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Abstract

In this paper a new variant of translating devices is presented. We propose
a new model based on the interconnection of several pushdown transducers
working in parallel, in a synchronized manner and communicating with each
other by request. We focus on the strategy of communication by stacks, i.e.,
the content of the pushdown memory of each component of the system is shared
with each other component, and transferred into the pushdown memory of the
component that asked for it. They communicate also by the output tapes, i.e.,
whenever a query symbol appears on the top of a stack, the string yielded so
far, on the output tape of the component to which the query symbol belongs, is
transfered into the output tape of the component that inquired for it. We call
these devices Parallel Communicating Pushdown Transducer Systems (hence-
forth PCPTS). Depending on the protocol of communication we define several
variants of PCPTS, e.g. returning or not returning, centralized or not. The
strategy of exchanging data through the pushdown memory increases the com-
plexity of the outputted languages. We investigate the computational power of
these systems by taking into consideration the computational power of parallel
communicating pushdown automata systems. Descriptional complexity reasons
suggest us to use PCPTS in DNA computing. Several examples illustrate the
manner in which this application is performed.

1 Introduction

From the very beginning, due to their practical applicability, translating systems
turned out to be a rich and interesting subject area in the field of computational
linguistics. The main goal of this paper is to describe a new variant of translating
devices obtained by improving parallel communicating pushdown automata systems
with output capabilities. The mechanism could have interesting applications in com-
putational morphology and phonology, in speech recognition, artificial intelligence
or communication among agents, in splicing systems and in DNA computing.
Finite-state transducers have been introduced for the first time in [11]. Since then
they have increasingly developed and diversified due to their flexibility in represent-
ing and generating a large size of structural data, by using time and space optimal
memory, e.g. the transducer minimization algorithm [21]. They have been applied
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especially in natural language processing, in fields such as computational morphol-
ogy and phonology [14], lexical analyzers [15] or speech recognition [20]. They have
been extended to algebraic transducers [16] and weighted finite-state transducers
[22]. Watson-Crick transducers have been developed in order to manipulate DNA
molecules. They are described in [23]. If a pushdown automaton is provided with
output capability, the resulting machine is a pushdown transducer. It comes in
the literature from [9], [10] and [12], with many other succeeding papers. Paral-
lel communicating pushdown automata are systems composed of several pushdown
automata working independently but communicating with each other by stacks, un-
der a specified protocol of cooperation. The protocol of cooperation consists in
exchanging strings that have been generated up to the request moment through the
pushdown memory. They have been defined and investigated in [4], [5], [17], [18],
[19] and [27] with forerunner related papers [1], [13]. If a parallel communicating
pushdown automata system is improved with output capability the resulting device
is called in this paper Parallel Communicating Pushdown Transducer Systems. The
new model is based on the interconnection of several pushdown transducers working
in parallel, in a synchronized manner and communicating with each other by re-
quest. The communication is done through stacks, i.e., the content of the pushdown
memory of each component of the system is shared with each other component, and
transferred into the pushdown memory of the component that asked for it. They
communicate also by the output tapes, i.e., whenever a query symbol appears on
the top of a stack the string yielded so far, on the output tape of the component to
which the query symbol belongs, is transfered into the output tape of the component
that asked for it. Depending on the protocol of communication, we propose several
variants of PCPTS, e.g. returning or not-returning, centralized or not. The study
of the computational power and possible applications of such systems in DNA com-
puting is another goal of this paper. The theoretical approaches are accomplished
by several examples that illustrate the manner in which PCPTSs work.

2 Preliminaries

Our aim in this section is to introduce the main concepts related to pushdown trans-
ducers and parallel communicating transducer systems. A setting of the notations
of concepts from the topic covered in the paper will be given, too. We assume the
reader to be familiar with the basic notions of formal language theory. Let ¥* be
the set of words over an alphabet X, composed of a finite set of letters, let A be the
empty word, and let w® and |w|, w € ¥, be the reverse and the length of the word
w, respectively. We denote by X1 = ¥* —{\} and by |2|, the cardinality of the set .
Y is the twin alphabet of ¥, i.e. ¥ = {z|z € £}. A mapping h : ¥* — T* , defined
by h(A) = {A} and h(z1z2) = h(z1)h(z2), for z1, z9 € ¥*, is called a morphism. If
T C X, then a projection associated with 7', is a morphism hp : ¥* — T™ | defined
by hp(z) =z , forall zx € T, and hp(y) =\, forally € ¥ —T.
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2.1 Pushdown Transducers

A pushdown transducer is obtained by permitting a pushdown automaton (hence-
forth PDA) to emit a string of output symbols on each transition.

Definition 1 A pushdown transducer (PDT) is an 8-tuple:
P = (Q’ 27 Fa Aa 65 q0, ZOa F)

where:

- () is a set of states, X is the input alphabet, I' is the alphabet of pushdown
memory and A is the output alphabet (all these sets are finite),

- 0 is a mapping from @ x (X U {A}) x I into the finite subsets of @ x I'* x A*,

- qo the initial state, Zy € T' is the start symbol from the pushdown memory and
F C Q, the set of final states .

A configuration of P is a 4-tuple (q,z,@,y), where g represents the current state
of the finite control, z is the unread portion of the input, « is the content of the
pushdown memory and y is the output string emitted up to this point. The leftmost
symbol of « is the topmost pushdown symbol .

If 6(q,a, Z) contains (p, «, z), then we write:
(1) (g, az,Zv,y) F (p,z,ay,yz), for all z € ¥*, y € A*, and v € T*.

IftP=(Q, % T, A5 0, g, Zo, F) is a PDT, then the underlying pushdown
automaton of P, is the pushdown automaton defined as:

A=(Q,%,T,d, q, Z, F),

where (p, @) € 6 (¢,a, Z) if and only if (p, o, z) € 8(q,a, Z) for some z € A*.

Using the relation (1), v is an output for uw € L, by final states, if:

(2) (qo,u, Zo, \) F* (g, A\, ,v), where q € F.
v is an output for u € L, by empty pushdown memory, if:
(3) (qo, u, Zo, A) F* (¢, A\, \,v), where q € Q.

Let P be a PDT and L C ¥* a language over 3, recognized by the underlying push-
down automaton A. The transduction realized by P is a function
Tp: X" — A*  defined as:

Tp ={(u,v)| such that u €¥* and v €A* satisfy one of the relations (2),(3)}.
Thus the transduction function associated to the transducer P returns, for each in-
put word wu, the set of all words generated in the output tape of P at the end of a
successful computation on u.

A PDT is deterministic (DPDT for short), if the following conditions hold, for
all g € Q:

-10(g,a,Z)| < 1 for each a € T U{\} ;
- if |6(q, X, Z)| # 0 then for all a € X, |0(q,a,Z)| = 0.

2.2 Parallel Communicating Pushdown Transducer Systems

Definition 2 A parallel communicating pushdown transducer system of
degree n (pcpt(n) for short) is a system:
T: (Z,A,F,Tl,TQ,...,Tn,K),
where:
1. ¥ is the input alphabet,
2. A is the output alphabet,
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3. T' is the alphabet of pushdown symbols.

4. Foreach 1 <i <mn, T; = (Qi, X,T', A, d;,qi, Zi, F;) is a pushdown transducer
where (); is the set of states, ¢; € @Q; is the initial state of the transducer T;, ¥ is the
input alphabet, I" is the pushdown alphabet, A is the finite output alphabet, Z; € I’
is the initial contents of the pushdown memory, F; C @); is the set of final states of
the transducer Tj, and §; is the transition mapping defined from @; x (XU {A}) x T’
to finite subsets of Q; x I'* x A*.

5. K C{Ki,Ks,...,K,} CT is the set of query symbols.

The pushdown transducers 11,75, ..., T, are called the components of the system T .
If there exists only one 1 < ¢ < n, such that only the transducer T; is allowed to
query, then the system is called centralized (henceforth cpept(n)). The master of
this system is the component T;.

Definition 3 A PCPTS is said to be deterministic (DPCPTS for short), if the next
conditions hold, for all ¢ € Q;, 1 < i < m:

- 10i(q,a,Z)| < 1 for each a € ZU{A}, Z €T}

- if |0i(q, A\, Z)| # 0 then for all a € X, Z € T, then |d(q,a, Z)| = 0.

A configuration of a PCPTS of degree n is a 4n-tuple:
(81,21, 01,71, 52, T2, 42,72, - - -, Sy Ty Ay V)
where for all 1 <7 < n:
- 8; € @); is the current state of the component T,
- x; € ¥* is the remaining part of the input word that has not been read yet by 7,
- a; € T'" is the contents of the i-th stack,
- v; € A* is the output string emitted up to that point by T;.
The transition relations are defined on the set of all configurations of 7 as follows:
(4) (51,551,31041,71,---,Sn,an,BnOlén,’)’n)F(Playlaﬁlal,Wlp---,Pn,yn,ﬁnanﬁ;)
where B; € I', i, B; € I'* and v;,7y; € A* for all 1 <4 < n, iff one of the following
two conditions holds, for all 1 <14 < n:
(41) KN {B1,By,...,B,} = 0 and z; = a;y;,a; € B U {)\},fy; = vz, (pi, Bi, zi) €
0i(si,ai, By), (
(4.ii) for all 4,1 < 4 < n such that B; = Kj;, and B, ¢ K,(; = Bj,c;, and v; =
7ivj;- For all other r,1 <r <n,B3, = B, and y; = x4, py = 54, for all t,1 <t < n.
(5) (81,21, B1ai, V1, -+ + 5 S0y Ty Brtn, o) Fr (P15 Y1, BLOL, Y15+ -+ Py Yns BrQns V)
where B; € T, ;,0 € T 7,7, € A*, 1 < i < n, if one of the following two
conditions holds, for all 1 <7 < n:
(5.1) KN{B1,By,...,By} = 0 and z; = a;y;,a; € B U {)\},fy; = vz, (pi, Bi, zi) €
0i(si,ai, By),
(5.ii) for all 1 < 4 < n such that B; = Kj, and Bj, ¢ K,p; = Bj.aj,, Bj,aj;, =
Zji,'y;- = 7vj;» and 5, = A. For all the other »,1 < r < n,8, = B,, and y; =
Ty, pr = Sg,for all £,1 <t < m.
A pept(n) system whose moves are all based on the relation F, is said to be a
returning (henceforth rpept(n)), and non-returning otherwise.
Note that, according to the definition of transitions sketched in (4) and (5), a
PCPTS functions as follows: whenever a component has a query symbol on top of
the pushdown memory, it gets into communication with the component to which the
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query symbol belongs. The communication consists of replacing the query symbol
with the entire content of the pushdown memory of the interrogated component,
that is the sender. Simultaneously, the string yielded so far on the output tape of
the component to which the query symbol belongs, is transfered into the output tape
of the component that queried for it. In the case of returning systems the pushdown
memory of the component that sent the information returns to its initial symbol,
while the output tape of the same component returns to the empty tape.
The reflexive and transitive closure of relation - () is denoted by F* ().
If the underlying pushdown automaton A;, of the pushdown transducer T;, is an
extended one, for each 1 < ¢ < n, then the system T, is said to be an extended
PCPTS (henceforth EPCPTS). It means that the transition mappings 6; are defined
from finite subsets of Q; x (¥ U {A}) x I'* to finite subsets of @; x I'* x A*, for all
1 <4 < n. Transitions for an EPCPT are defined in the same way as for PCPTS,
with difference that extended systems may read words B; € I'* instead of symbols.
Note that PCPTS and EPCPTS are equivalent from a computational point of view.
Using the relation defined in (4), the set of words v; € A*, 1 < i < n is an output
for u € ¥*, of a PCPTS with n components, if and only if:
(6) (g1, Z1, Ay v oGy Uy Zigy ) E* (81,0, 1,014 000y Sy Ay @iy ), 85 € Fjy1<i<in
for a PCPTS accepting by final states, and :
(6") (qryts Z1, Ay ey sty Zny A) F* (81, A, A, 01,00, Sy A\ A, 0p), 85 € @i, 1<i<n for
a PCPTS accepting by empty pushdown memory .
Replacing the relation F* with the relation F} in (6) and in (6), the definition of
the output words, for a RPCPTS accepting by final states or by empty pushdown
memory is obtained, respectively.
7T =(A0,T,Ts,...,T,,K) is pcpt(n), then the underlying pcpa(n) of T is
defined as A = (X,T', Ay, Ao, ..., Ay, K), where A; is the underlying PDA associated
to Tj, for all 1 <4 <m. Let 7 be a PDT and L C ¥* a language over X, recognized
by the underlying pushdown automaton A.

Definition 4 Let 7 = (X, A, I, Ty, Ty,...,T,,K), be a (nonreturning)
PCPTS with n components. The transduction function of the i*” component of
the system 7T is defined as :

Ti(u) = {v; € A*(qr,u, Z1, A+, Giy Uy Ziy Ay -+ s @y Uy Ly A)

(81, A, 1,01, Siy Ay @4, Vi - <+, Spy A, O, Up), 55 € Fy, 1 < j <},

for any 1 < 4 < n, if the word w is accepted by final states, and

Ti(u) = {vi € A*|(q1,u, Z1, Ay -y Qiy Uy Ziy Ay -+ Gy Uy Zipy A)

(ST, A, A 01,7+ 85, A, A, 03y o+, Sy A A Un), 85 € Q4,1 < j < n},

for any 1 <14 < n, if the word u is accepted by empty pushdown memory.

If in the above definition the relation +, is used instead of F then the transduction
function of the i component, for the returning case, denoted by TR; is obtained.
Thus each component T;, 1 < 7 < n, has associated a transduction mapping that
returns for each input word u the set of all words yielded by that component.
The language yielded by the component T;, 1 <1 < n is defined as:
Ti(L) = {v; € A*|(qr,us Z1, Ay vy Qi Uy Ziy Ay -+, Qs Uy Ly A)
(81, A, 01,01, 84, A, @, Uiy -+, Sy A, Qi V), 85 € Fj,u € L1 < j <n}, or by
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71Z(L) = {Ui € A*|(QIaua Zla >‘a T4, U, Zi7 >‘7 * 5y 4n, U, Zna >\) =

(ST, M X\ 015+, 8, A, A 04,0+ 8, A, A\ o), 85 € Q,u € L1 < j <}

If in the above definition the relation -, is used instead of - then the definition
of the language yielded by the i’ component, for the returning case, denoted by
TR;(L) is obtained. Due to the definition of PCPTS different components can
output different languages. The transduction system mapping of a PCPTS, with
n components, is defined as: T = (Ty, To, --+, Ty), for non-returning case, and as
TR = (TR1, TRy, - -+, TRy,), for the returning case.

3 On the Computational Power of PCPTS

The problem that arises now, is to study the type of the possible languages yielded by
a PCPTS having as input an arbitrary language L C ¥*. Let RE, CS, CF, LIN,
and REG be the families of languages generated by arbitrary, context-sensitive,
context-free, linear and regular grammars, respectively. The next inclusions hold:
(7) REG CLIN CCFCCSCRE
For each parallel communicating pushdown automata system we can build a PCPTS,
having the same structure as the underlying system. That is why pushdown trans-
ducer systems will be able to accept and to generate at least the same type of lan-
guages. In [4] has been proved that the family of languages accepted by a PCPAS
with two components equals the RE languages. Therefore, the family of languages
yielded by PCPTS with only two components covers the the family of RE languages.
Next we center upon the answers of the following questions:

” Giwen an input language from a class X of the hierarchy (7), could it be possible
to generate a language from a class Y such that X C Y 2’ Furthermore,

" Which is the smallest class of languages from the hierarchy (7) that could be
used, as input language, by a PCPTS to cover the RE family ?”, and even more:

7 Which s the minimal number of components that a PCPTS should have in
order to satisfy the above aims?’

Answers to these questions will be given in the sequel. The following example is
relevant for the computational power of PCPTS.

Example Let us consider a deterministic pept(2), defined below:

= ({a,c}, {Zo, Z1,a},Th, T2, { K1, K2}),
in which T; = (Qi, 2, T, A, bi, i, Zi, F;), i € {1,2}, are two pushdown automata, de-
fined as:  T1 = ({qu, 51,71, 0}, {a,c}, {20, Z1,a},{a},é1,q1, Z1,{p1}),

T = ({qQa 82,])2}, {aa C}, {Z(), Zla a}7 {a}a 627 q2, Zla {pQ})a
having the transition mappings :

1. 51(q1,a Zl) (Sl,Zl,)\) 1. 52(Q2,)\ Zl) = (qQ,Kl,)\)
2. (51(81,& Zl) (sl,aaZl,A) 2. 52((12,)\,@) = (qg,Kla, )\)
3. 61(s1,a,a) = (s1,aaa,N) 3. 02(q2, A\, Zp) = (82, A, A)
4. (51(31,0 a) = (r1, Zpaaa, \) 4. do(s9,a,a) = (82, A, \)
5. (’I‘ ) == (7‘1,>\, )\) 5. (52(82, ) (pg,)\ >\)

6. 0 (’)" )\ Z(]) (7’1,>\,>\) 6. (52(})2,)\ a) (pQ,)\ )\)
7. (’I‘ A Zl) == (pl,KQ,)\) 7. (52(])2,)\, Zl) = (7‘2,)\, )\)
8. 41(p1, A\, a) = (p1, A, a) 8. da(ra, \ya) = (re, A\, a)
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9. (51(p1, )\, Zl) = (pl, )\, a) 9. (52(’)"2, )\, Zl) = (’)"2, )\, a).

Taking as input the regular language: L = {a"c | n > 1} the above PCPTS
will yield on both of the output tapes the following non-context-free language L =
{a™ =1 | n > 1}, by following the next transitions:

(Q1, ac, Zi, A\ qo,a"c, 4y, )\) |—171 (81, a"’lc, Z1, A q2,a"c, Ky, )\)

Fo1 (s1,a"%c,aaZ1, N, g2, a"c, K1, \)

I—g’(;l_Q) (s1,¢,a>™ "V Z1 N g2, a"c,a® ™V Z,...a2Z1, \)

|—4’2 (rl, )\, Z0a2nZ1, >\, q2, a"c, K1a2(n_1)Z1..a2Z1, >\)
|_6,3 (7’1, >\, a2”Z1, )\, S9, a”c, aQ”ZlaQ("’l)Zl..ﬁZl, )\)
5 (1, A, a"Zy, A, 82, ¢, a"Z1a*"=V 7, a?Z1, \)

|—5’5 (7’1, )\, a(nfl)Zl, )\,[)2, )\, a(”’l)ZlaQ(”’l)Zl..ﬁZl, )\)

F O A 21, A pas A, Z1a2 Y a2 7y, )

Fr7 (p1, A Ko, A r2, X, 0?0 71 a2y, )

F(p1, X\, a2V Zy a2 Zy, A e, N a2 D Z a2 7, )

'_2728(11—1) (p1,\, Z1...a’Z1,a* V) ry X, Zya...a? Zy, ("))

Fo.0 (p1, N, a2 2 7% Zy,a*™ Va,ro, A\, 0?2 71 .02 71, o> Va)
I—g?g(n_Q)(pl, A, Z162" a2 7, a* " Vaa?2) ry X, 21623 a2 Zy, a2V aa?(2)
o9 - Fan ™ gy e gy B e 5o

(p1, \, A, P Da2(0=1Dg2(00=2) - q462 py X X a(P1)2(n=1)g2(0=2) | g442)

The output is: a1 g2(n-1),2(n-2) 4,2 2(n-1)+..+4+24n-1 _ n*~1

In order to express the computational power of PCPTS we will introduce several
notations and basic results related to the twin shuffle operation on strings.

Definition 5 1) For two strings z,y € ¥* and two symbols a,b € X, the shuffle
operation is defined as: (i) zLLA = ALz = {z},
(i) azlby = a(zlliby) U b(azlLly).
2) The shuffle of two languages L, Ly € ¥* is:
Ly LW Ly :UxELl,yELgm L y.
3) The twin shuffle language over ¥, is defined as:
TSy = UmeE* Lz,

The following representation of the family RE is well known from [23]:

Theorem 1.
Each recursively enumerable language L C T™* can be written as L = hp(T'Sy N R),
where 3 is an alphabet, R is a regular language, and hr is a projection associated
with T" C 3.

Related to the computational power of PCPTS, the next result from [4] is useful in
our considerations:

Theorem 2.
1. A language L C T* is recursively enumerable if and only if L = hp(Rec,(A)),
where A is a parallel communicating pushdown automata system! of type z(2) with

'For the definition and more information related to these systems the reader is referred to [4].
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x € {repepa, rpepat.
2. A language L C T* is recursively enumerable iff L = hp(Rec(.A)), where A is a

cpepa(2).
Due to the above theorems we have:

Theorem 3.

For each recursively enumerable language L there exists language R € REG and an
automata system 7T of type z(2), with z € {repept, rpept, epept} such that T (R) =
(L, A).

Proof. In the proof of Theorem 2 it has been shown that there exists a PCPAS
of type z(2), with = € {repcpa, rpepa, cpepa}, that accepts the language T'Sy, N R,
where R € REG. With respects to Theorem 1, for each language L € RE, there
exists a projection hr, T' C 3, and a language R € REG, such that the image of
TSy N R through hr is the language L € RE. With respect to Theorem 1 and
Theorem 2 for each language L € RE there exists a language R € REG, such that
we can build a PCPTS, T of type z(2), with = € {repept, rpept, cpept}, that for
each word w € R, if w € TSy, T yields on its first output tape the word hy(w)
(by simulating the projection hr), and issues the empty word otherwise. The other
component will output only the empty word. O

4 How to Apply PCPTS - A Descriptional Complexity
Reasoning

As we have seen in the last section PCPTS are able to output RE languages having
as input very simple REG languages. This result allows PCPTS to be used to
simulate natural phenomena in which very simple data, seen as strings of REG
languages, is processed into more complicated C'S languages. Gene assembly in
ciliates can be considered such a string processing phenomenon.

4.1 The Gene Assembly Process in Ciliates

Ciliates are single cell organisms that have two types of nuclei: micronucle; and
macronuclei. The intramolecular process of transformation of a micronucleus into
a macronucleus is known in literature as gene assembly process in ciliates. Mi-
cronuclear genes are composed of combinations of residual segments, called Inter-
nal Eliminated Segments (henceforth TES) and active segments, called Macronuclear
Destinated Segments (henceforth MDS). The prominent feature of the gene assembly
process consists in the very spectacular manner in which, during the transformation
of micronuclear genes into macronuclear genes, the MDS regions are spliced and the
IES portions are excised. The splicing process is done in some weaker points of the
micronuclear genes, named pointers. These pointers are sequences of nucleotides,
that bound the MDS components. The MDS breaking and reassembling is done
such that at the end of the gene assembly process the yielded macronuclear genes
will contain no residual segment. This procedure is performed with respect to three
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molecular patterns that appear in the structure of a micronuclear gene. Each time a
direct repeat pattern of pointers (p, p), i.e., no other pointer parts the two p pointers,
appears in the structure of a micronuclear gene then the ld-(loop, direct repeat)-
excision operation is performed. If an inverted repeat pattern of the form (p,p) is
found then the hi-(hairpin, inverted repeat)-excision/reinsertion operation is per-
formed. In the case that the micronuclear gene contains an alternating direct repeat
pattern of pointers (p,r), i.e., an overlapping structures of the form (p,p) and (r,7),
then the dlad-(double loop, alternating direct repeat)-excision/reinsertion operation
is carried on. From a computational point of view the three molecular operations
ld, hi, and dlad have been studied in several papers, e.g. [8], [7], [24], [26], [6]. Our
model has been inspired from the theoretical interpretation of the gene assembly
process given in [7], and is briefly described below.

Let II; be the pointers alphabet, formed by the micronuclear gene pointers, usu-
ally denoted by Iy = {2,3,...,k,2,3,....k}. A string = € II} is called legal if each
symbol p from 7, is duplicated either by p, or by p, and at most two occurrences of
p (or p) are allowed in w. Three operations can be defined on the sets of all legal
strings over the alphabet Il:

1. If # = mppme then 1d, (the string negative rule for p) is defined as: 1d,(7) =
T TY.

2. If m = mpmoprs then hiy, (the string positive rule for p) is defined as: hiy(7) =
mirs(mo) 3, where rs(ms) is the reversed switch? of .

3. If 1 = mypmornspmyrns then dlad, , (the string double rule for p and r) is defined
as: dlad, ,(7) = mymym3moTS.

A string pointer reduction system over Ilj, denoted by SPRST,, is a set SPRST,
= {Idp, hiy,dlad, ,|p,r € II;}. We denote by D = (m;p1,p2,....,0), L > 1, p; €
SPRSn,, m € 1I}, m a legal string, the reduction of m by applying the rules p;,
0 <14 <[, in the order of their appearance in the scheme. We say that D is a suc-
cessful reduction scheme for a legal string m, if the resulting string after the scheme
application on 7 is the empty string. For more information related to properties of
reduction schemes, the reader is referred to [7]. The string pointer reduction system
described above is a formalization of the splicing phenomena that take place during
the gene assembly in ciliates. In [7] it has been shown that the 1d, operation simu-
lates the ld operation, hi, simulates the hi operation, and finally dlad,, simulates
the dlad operation. The successful scheme reduction of a legal string is convertible
into a successful strategy for a realistic MDS descriptor (that is the theoretical repre-
sentation of the IES/MDS structure of a micronuclear gene). A successful strategy
for a realistic MDS descriptor represents a gene assembly procedure that has as
result a successful transformation of a micronuclear gene into a macronuclear one,
i.e., no pointer will appear, in the structure of the resulted macronuclear gene at
the end of the molecular computation. In [2] we described a computational model
based on Parallel Communicating Finite Transducer Systems (henceforth PCFTS?)
that performs the above molecular operations. In the next section, descriptional
reasonings suggest us that PCPTS can be used better than PCFTS to simulate the
gene assembly process in ciliates.

*For instance rs(342234) = 432243.
3For the definition of PCFTS the reader is referred to [3].
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4.2 PCPTS - A Descriptional Complexity Analysis

In the following we propose two pcpt(2) that simulate hi and dlad operations. Be-
cause finite transducers/pushdown transducers can check the ”legality” of a given
string, next we will consider these operations defined only on legal strings.

Simulation 1 The hi, operation
Let T = (I, g, {Zo}, T1,T>, K) be a cpcpt, with the components
T1 = ({90, ps @ i) Qi) 45 3> e, Ui, T U { Zo, Z1}, 61, 90, Zo, {905 45 })
15 = ({90, sp, sp}s Wi, i, { Z1 }, 02, 90, Zo, {0, Sp, 55})
and § mappings are defined, for all x € Il as follows:
L. 51(qo,m Zo) = {(qo0, Zo, )} z € Il —{p,ﬁ}
1’. (qO,{L‘ Zl) = {
2. 01( {(a
2", 62(q0,p, Z1) = {(Sp AR )}a
3. 01(q0,p, Zo) = {(gp
3. 02(q0, P, Z1) = {
4. 61(qp {
4, 2(8 T Zl) :{
5. 01(gp, A, Zo) = {
(sp {
( {
(sp {
( {
(sp {
1(
(g

qp,ng A}z € g — {p};
Spy 21, )} x € Ilg;

5. d9(85,x Zl) = Sp,Zl, )} x € Ig;

6. 01(qp,x, Zp) =

6’. 2l S )\ Zl) == Sp,Zl )}

7. 81(aps A Zo) = {(ay, Ko M) }:

7’. 2{Sp )\ Zl) == Sp Z )}

8.6 Qpapa Zy) = {(CI[ A}

o B ) (N o € e (o7
16. o (a2 = {(g )

1. e 70) =l A )

12. 01(qpp)s A @) = {(q A , @)}, © € Ty — {p, p};
13. d1(qpy), A Z1) = {(QfaZh A}

14. 6 (qfam Zl) {(gf, Z1,2)}, z € T — {p, P};

The above system works as follows: for the beginning both components read sym-
bols from the input tape until they reach p or p. Only the first component outputs
the symbols that have been read. If the pointers p and p do not exist in the input
string, then the first component yields on its output tape the (whole) input string,
while the second component yields the empty string. In this case, the system ends
the computation in the pair of states: (go,qo). When both components read the
first occurrence of the pointer p/p, the first component reaches the state ¢,/qp, and
the second one reaches the state s,/s;. From now on, each symbol that will be
read by the first component in the state g,/gp, will be memorized in the pushdown
memory, without any output. Each symbol that will be read by the second compo-
nent (including p/p) will be yielded on the second output tape. If the twin symbol
of p (i.e. p) or the twin symbol of p (i.e. p) is not found in the input string then
the components communicate with each other in order to let the first component to
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output the (whole) input on the first tape. Note that, in this case the first compo-
nent cannot query during the computational process, otherwise the query symbol
will be replaced by the initial symbol of the stack of the second component, fact
that will block the computation, (the first mapping d; not being defined in the state
qp/qp for this symbol). In this situation the computation ends in the pair of states
(g1, sp), if p is found, and in the pair of states (¢y, sp), if p is found. When the pair
(p,D)/(P,p) is found the system changes the pair of states (gp, sp)/(gp, s5) into the
pair (i), $p)/(q(p)> Sp)- From now on the first component yields on its output tape
the reversed switch of 7o (that has been stored in its pushdown memory) reading
no input symbol. When the first component reaches the bottom of the stack, it
begins to read and to output the rest of the symbols from the input tape. During
all this time the second component reads all the input symbols, having no output.
The system ends the computation in the pair of states (¢y, s,), if p is found before
P, and in the pair (g, sp), if p is found before p. Furthermore, the above system
makes a simultaneous searching for both of the pairs (p,p), and (p,p), while the
rpeft(2) presented in [2] performs this operation only for the pair (p,p). We have
to eliminate the rules 3, 6, 7, 11, 12, 13, 3’, 5’, 7, and the states gz, q(,], sp, in order
to obtain a cpcpt(2) that performs the same task as the rpeft(2) presented in [2].
Therefore, in what follows we compare the descriptional complexity of the rpcft(2)
with the reduced model of the cpept(2) presented above.

In the hi simulation displayed in [2], the rpcft(2) that performs this operation
needs 8 states for each component, 5|IIx| + 3 rules for the first component, and
4(|g|+1) rules for the second one. The reduced model of the cpept(2) presented here
needs only 4 states for the first component, 2 states for the second one, 4|II;| —3 rules
for the first component, and 2|IT;| rules for the second one. The rpcft(2) needs |ma|+
2 communication steps, while the above cpept(2) needs only one communication,
used only in the situation when the twin symbol of p (or ) is not found in the input
string.

Simulation 2 The dlad, , operation
The next rpcpt system performs the dlad operation:
T = (I, Ik, {Zo}, T, T2, K) be a cpept, with the components
Ti = ({ar, a7 90- 91,62, 93, Q4 g5 }, T, T, U{ Z, ZO,_Z1,Z2,Z, Z,Z},01,q0, 71, {q0.qr})
Ty = ({80, 8p, 815 815 811 Sp]> S[r) }+ Lk, i, { 2, Z9, Z'}, 69,80, Zay {80,514 87 })
and § mappings defined, for all z € TI;, as follows:
L. 01(g0, A Z1) = {(q1, ZoZ1, N)}, 1. 280, %, Za) = {(s0, Z2, \)}, © # p;

(
2. (51(ql,)\ Z(]) :{(ql,Z(], )}, 2’ (52(80,)\,Z2) {(8 Kl, )},
3. 0uqr, A Zy) ={(qp. 21, M)} 3 52(50% Zy) = {(sp, Z2, N)},
4. 51(Qf,fv Z1) =A{(qg, Zv,2)}, 4. ba(sp. @, Z2) = {(sp, Z2, M) }.x & {p, P}
5.0 (Q1,>\ ZoZn) = {(ar, K2, M)}, 5. d2(sp. {p, 0}, Z2) = {(s7, K1, M)},
6. 01(qr, A Z) ={(qr, Z, )}, 6" Oa(sy, @, Zo) = {(s5, Z2, M)}, @ 7 p;
7.0 (Qr >‘ ) {(qT7K27 )}7 () (Sf,LI: ZQ) = {(sfv:Z?7>‘)}a T 7ép;
8. 61(qr, A, :) {( Zlv}‘)}’ 8. (vam Z) {(sf’Z A}
9. d1(gr, A Z:) {(QLZ A 9. d2(sf, A, Z2) = {(sf, Z2, M) },
10. (51((]1,)\,%) {(ql,Z )\)} 10°. (52(8],,7’, ZQ) = {( ZQ, )},
11. (51((]1, ,Z) = {(ql,Z,ZE)}, 11°. (52(ST,ZE,Z2) {( r],ZZB )\)}
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12. (51((]1,:E,Z) = {(ql,Z,x)}, 12°. (52(8[T],$,Z2) = {(S[T},Kl.’ll‘,)\)},

13. 01(q1,p, Z) = {(q2. K2, A)}, 13" (52(3[r]a>‘az) = {(s[r}aZa Az},

14. (51((]27)\7 ZQ) {(Q3a>\ A)} 14’ (52(3[7"]7{13’ ’)"}, ): {(ffaza )\)},

15. 01(g3, A, z) = {(g3, A, 2)}, 15°. 52(5[1"} b, Z) = {(S[paza M

16. (51(Q3,ZB,Z1) {( 3,Z1, )} T 7'5 r, 16°. 2 ], ,ZQ) = {(8[p},Z2,ZE)},
17. 51(q3,r, Z1) {(q A )\)} 17°. 52( S[pls T, Z2) = {(Sf,Kl,)\)},

18. (51((]4,ZE,Z1) {(q Zl, )} T 757’ 18'. 2( [p}, ,ZQ) = {(S[ﬂ,ZQ,)\)},
19. 01(qa,7, Z1) = {(g5, Z1, \)}, 19°. da(si7), 7, Z2) = {(s7], Z2, M) },

20. 61(g5, %, Z1) = {(qy, Z1,2)}, 20", 52( Sirs As Z2) = { (), Z2, M) }5

21. (51((]f,ZE Zl) {(Qf,Zl, )}, 21°. (S[ﬂ )\ ZQ) = {(S[F],Klzg,)\)}

Briefly, the above system works in two stages. In the first stage the second transducer
makes a search, over the whole input string, for the alternating direct repeat pattern
of pointers (p,r). During all this time the first transducer reads no symbol, and has
no output. If this pattern is not found the first transducer outputs the whole input
string on the first output tape. When this pattern is found the second transducer
yields the result of the dlad, , operation. This will be done in the second stage of
the simulation.

In more details, the system works as follows: for the beginning only the second
component reads symbols from the input tape until the pointer p is found, without
any output. If this pointer is not found, then the (whole) input string will be yielded
on the output tape of the first component (due to rules 2°, 3, and 4). When the
symbol p is reached the current state of the second component is changed into the
state s, (rule 3’). From now on the second component continues the searching of
r. If the pointers p or p are found before r, then the dlad,, operation cannot be
performed. Thus the (whole) input string will be outputted by the first pushdown
transducer (due to rules 5, 3, and 4). If r is found (before of p or p), then the state s,
is changed into s,. Afterward, the string placed between the pointers r and p, i.e., 73
(see Section 4.1), is memorized in the pushdown memory of the second transducer.
This process is performed as follows: in the state s, the second transducer memories
the first symbol from 3, and changes the state s, into the state sp; (due to rule
11’). In this moment the first pushdown transducer is obliged to query (rule 5),
the second pushdown transducer not being defined in the state s} with the top of
pushdown memory set on the pushdown symbol Z. Due to the query process, the
content of the pushdown memory of the second transducer will be discharged into
the pushdown memory of the first transducer, and the pushdown memory of the
second transducer is reduced to Zz, due to the returning character of the system.
In the state sp,, having on the top of pushdown memory the symbol Zs, the second
transducer is able now to memorize the next symbol from 73 and to ask for the
content of the first pushdown memory (rule 12’), in order to build in its memory
the image of the string m3, and not the mirror image of it, as it usually happens
due to the structure of the pushdown memory. After the query step is performed,
the pushdown memory of the first transducer returns to Z;, due to the returning
character of the system. In the next step the first transducer asks for the content of
the pushdown memory of the second transducer (rule 7), in order to give freedom to
the second one to memories the next symbol from 73 and to make the concatenation
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between the symbol that has been currently read and the substring of w3 that had
been already read and memorized into the pushdown memory of the first transducer
(rule 12’). This process continues until the whole substring 73 has been read and
memorized into the pushdown memory of the second transducer. Afterwards, if in
the search procedure of the second transducer the pointer p/r is found before the
second occurrence of p the dlad,, operation cannot be performed. So that the
(whole) input string will be outputted by the first pushdown transducer (due to
rules 14°, 8, 7, and 4). When the second occurrence of p is found, the state S[r] 18
changed into sp;) and the second transducer starts to yield the image of a possible 74
(see Section 4.1). If the pointer 7 is found instead of r, then the second transducer
queries the first one in order to let it output the whole input string. If the second
occurrence of r is found, then an alternating direct repeat pattern of pointers (p,r)
exists in the string, so that the result of the dlad,,, operation will be yielded on the
first output tape, according to the rules from 11 to 21.

If we compare the above rpcpt(2) system with the rpcft(2) presented in [2], from
a descriptional complexity point of view, we will observe that the former one is more
efficient than the latter one. Thus rpcft(2), presented in [2], needs |II;| + 7 states,
and 8|I1;| + A2 + 5 rules for the first component, 9 states and 6|II;| + 9 rules for
the second component. The number of communications is fixed to 3. The above
rpept(2) needs 8 states and 8|IIx| + 11 rules for the first component, 7 states and
9(|I1x| +1) rules for the second one, and |73 +2 communication steps. Furthermore,
the system makes a complete searching for the pointers p and r, and it yields the
output for the all situations.

All the observations done along the systems described in this section, argue that
PCPTS turns out to be very efficient in implementing complex molecular operations,
from a descriptional point of view.

5 Conclusions

In this paper we have introduced a new translating device called Parallel Com-
municating Pushdown Transducer Systems. They are systems composed of several
pushdown transducers working in parallel, in a synchronized manner and communi-
cating with each other by request. We focus on the strategy of communication by
stacks, and by the output tapes. The protocol of collaboration is controlled by query
symbols. They specify which component has to send the content of the pushdown
memory and the content of the output tape, and which component has to receive
them. The strategy of data exchanging through the pushdown memory and through
the output tape allows each component to output complex information. Therefore
the complexity of the yielded languages is substantially increased. The computa-
tional power of the new device has been investigated by taking into consideration
the computational power of parallel communicating pushdown automata systems. A
comparison between them and parallel communicating finite transducer systems has
been done, too. Even if they are able to yield at least the same classes of languages
as parallel communicating finite transducer systems do, they are more efficient from
a descriptional complexity point of view.
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