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Abstract

In this paper we deal with trade-offs between time, space, and communica-
tion complexity of languages generated by Cooperating Distributed Grammar
Systems (henceforth CDGS) with regular, linear and context-free components.
We propose two types of communication structures. The first structure is de-
termined by the communication graph of the CDGS, i.e, a directed graph in
which the vertices are labeled by the CDGS components and the directed edges
correspond to pairs of grammars (G4, Gy), a # b, that communicate with each
other. The communication is done through those nonterminals that appear on
the right side of a production of GG, and on the left side of a production of Gy,
according to the protocol of cooperation used by the system. We will refer to
these nonterminals as communicational nonterminals. The second structure is
given by the communicational protocol tree attached to the generated language,
i.e. the derivation tree of a special kind of Szilard language introduced in this
paper, called communicational Szilard language. A communication complezity
measure, i.e. how many times the system components communicate with each
other using a minimal number of communicational nonterminals, is defined and
studied depending on modes of derivation, weak and strong fairness conditions.
We found that the communication complexity of weakly and strongly g¢-fair
languages in the case of grammar systems with regular or linear components
is linear. These languages can be accepted by a nondeterministic multitape
Turing machine in linear space and linear time. In the case of languages gener-
ated by CDGS with context-free components we show that the communication
complexity varies from linear to logarithmic. The space required by a nonde-
terministic multitape Turing machine to accept these languages equals to the
communication complexity, while the time is linear in all the cases.

1 Introduction

Communication complezity is one of the youngest branches of complexity theory.
It has been inspired from the inter-processor communication, in which the input,
viewed as sequences of messages distributed among different parts of a system, has
to be split in different partitions in order to allow an optimal communication. It has
been introduced in 1979 by Yao [17], and it studies the communication exchanged
during a computational process by minimizing the amount of information exchanged
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between the system components. The flow of information (the number of exchanged
bits) is measured by ignoring the other cost, such as time and space.

This paper is devoted to the communication complexity of Cooperating Dis-
tributed Grammar Systems, with regular, linear and context-free components, but
concerns also other computational resources used by the system, such as time and
space. We deal with trade-offs between this three measures in order to control the
generative process underlined by CDGS.

Investigations related to the communication complexity of distributed grammar
systems have been done so far in several papers, e.g. [9], [10], [11], [12], [13]. In these
papers the authors focus on the communication complexity of Parallel Communi-
cating Grammar Systems (henceforth PCGS). They have considered two kinds of
communication complexity measures. The first one is the communication structure
of PCGS, i.e. the shape of the communication graph, consisting of directed com-
munication links between the grammars, while the second one is a communication
complexity measure, i.e. the number of exchanged messages during the computa-
tional process.

For the case of CDGS we propose two types of communication structures. The
first structure is determined by the communication graph of CDGS, which is a di-
rected graph where the vertices are labeled by the CDGS components and the di-
rected edges correspond to pairs (G4, Gp), a # b, of grammars that communicate
with each other. The communication is done through those nonterminals that ap-
pear on the right side of a production of G, and on the left side of a production of
Gy, according to the protocol of cooperation used by the system. We refer to these
nonterminals as communicational nonterminals. The second structure is a protocol
tree determined by the interconnection between the system components, i.e. the
way in which they bring consecutive contributions on the sentential form during the
language generation process. We define a new kind of language, called communica-
tional Szilard language. The derivation tree of a certain word v, from this language
is the communicational protocol tree attached to the corresponding word w from the
language generated by the system, for which ~¢, is the communicational control word
of w. A communication complexity measure, i.e., how many times the system com-
ponents communicate with each other using a minimal number of communicational
nonterminals, is defined and studied depending on modes of derivation, weak and
strong fairness conditions.

2 Prerequisites

Grammar systems are sets of grammars that function together according to a spec-
ified protocol of cooperation. In CDGS all the components have a common axiom,
all grammars have the same working tape, each of them making their own con-
tribution on the common sentential form. At each moment only one grammar is
active. Which component of the system is active at a given moment, and when a
grammar stops to be active, is decided by the protocol of cooperation. This pro-
tocol consists in stop conditions such as modes of derivation (how many times a
rewriting rule of the same component can be applied), in weak fairness conditions
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(each component has to be activated almost the same number of times) or in strong
fairness conditions (each component has to be activated almost the same number of
times, by taking into account the number of internal productions that are applied
for each grammar). CDGS simulates the blackboard model of problem solving, in
which the blackboard is the common working tape, and the components Gy, ..., G,
are the knowledge sources (agents, processors, etc.). They have been introduced and
studied in [2], [3], [4] and [8], with forerunner related papers [14] and [15]. Formally
a CDGS is defined as follows:

Definition 1 A Cooperating Distributed Grammar System of degree r, r > 1
is a construct of the form: r=(N,T.S,P,...,P), (1)
where the set N and T are disjoint finite alphabets, the nonterminal and the terminal
alphabet, respectively. S € N is the system axiom, and Py, Ps, ..., P, are finite sets
of rewriting rules over N UT.

(1) can be rewritten equivalently: I' = (N,T,S,Gy,...,G), (1)
in which G; = (N,T,S,F;) , for all 4, 1 < ¢ < r, are Chomsky grammars, called
the components of I'. For X € {REG,LIN,CF} we denote by CDGS, X, r > 1,
CD grammar systems with  components, that have regular, linear and context-free
components, respectively. The language generated by these systems depends on the
way in which the internal rules of each component bring their own contribution on

the sentential form. This can be done with respect to several modes of derivation,
defined below:

Definition 2 Let ' = (N,T,S,Py,...,P.) be a CDGS, z,y € (N UT)* and
i € {1,..,7}. The terminating derivation (denoted by :>tpi), the k-steps
derivation (denoted by :>f,ik), at most k-steps derivation (denoted by :>1§91-k)a
at least k-steps derivation (denoted by :>I%ik), and the *-mode of derivation
(denoted by :>*Pi)’ represent modes of derivations that allow for each component P,
to consecutively activate: as many rules as possible, exactly £ rules, at most k rules
but at least one rule, at least k rules, and arbitrarily many rules, respectively.

Let I'= (N, T,S,P1,...,P.) be a CDGS and M = {t,x} U{< k,=k,> k|k > 1}.

Definition 3 The language generated by I' in f-mode, f € M is defined as:
Lp(T) = {w € T*|S = wo =5, - =p, wg=w,m>1,1<i;<r1<j<m}.

For X € {REG,LIN,CF}, f € M we denote by CD,X(f), r > 1, the family of
languages generated by CDGS with r components, that have only regular, linear,
and context-free rules activated in the f-mode of derivation.

Definition 4 Let I' = (N, T, S, Py,...,P.), be a CDGS. The control word of w,
with respect to the system components that have been applied in f-mode, f € M,
for a terminal derivation: S = wyg :>£i1 w1 :>£1_2 Wy... =p, Wy =W is defined
as vy = B, Pi,...P;,,. The Szilard language associated to the derivation in the

f-mode, in T is:  Sz(T, f) = {yw|w € Ly(T), f € M}.
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We denote by SZ(f) the family of Szilard languages Sz(T', f) for any grammar
system ', in the f-mode of derivation. For more properties of these languages the
reader is referred to [7].

Definition 5 Let I' = (N, T, S, Py,...,P.), be a CDGS. The communicational
control word of w, that is a control word built with respect to the communicational
nonterminals used during a terminal derivation of the form S = wyq :>{3i1 w1 :>f;i2

ws... :>£_m wy = w, in f-mode, f € M, is defined as v§, = Pgng?...PZ:f, where n;,
is the number of communicational nonterminals rewritten during the application of
rules of the component P;;, 1 < j < m. The communicational Szilard language
associated to a terminal derivation in the f-mode, in I is defined as:

Sze(T, f) = {v5lw € Ly(1), f € M},

We denote by SZC(f) the family of communicational Szilard languages Szc(T, f) for
any grammar system I', in f-mode of derivation. Note that in the case of grammar
systems with regular and linear components the languages Sz(T', f) and Szc(T', f)
are equal. They can be different only in the case of grammar systems that contains
at least one non-linear rule.

Besides modes of derivation other restrictions that control the generative process
are given by fairness conditions. Informally, these conditions require that all com-
ponents of the system have approximately the same contribution on the common
sentential form. They have been introduced in [6], in order to control and to increase
the generative capacity of grammar systems. Formally they are defined as follows:

Definition 6 Let I'= (N,T, S, P1,...,P;), be a CDGS, and
D: S =wg :>1:3in1 w1 :>1:3;l2 wy... :>1;inq wg =w
be a derivation in f-mode, where P;; performs n; steps, 1 < j < m. For any

1 <p<r, we set
¢p(p)=_ 1 and  ¢p(p)= ) n (2)
i;=p i;=p
- the weak mazimal difference between the contribution of two components involved
in the derivation D is defined as:
dw(D) = maz{|p(i) — ¥()| |1 <i.j <r}.
- the strong maximal difference between the contribution of two components is:
ds(D) = maz{lpp (i) — pp()| 1 <i.j < r}.
Let u € {w,s}, z € (NUT)*, f € M and
du(z, f) = min{du(D)| where D is a derivation of z in f-mode},
for a fixed natural number ¢ > 0,
- the weakly qg-fair language generated by I' in the f-mode is defined as:
Li(T,w—q) = {z|z € Ly(T) and dw(z, f) < q}
- the strongly g-fair language generated by I' in the f-mode as:
L(T,s —q) = {z|z € Ly(T') and ds(z, f) < q}.

For X € {REG,LIN,CF} and f € M, M = {t,x} U{< k,= k,> klk > 1} we
denote by CD, X (f,w — q) and CD, X (f,s — q), r > 1, the family of weakly and
strongly g-fair languages, respectively, generated by CDGS with r components, that
have regular, linear, and context-free components in the f-mode of derivation.
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3 The Amount of Communication

In this section, two communication structures are proposed in order to investigate
the communicational process of distributed generation of languages for the case of
CDGS. The first structure is given by the communication graph of the CDGS, while
the second structure is given by the protocol of collaboration between the system
components, and it is strictly related to the structure of the communicational Szilard
language associated to a language generated by CDGS. We call this structure the
communicational protocol tree underlied by the grammar system. Another measure
deals with the number of communicational steps spent during the computational
process. We call it communication complezity. In what follows we describe how
these complexity measures work together, and how they can be used to characterize
the communicational process of CDGS.

3.1 Measures of Communication
Let I' = (N,T,S,G1,...,Gy) be a CDGS and M = {t,x} U{< k,=k,> k|k > 1}.

Definition 7 The communication graph of a CDGS crossed in the f-mode of
derivation, f € M, is a directed graph in which the vertices are labeled by the
CDGS components that communicate with each other. Each directed edge, from
a node labeled by G, to another node labeled by Gy, a # b, corresponds to a
communication step from the component G, to the component Gy, done during the
derivational process, i.e., there exists at least one nonterminal that appears on the
right side of a production from G, and of the left side of a production from Gy,
rewritten at least one time during the derivational process in the f-mode.

Definition 8 The communicational protocol tree attached to a word w €
Ly(T'), f € M is the derivation tree attached to the communicational control word
of w, i.e. 4¢, in the f-mode.

Note that the number of sons of a given node in the communicational protocol tree
depends on the type of the rule through which the communication is performed.
In the case of regular or linear rules, a grammar G, communicates with another
grammar G} through only one nonterminal, so that the corresponding protocol tree
will be a simple tree (each node has only one son). In the case of non-linear rules
the number of sons equals the number of communicational nonterminals from the
right side of the rule. Consequently, the shape of the communicational protocol tree
depends not only on modes of derivation, but also on the number of communicational
nonterminals that exist on the right side of the same production. Therefore, it might
exist grammar systems with non-linear rules for which only one nonterminal from
the right side of each production is a communicational one. In this case the protocol
tree will be a simple tree, too. The communicational protocol tree is not a simple
tree, only in the case of CDGS for which there exists at least one non-linear rule
that has at least two communicational nonterminals at the right side of it.

The communication complezity measure represents the number of communica-
tions between different components, during the generative process, by using a mini-
mal number of communicational nonterminals in a specified mode of derivation. This
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communication measure represents in fact how many times, in a terminal derivation,
different components can be applied (this fact can be restricted only by the f-mode
of derivation or fairness conditions). Due to the above observation the communi-
cation complexity is a function of the length of the generated word depending on
PYp(p), 1 < p <r, introduced in (2). Let ' = (N, T, S, Py, ..., P.), be a CDGS, and
D a derivation in I', such that D:S :>£i1 w1 :>£i2 wy... :>£im Wy = W.

Definition 9 We denote by Com(D) = 37, ¢p(p), where ¢p(p) = >"i,=p1, the
number of communication steps used during the derivation D.
The communication complexity of a word w, w € L;(I') is defined as:

Com(w,T') = min{Com(D)|D : S =* w}.
The communication complexity of I' over all words of length n is:

Comr(n) = sup{Com(w,T)|,w € L), |w| = n}.

The class of languages that can be generated within communication f by
a CDGS, is defined as: COM (g) = Ur{L(I')|Comr = O(g)}.

To be observed that in the case of CDGS with regular or linear components the
control language and the communicational control language are equal. Furthermore,
due to the fact that the height of the communicational protocol tree of a certain
word w is equal with the length of the derivation of the control word associated to
w, Definition 9 of the communication complexity can be equivalently redefined as
follows.

Definition 10 The number of communication steps, i.e Com(D), used during a
derivation D of a particular word w is the height of the communicational protocol
tree attached to the communicational control word.

The communication complexity of a word w, w € L(I'), i.e Com(w,I),
is the minimum of the heights over all communicational protocol trees attached to
each communicational control words of w.

The communication complexity of I' over all words of length n, i.e Comy(n),
is the supremum of the heights over all minimal communicational protocol trees.

Let ' be a CDGS, and D be a (minimal) terminal derivation of w, where w € L (T'),
feM, M= {t,x}U{< k,=k,>Eklk > 1}. We denote by |y,(D)| and |75 (D)]
the length of the derivation of the control word, |vy,|, and of the communicational
control word, |75, associated to w, respectively. Then, the next theorem holds.

Theorem 1 For each grammar system I', that has only useful components' and
w € L¢(T), we have:

L Iy (D)| = Comf(Jul).

2. There exist two positive constants a and b, such that a|v5(D)| < |w| < b]v5(D)].

Proof. The first claim is a direct consequence of Definitions 9 and 10. To prove the
second claim we consider firstly the case of regular and linear components. In this

!That is each component brings contributions on the sentential form, directly through terminal
symbols (in the case of regular or linear rules), or indirectly through non-terminal symbols (in the
case of context-free components).
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case at each step between two consecutive communications at least one terminal
symbol is brought into the sentential form. Therefore, the generated word will
contain at least the number of communication steps performed during the generative
process. In this case we have ¢ = 1, and b equals the maximum number of the
terminal symbols brought into the sentential form by each rule of the system.

In the case of grammar systems with (non-linear) context-free components, let
us consider -y, of the form ~f, = Pj|' P)>...P;"*. The leaves in the associated protocol
tree correspond to those components that contain rules that have on their right side
only terminals. They contribute in the sentential form with substrings of w. The
worst case happens when no terminal symbol is brought into the sentential form
between any two consecutive communication steps. Therefore, the number of the
leaves, i.e. ng, is less than or equal to the length of w, and the length of w cannot
be more then ng multiplied by a constant ¢. So that we have

nk < |w] < eni, < mas 7 (D)]- 3)

On the other hand there are situations when between each two consecutive commu-

nication steps each component contributes in the sentential form with a constant

number of terminals. Each communicational nonterminal might bring its own con-
tribution on the sentential form, too. That is why we also have

Cmin|Y5 (D) = cmin(ni +n2 + ... + 1) < cimg +cang + ...+ egng < lw| (4)

From (3) and (4) we have a = ¢pin and b = ¢y O

Due to the above result the communication complexity of CDGS is strictly related
not only to modes of derivation or fairness conditions but also on the types of
the rules of the system components, and on the number of non-terminals of a non-
linear rule that are communicational non-terminals. In the next subsection, we state
several results that concern the time, space and the communication complexity of
CDGS with regular, linear and context-free components.

3.2 CDGS with Regular and Linear Components

Theorem 2 For each grammar system CDGS, X, with X € {REG,LIN} and
r > 2, there exists a CDGS with only one component that will generate the same
language, and vice-versa, independently of modes of derivation.

Corollary 1 CD,.X = X, for X € {REG, LIN}, independently of modes of deriva-
tion.

Corollary 2
SZC(CDGR.X, f) = SZ(CDGR.X, f) = REG, for X € {REG,LIN}, and
fe{xtu{>k=k<klk>1}

Corollary 3 The communication complexity of CD, X (f), X € {REG,LIN}, f €
{t,x} U{< k,=k,> k|k > 1} is 0.

Corollary 4 LIN C COM(0).

It is well known that the communication complexity divides languages in small
complexity classes. The above results show that the communicational process of
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CDGS is a lazy one. So that the process of communication in these system is not so
powerful as it has been proved to be for the case of PCGS, where several hierarchies
of very (small) complexity classes have been found. Due to the fact that fairness
conditions increase the generative power of a grammar system, the above theorem
and corollaries do not hold for the case of g-fair languages. A CDGS with arbitrary
number of components cannot be ”compressed” into a single grammar that generates
the same ¢-fair language, by preserving the mode of derivation, too. Even for these
types of languages in the case of a constant communication, the class of weakly g-fair
languages generated by CDGS with regular or linear components coincide with the
languages generated by the same grammar without any weak fairness condition, so
that due to Corollaryl we have:

Corollary 5 CD, X (f,w—q) CCOM(0) and CD, . X(f,s—q) C COM/(c) where
X € {REG,LIN} and c is the constant number of communicational steps performed
during the derivation.

Corollary 6 The communication complexity of weakly/strongly g-fair languages,
LT, w—q)/LiI,s—q), f € {t}U{< k,=k,> k|k > 1}, generated by CDGS, X,
X € {REG, LIN}, for which the communication graph is a tree or a dag is 0/con-
stant.

Nevertheless the above results do not hold for the case of strongly g-fair languages
generated by CDGS with non-constant communication. That is why the commu-
nication complexity of ¢-fair languages deserves to be studied separately. In what
follows we focus on the time, space and communication complexity of these very
particular class of languages. Below we give one of the most classical example, see
[6], related to these types of languages.

Example 1 Let us consider the CDGS
Fl = ({S, A, AI, B, BI}, {a, b}, S, Pl, PQ, Pg, P4)
with the components:
P ={S—aA,A— dA'}, P,={A"— aA},
P;={A—bB',B—bB'}, P,={B — bB,B" — b}.

The communication graph is displayed in Figure 1.

/ /
A B

Figure 1: The communication graph associated to the CDGS, I';.

The language generated by I'y, in the f mode of derivation, where f € {t,=1,>
1FU{< klk > 1} is: Ly(Ty) = {a®"*™|n > 1,m > 1} € REG. The Szilard language
is Sz(I'1) = {(PP2)"(PsPy)™|n > 1,m > 1}. If we impose the fairness conditions
then we have:

Li(Ty,w—q) = L§(Ty,s — q) = {a®b*™|n > 1,m > 1,In —m| < q} ¢ REG.
Not being regular this language cannot be inferred from the communication graph
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displayed in Figure 1. That is why we need another kind of machine to check the
fairness conditions. Next we show that if the communication is not constant then
the communication complexity of g-fair languages cannot be more than linear. Fur-
thermore, fairness conditions can be checked in linear time and space by a multitape
Turing machine, and in linear space and quadratic time by a one tape Turing ma-
chine. For the definitions of one tape or multitape Turing machine, the reader is
referred to [16].

Theorem 3 CD, X (f,w—q)UCD, X(f,s—q) € COM(n).

Proof. In the case of grammar systems with regular and linear rules the Szilard and
the communicational Szilard languages are equal. With respect to Theorem 1, for
any word w that belongs to the weakly or strongly q-fair language, we have:
|7w(D)| = Com(w,T') = |75 (D)|, where D is a minimal derivation of w. Hence,
sup{lyu (D)|| w € Ly(Tyu = q), w| = n} = sup{Com(w, 1)| w € Ly(T,u— q), Ju| =
n} = Comp(n) = sup{|y§,(D)||lw € Ly(T',u—q),|w| =n} = O(n), where u € {w, s}.
O

Theorem 4 Let I' be a CDGS, X, for X € {REG,LIN}. The weakly ¢-fair lan-
guage generated by I', ie., Ly(I',w — ¢), can be accepted by a nondeterministic
Turing machine with r + 1 tapes in linear time and space. Moreover the next rela-
tion hold:

Spacer(n) € O(Comy), Timer € O(Comy).

Proof. Let I' = (N,T,S,Py,...,P,) be a CDGS;X, for X € {REG,LIN}. Let
L;(T'; w—q) be the weakly g-fair language generated by I'. Next we describe a nonde-
terministic (r + 1)-tape Turing machine, with left, right, and stationary movements,
that accepts Ly(I',w — q). For the beginning the machine has on the first tape an
input string w of length n, generated by the above CDGS, X, for X € {REG,LIN},
in f-mode of derivation, f € {t} U{< k,= k,> k|k > 1}, followed by ¢ symbols $.
Symbols from the right side of a production of the form A — zA'y, or of the form
A — A'y, are marked in the input string by an index r, while the others are left
unchanged. Each tape of the machine corresponds to one of the system components.
At the start of the computation all heads are placed at the beginning of each tape.
The machine starts nondeterministically with the component that contains the ax-
iom. Let us assume that this is the component i — 1. Therefore, the i*" head of the
machine writes the nonterminal symbol that appears on the right side of the starting
production on the i*" tape, letting the first head to read the symbol z from the input
string, corresponding to a starting rule of the form S — z5’, S — z5'z,, or to read
no symbol in the case of starting rules of the form S — S’, S — S'z,. From now on
the machine simulates on the i*” tape the derivation process done by the component
i—1, in the f-mode, as follows. The first head reads the symbols z (or z,) from the
input tape, with respect to rules of the form A — zA', A — zA'z, (or A — A'z,),
and does not read any symbol with respect to rules of the form A — A’, A — A'z,
of the component i — 1. In the meantime, the i** head rewrites on the same cell the
nonterminal reached by the rule, i.e. A’. All the other (r — 1) heads make no moves
and write no symbols. When a communicational nonterminal has been reached, and
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when the f-mode of derivation of the component ¢ — 1 ends, the machine nondeter-
ministically jumps to the tape corresponding to the component to which the current
component is communicating. Let us consider that this is the component 57 — 1. In
this moment the machine replaces the communicational nonterminal from the 3"
tape with the $ symbol, in order to mark that the i** component has been applied
once in the generative process. From now on the machine simulates the work of the
component j — 1 on the j* tape, in the same way as before. The process is repeated
until the whole input string is read?, i.e., the generative process performed by the
CDGS, X, for X € {REG, LIN} in the f-mode of derivation has been accomplished.
In this moment the first head of the machine will be located on the symbol §. On
each i*" tape there will be 9p(i — 1) symbols $, that correspond to the number of
contributions brought on the sentential form by the component (i—1), 2 <7 < r+1.
From now on the checking of the weak fairness condition, is performed as follows. All
the heads, excepting the first one, simultaneously delete one by one the $ symbols
that have been written on each tape. When one of the heads gets at the beginning
of the tape, i.e. the minimum number of the contributions of a component had been
deleted, the first head starts to read the g symbols $ from the first input tape. If
these symbols have been read before the deletion of all $§ symbols from the other
tapes it means that the weak g-fair restriction is not accomplished, therefore w will
not be accepted by the machine. If the deletion of the $ symbols from all tapes
ends before or at the same time with the reading of the ¢ symbols $ from the first
tape, w satisfies the weak g-fair restriction. Therefore the word will be accepted by
the machine, as belonging to Ly(I',w — ¢q). The space needed by this machine to
perform the computation cannot be more than the number of the communication
steps performed by the grammar system, that is Spacer(n) € O(Comp(n)). The
time required by the machine to accept and to check the weak g-fair condition is
O(Comp(n)), too. Due to Theorem 3, Comr € O(n), so that Spacer € O(n) and
Timer € O(n). O

Theorem 5 Let I' be a CDGS, X, for X € {REG,LIN}. The weakly g-fair lan-
guage generated by I', ie. L;(I',w — g), can be accepted by a nondeterministic
Turing machine with one tape in linear space and quadratic time, i.e.

Spacer € O(n), Timer € O(n?).

The above theorem is a direct consequence of Theorem 4 and of Savitch’s theorem.

3.3 CDGS with Context-free Components

Theorem 6 CD,.CF(f)=CF,for f € {x,=1,>1} U{< k|k > 1}.
Corollary 7 SZ(CDGR.CF, f) = REG, for f € {x,=1,> 1} U{< k|k > 1} .
Corollary 8 CF C COM(0).

Corollary 9 CD, .CF(f,w—q) € COM(0), where f € {x,=1,> 1}U{< k|k > 1},
and c is the constant number of communication steps spent during the computation.

2Note that when all the communicational nonterminals have been spent, the symbols z, left on
the input tape, will be read by forbidding the other heads, excepting the first one, to move.
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Corollary 10 The communication complexity of Ly(T',w —gq), f € {*,=1,> 1} U
{< k|k > 1} generated by CDGS,CF, for which the communication graph is a tree
or a dag is 0.

Corollary 11 CD.LIN(f)UCD,CF(fi1)UCD, LIN/CF(f/fi1,w—q) C COM(0),
CD..CF(fs,w —q)UCD,.X(f,s —q) C COM(c), X € {REG,LIN,CF}, for
fe{tx}U{< k=Fk2>klk > 1}, fi € {x,=1,> 1} U{< klk > 1} and
foe {hU{=k,> K|k > 1},

In the case of non-constant communication we have.

Theorem 7 For each grammar system ' with context-free components, and w €
L¢(T'), there exists a bijection h : N — N such that |y$ (D)| = h(|vw(D)|), where D
is the the minimal derivation of w, 7y, (D) and ~ (D) are the length of the derivation
of the control word, ,,, and of the communicational control word, -y, associated to
w, respectively.

Proof. Let vy, = Pj'P;*...P’*, be the communicational control word attached to
w. In the case of CDGS with context-free components, ¢, is developed as a protocol
tree attached to w. The number of sons at each level of this tree depends recur-
sively on the number of sons of the previous levels, because communicational rules
from different components are applied recursively, by using each time the same type
of rules, that increases (linearly or exponentially) the number of communicational
nonterminals used during the derivation. Consequently, at the end of the generative
process the sum nq +ns+...+ng, will be a linear, polynomial or exponential function
that depends on the length of the generated string. O

Next, we call the function h the characterization function of the communicational
Szilard language Szc(T, f).

Theorem 8 The class of languages generated by CDGS,.CF in f-mode of deriva-
tion, f € {t} U{= k,> k|k > 1}, for which the characterization function of the
Sze(T, f) language is linear, polynomial of rank p or exponential with the base p,
has the communication complexity in O(n), O(¥/n), or O(log,n), respectively.

Proof. With respect to Theorem 1, for any word w € L;(I') of length n, we have
7 (D)| = Comr(jw]) = Comr(n) and |7,(D)] = O(jw]) = O(n).

With respect to Theorem 7, there exists a generative bijection h : N — N, such
that |75 (D)| = h(|vw(D)|). Consequently, we have O(n) = h(Comr(n)), so that
Comr(n) = h~1(O(n)). Therefore, if h is a linear function then Comr(n) € O(n),
in the case that h is a polynomial function of rank p, then Comrp(n) € O(¥/n), while
in the case that h is an exponential function of base p, then Comr(n) € O(logyn).

O

Theorem 9 The class of languages generated by a CDGS, CF in f-mode of deriva-

tion, f € {t} U{= k,> k|k > 1}, are generated by a nondeterministic Turing
machine, with r 4+ 1 tapes, within = Spacer € O(Comr) and Timer € O(n).
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Corollary 12 The class of languages generated by a CDGS,.CF in f-mode of deriva-
tion, f € {t} U{= k,> k|k > 1} for which the characterization function of the
Sze(T, f) is linear, polynomial of rank p, or exponential with the base k, are rec-
ognizable by a nondeterministic Turing machine, with r 4+ 1 tapes, within Spacer
O(n), O(¥/n), or O(logyn), respectively, and in Timer € O(n).

Furthermore, for the case of g-fair languages, the next theorem holds, [1].

Theorem 10 The class of g-fair languages generated by a CDGS,CF in f-mode
of derivation, f € {t} U {= k,> k|k > 1} for which the characterization function
of Sze(T, f) is linear, polynomial of rank p, or exponential with the base p, are
recognizable by a (k + 1)-tape nondeterministic Turing machine in Spacer € O(n),
O(Yn), or O(logyn), respectively, and Timer € O(n).

4 Conclusion

The process of communication in the case of CDGS with regular and linear com-
ponents is a lazy one. Furthermore, the communication can be lost, i.e., it has no
efficiency in building communication complexity classes, in the case of CDGS with
regular or linear components, without any fairness conditions. In the case of non-
constant communication, for the case of weakly and strongly ¢-fair languages, the
communication complexity cannot be more than linear. The communication can be
lost too, for the case of languages generated by CDGS with context-free components,
in the f mode of derivation, f € {*,=1,> 1}U{< k|k > 1}, or in the case of weakly
g-fair languages generated by CDGS with constant communication. The communi-
cation is preserved in the case of CDGS with context-free rules, non-constant com-
munication, weakly and strongly ¢-fair condition and in f € {t} U{=k,> k|k > 1}
mode of derivation. Moreover, in this last situation we reached several complexity
classes depending on the characterization function of the communicational Szilard
language associated to a CDGS.
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