = [1..m]. Then N (L (M)) is accepted
as the input being given as the difference between the first and the second spike
arriving in the input neuron by the following finite ESNP system with total spiking

Extended spiking neural P systems with decaying spikes and/or total spiking

71

even when using spikes with minimal decay:

Πt =
(

m + 5, St, Rt
)

,
St = {(2, (a, 1))} ∪ {(i, λ) | i ∈ {1} ∪ [3..m + 5]} ,
Rt = {(1, {(a, 1)} / → {(m + 2, (a, 1)) , (m + 3, (a, 1)) , (m + 4, (a, 1))})}

∪ {(m + 2, {(a, 1)} / → {(m + 2, (a, 1)) , (m + 4, (a, 1))})}

∪
{(

m + 2,
{

(a, 1)2
}

/ →
{(

m + 3, (a, 1)2
)

, (m + 5, (a, 1))
})}

∪ {(m + 3, {(a, 1)} / → ∅)}

∪
{(

m + 3,
{

(a, 1)2
}

/ →
{(

m + 3, (a, 1)2
)})}

∪
{(

m + 3,
{

(a, 1)3
}

/ → {(j, (a, 1)) | j ∈ [2..m + 1]}
)}

∪ {(m + 4, {(a, 1)} / → ∅)}

∪
{(

m + 4,
{

(a, 1)2
}

/ → {(m + 5, (a, 1))}
)}

∪ {(m + 5, {(a, 1)} / → ∅)}

∪
{(

m + 5,
{

(a, 1)2
}

/ →
{(

2, (a, 1)2
)})}

∪
{(

i,
{

(a, 1)2
}

/ →
{(

j, (a, 1)2
)})

| i, j ∈ [2..m + 1] , δ (i− 1, a) = j − 1}

∪
{(

i,
{

(a, 1)3
}

/ → ∅
)

| i ∈ [2..m + 1] , i− 1 ∈ F
}

.

The neuron m + 2 keeps the computation alive until the input neuron 1 spikes for
the first time. This starting impulse is also propagated through neurons m + 4 and
m + 5 to neuron 2 (which corresponds to the initial state of M). This delay through
neurons m+4 and m+5 allows for starting the loop in neuron m+3 in time, because
this loop can only be ceased by the second spike arriving in the input neuron, which
then also has to be propagated to the neuron i representing the actual state i − 1

of M and to halt the computation in Πt by applying the rule
(

i,
{

(a, 1)3
}

/ → ∅
)

provided i− 1 is a final state in M .

Again similar arguments as in Theorem 5 can be applied when considering ESNP
systems accepting a number given as this number of spikes in the input neuron or
else as the difference between the (first) two spikes introduced in the input neuron
from the environment:

Theorem 8 Every set of natural numbers accepted by an ESNP system with total
firing and/or decaying spikes is regular.

Proof (sketch). Let Π be an ESNP system with total firing and/or decaying spikes.
We then construct a (non-deterministic) finite automaton M accepting the regular
language corresponding with the set of natural numbers accepted by Π̇:

First we consider the case where the input is given as the number of spikes in
the input neuron. For an ESNP system with total spiking, we first construct a finite
automaton M ′ which analyses the given input according to the rules of Π in the
input neuron, which, as already elaborated in the proof of Theorem 5 are of a very
special form, i.e., they are a finite union of very simple sets which either are equal
to some singleton set {y} or of the form {xn + y | n ∈ N} with x, y ∈ N and x 6= 0.

R. Freund, M. Ionescu, M. Oswald

72

Hence, it is sufficient to evaluate the contents of the input neuron to a state of M ′

which represents a vector remembering for each of these sets either the value until
it exceeds y for {y} and the module class after exceeding y for {xn + y | n ∈ N}.
According to the state of M ′ finally reached with the input string, we then know
whether the input neuron would spike or not. M then consists of M ′ and M ′′ where
M ′′ is constructed to start with the information from the computation in M ′ and
then simulates the transitions in Π without taking into account the input neuron
anymore. M ′′ only makes λ-transitions until it reaches a state corresponding to a
halting configuration; exactly these states corresponding to a halting configuration
are the final states of M , i.e., M halts in a final state if and only if Π halts. If we add
the feature of decaying spikes, this has no influence on M ′, we only have to take it
into account for M ′′. Observe that in any case, the construction of M ′′ again relies
on the finiteness of the description of the actual contents of the neurons possible for
total firing. On the other hand, if we have only decaying spikes (a, e) given in the
input neuron, but no total spiking, after e steps no further information is left in the
input neuron. Hence, we can apply a similar construction for a finite automaton M
where we integrate the possible states of the input neuron in the possible behaviour
of the whole system which remains bounded due to the fact that with decaying
spikes the maximal number of spikes in the whole system remains bounded after the
first e steps.

If the input is given as the difference between the first two spikes in the input
neuron, then we have to construct M in three substeps: In the first step, the ESNP
system works without taking into consideration the input cell. In all cases, i.e.,
working with decaying spikes and/or total spiking, we only get a finite set of possible
states QI and corresponding transitions between them which exactly simulate the
behaviour of the ESNP system. For every state q ∈ QI we now take a state q′ which
only differs from q by having one spike in the input neuron; in that way we get a set
Q′

I describing the configurations of Π when the first input spike arrives. Starting
with Q′

I we now compute all possible configurations and the transitions between
them, which yields the set QC . For every state q ∈ QC we now take a state q′ which
only differs from q by having one spike in the input neuron; in that way we get a set
of states Q′

C describing the configurations of Π when the second input spike arrives.
The states in Q′

C are the starting point for the third and last step of the simulation,
which again can be described by a finite set of states QO and the transitions between
them. For getting M from QI , Q′

I , QC , Q′

C , and QO and the transitions between
these states, we take the union of all these states as the set of states for M ; the initial
state is the state from QI corresponding to the initial configuration; the final states
are those states from QO that correspond to a halting configuration; the transitions
between the states in QI , between the states in QI and those in Q′

I , the transitions
between the states in QC and those in Q′

C , as well as the transitions between the
states in QO are λ-transitions in M , whereas a transition between the states p and
q in QC corresponds with an a-transition (p, a, q) in M , i.e., each time step between
the first and the second spike arriving in the input neuron in Π consumes one symbol
a in M . This observation completes the proof. �

Hence, we can summarize the results characterizing REG for the accepting cases as

Extended spiking neural P systems with decaying spikes and/or total spiking

73

follows:

Theorem 9 Any regular set N ∈ REG can be accepted by an ESNP system with
decaying spikes and/or total firing, the input either being given in the input neuron
or else being taken as the difference between the first two spikes arriving in the input
neuron during a successful computation. On the other hand, every language accepted
by an ESNP system with decaying spikes and/or total firing, the input either being
given in the input neuron or else being taken as the difference between the first
two spikes arriving in the input neuron from the environment during a successful
computation, is regular.

5 Conclusion

In this paper, we have investigated extended spiking neural P systems with decaying
spikes and/or total spiking, and we have proved that even when combining decaying
spikes and/or total spiking we get a characterization of the regular sets of natural
numbers with these systems being considered as generating devices or else as ac-
cepting devices (automata), except for the following cases: extended spiking neural
P systems with decaying spikes (even with total spiking, too) used as generating
devices with the output being given as the number of spikes in the output neuron
at the end of a successful computation yield a characterization of the finite sets.

In an extended version we shall also investigate the generating and accepting
power of spiking neural P systems incorporating only the original features or even
more restricted variants (e.g., see [6]) as well as decaying spikes and/or total spiking.
Moreover, ESNP systems with thresholds deserve further investigations. Finally,
(E)SNP systems should also be considered as generators or acceptors for sets of
vectors of natural numbers as well as even of string languages (e.g., compare [2]).

6 Acknowledgements

The work of Marion Oswald is supported by FWF-project T225-N04.

References

[1] A. Alhazov, R. Freund, M. Oswald, M. Slavkovik. Extended Spiking Neu-
ral P Systems Generating Strings and Vectors of Non-Negative Integers. In:
H.J. Hoogeboom, Gh. Păun, G. Rozenberg, editors, Workshop on Membrane
Computing, WMC7, Leiden, The Netherlands 2006, LNCS 4361, pages 123-134.
Springer, 2007.

[2] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M. J. Pérez-Jiménez. On String
Languages Generated by Spiking Neural P Systems. In M.A. Gutiérrez-Naranjo,
Gh. Păun, A. Riscos-Núñez, F. José Romero-Campero, editors, Fourth Brain-
storming Week on Membrane Computing, Vol. I, RGNC REPORT 02/2006,
pages 169-194. Research Group on Natural Computing, Sevilla University, Fénix
Editora, Sevilla, 2006.

R. Freund, M. Ionescu, M. Oswald

74

[3] J. Dassow, Gh. Păun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

[4] R. Freund, Gh. Păun, M.J. Pérez-Jiménez. Tissue-like P systems with channel
states. Theoretical Computer Science, 330:101–116, 2005.

[5] W. Gerstner, W. Kistler. Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, 2002.

[6] O. H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth.
Normal Forms for Spiking Neural P Systems. In M. A. Gutiérrez-Naranjo,
Gh. Păun, A. Riscos-Núñez, F. José Romero-Campero, editors, Fourth Brain-
storming Week on Membrane Computing, Vol. II, RGNC REPORT 02/2006,
pages 105-136. Research Group on Natural Computing, Sevilla University, Fénix
Editora, Sevilla, 2006.

[7] M. Ionescu, Gh. Păun, T. Yokomori. Spiking neural P systems. Fundamenta
Informaticae, 71(2–3):279–308, 2006.

[8] W. Maass. Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8(1):32–36, 2002.

[9] W. Maass, C. Bishop, editors. Pulsed Neural Networks. MIT Press, Cambridge,
1999.

[10] Gh. Păun. Membrane Computing: An Introduction. Springer-Verlag, Berlin,
2002.

[11] G. Rozenberg, A. Salomaa, editors. Handbook of Formal Languages (3 volumes).
Springer-Verlag, Berlin, 1997.

[12] The P Systems Web Page, http://psystems.disco.unimib.it

Extended spiking neural P systems with decaying spikes and/or total spiking

75

