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Abstract

We define Multiple choice two-way quantum automata with multiple ob-
servables. Distributed quantum automata are defined with four modes of co-
operation. We show that multiple choice two way quantum automata and dis-
tributed quantum automata have the same power as that of two way quantum
automata(having single choice) with multiple observables.

1 Introduction

The possibility that a quantum computational model can be more powerful than its
classical counterpart, as has been elucidated by the celebrated Peter Shor’s factoring
and discrete logarithm algorithms [2] and Grover’s quantum searching algorithm [3]
has encouraged researchers to come up with various quantum computational models.
Two-way quantum finite state automata (2qfa) have been proposed as the quantum
analogue of deterministic (2dfa) finite state automata, and it has been shown that
these 2gfa’s are strictly more powerful than the 2dfa’s, the 2nfa’s and the 2pfa’s [1].

Also, in the past, there have been attempts to come up with co-operative dis-
tributed models of classical automata. In the case of push down stack automata, it
has been shown that, distribution results in increased power [4]. In fact, it has been
shown that the distributed push down stack automata are equivalent in power to
that of a Turing machine and hence are computationally complete. The main aim
of this paper is to analyze the effect of distribution on the power of computation in
quantum automata.

The 2gfa model proposed by Kondacs and Watrous has one minor restriction.
It is that only measurements with respect to one particular decomposition (observ-
able) of the state space is allowed (that which decides if the machine halts with
acceptance, halts with rejection or goes on). In this work, the 2gfa model is first
generalized to a model ((2qfa-MOb)) that allows measurements with respect to one
or several of multiple decompositions (observables) of the state space. The signifi-
cance of the new model is understood when distribution of computation in quantum
automata is attempted. Different modes of cooperation are defined similar to that
in distributed finite state automata. Then, it is shown that the distributed quantum
finite state automata (D-2qfa-MOb) can be reduced to a 2qfa-MOb, for any of its
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modes of acceptance.

First, a multiple choice 2qfa-MOb (MC-2qfa-MOb) is formulated, and it is proved
that the behaviour of a multiple choice 2qfa-MQOb can be simulated by a 2qfa-MOb to
an arbitrarily close accuracy. Then, the D-2qfa-MOb is formulated, and by reducing
this to a MC-2gfa-MOb, in each one of its modes of cooperation, it is proved that a
D-2qfa-MOb in any mode of cooperation, has the same power as that of a 2qfa-MOb,
thus proving the result.

2 2-Way Quantum Finite State Automata (2qgfa)

2.1 Definition

Kondacs and Watrous [1] define a 2qfa as a 6-tuple M = (Q, 3,9, g0, Qaccs Qrej)s
where @) is a finite set of states, ¥ is a finite alphabet (The tape alphabet T is
defined as X U {#,$}, where #,$ ¢ ¥ are used to mark the left and right ends of
the tape respectively), ¢ is the transition function for the automaton defined below,
go € Q is the initial state and Qqcc € Q and Qre; € () are the sets of accepting states
and rejecting states respectively (Elements of Qqc and Q¢; are halting states and
elements of Qnon = @ — (Qace U Qrej) are non-halting states. Also, g9 € Qnon and
Qacc N Qrej - []))

The contents of any tape can be described by a mapping = : Z, — I', n being
the number of distinct tape squares on the tape. The number of configurations of
the 2qfa M on any tape z of length n is n|Q)|, since there are n possible locations
for the tape head and |@Q| internal states. The configuration of a tape can hence be
described by a mapping C,, = @ X Z,,. A superposition of M on a tape z of length
n is any norm 1 element of the finite dimensional Hilbert space H,, = l2(C,), which
is the space of mappings from C, to C with the usual inner product. Following
Dirac’s notation, for each ¢ € Cp, |c) denotes the unit vector which takes value 1 at ¢
and 0 elsewhere. All other elements of H,, may be expressed as linear combinations
of these basic vectors. For a superposition |¢)) = > .. aclc), ac is the probability
amplitude associated with ¢ in superposition |1)).

The transition function ¢ of the 2qfa M is a mapping of the form,
§:QXXYXQX{-1,0,1} - C. For each q,¢' € Q, 0 € ¥ and d € {-1,0,1},
d(q, 0,4, d) represents the amplitude with which a machine currently in state ¢ and
scanning symbol ¢ will change its state to ¢’ and move its tape head in direction
d. For any tape z, 0 induces a time evolution operator Uj on H; as follows.
U§la, k) = > 40(q,2(k),q',d)|q', k + d(mod|z|)) for each (q,k) € C)y), and is ex-
tended to all of H, by linearity.

Since valid superpositions for the automata are of unit norm, the finite dimen-
sionality of H,, requires UJ to be a unitary operator, so that any valid superposition
will evolve into another valid superposition and the automata, M is then well formed.
Now, let V; : I2(Q) — [2(Q) be an unitary operator in the Hilbert space l2(Q), and
let D:Q — {-1,0,1}. Now, if the transition function § is defined as

d(g,0,4',d) :{ (()qIValw gg;;;z — Eqn.1
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M is well-formed iff V,; is unitary.

2.2 Observables and Measurements
2.2.1 Definition

An observable O is a decomposition of the Hilbert space H,, into subspaces: H,, =
E, & --- & Ej, where the E; are pairwise orthogonal. Let |1;) be the projection of
|1) onto Ej;, for each 4, so that, |¢)) = |11) 4+ - -+ |9k). Then, the result of measuring
observable O is that, the machine will collapse randomly to some outcome j with
probability || |#;) || and the new superposition of the machine will be mhp])

2.2.2 Deciding the Time of Measurement

The decision as to when to measure an observable, is a crucial requirement, for
the automaton to have the intended functionality. It is usually the case that, the
machine is in a superposition of states, which means that, it essentially evaluates
multiple paths simultaneously, and if the string on the tape has the desired structure,
then the paths interfere either constructively or destructively. It is this aspect, that,
in fact, distinguishes the gfa from classical automata, and is mainly responsible for
their power. The point that is emphasized here, is that, the measurement is generally
assumed to be done only after the interference mentioned above is guaranteed to have
completed. Any measurement before that, would not guarantee proper functionality
of the automaton. The instant of measurement, is also dependent on the string on
the tape. In general, it is assumed that, there is some mechanism (that is not part of
the unitary evolution of the automaton), which ensures that measurements are done
only at appropriate moments. Strictly speaking, the definition of the automaton
should include the specifications of the instants of measurement, along with the
transition function, for it is the both that together define the functionality of the
automaton under consideration.

2.3 The Possibility of Allowing Multiple Observables and Its Sig-
nificance

The 2-gfa discussed above, allows measurements only with respect to one observable.
This observable (that is referred to, here, as the primary observable) is a decomposi-
tion of the state space of the machine into subspaces constructed from non-halting
states, halting states accepting the string on tape and halting states rejecting the
string on tape. This measurement alone decides whether the machine is to further
evolve or not, and in case of halting, it decides whether the string is accepted or
not. Thus, it is this measurement that is used to define the languages accepted by
a quantum automaton.

But, in general, it is possible to have different decompositions of the state space
of the automaton (multiple observables). Such quantum automata possess sufficient
power that, when distributed computation is attempted over these machines, addi-
tional power is not obtained, as shall be proved below. So, an interesting variant of
the gfa is proposed below, wherein, multiple observables are allowed.
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3 2qfa Allowing Measurements of Multiple Observables
(2gfa-MOb)

3.1 Definition
A 2qgfa-MOb is defined as a tuple

M = (Q7 Za Va Da q0, Qaca Qreja O)

where Q,3,q0,Qacc and Qrej are as before and the tape alphabet I' being defined as
before from ¥ by including left and right end markers {#,$}. V is a set of unitary
operators V, : [9(Q) — l2(Q) for every 0 € T"and D : Q — {—1,0,1}. Moreover, it
is understood that the transition function (§) for the automata is constructed from
V and D as in Eqn.1. Using V and D, instead of d, is just a notational simplicity
that provides convenience when dealing with distributed quantum automata. O is a
set of observables for the automaton, excluding the primary observable (defined as the
decomposition into subspaces, Qqucc ® Qrej ® Qnon, Where Qnon = Q — (Qace U Qrej))-
Measurements can be performed with respect to any of the observables in O. The
instant of measurement for any observable is assumed to be well-defined as in the
case of the usual 2-gfa.

3.2 Languages Accepted by 2qfa-MObs

For a given string w € ¥*, a tape z,, is constructed with length |w|+2, with z,,(0) =
#, Ty(lw| +1) =9 and z,,(i) = w; for 1 < i < |w|. The computation begins in the
superposition |gp,0) and measurements can be made with respect to the primary
observable and observables in O, the instants of these measurements being defined,
as mentioned above. It is the measurement of the primary observable that decides
the acceptance of w. When any measurement of the primary observable results in
a halting state, the computation halts. If the state is in the subspace constructed
from Qgee, w is accepted. Otherwise, the state is in the subspace constructed from
QQrej, and the string is rejected.

The computation can now be treated in the same manner as for a probabilistic
machine. For instance, if input w results in ”accept” with probability greater than
1/2, then w is an element of the language recognized by M, otherwise it is not.
Just like probabilistic automata, restrictions such as running time and probability
of error can be placed on the 2qfa-MOb as well.

4 Distributed 2qfa-MOb and Multiple-Choice 2qfa-MOb

4.1 Distributed 2qfa-MOb (D-2gfa-MOb)
4.1.1 Introduction

The D-2gfa-MOb is the quantum computational model corresponding to the classical
distributed finite state automata. Different modes of acceptance can be defined here,
in lines with the classical distributed automata.
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4.1.2 Definition

A Distributed 2qfa-MOb (D-2gfa-MOb) is defined as a tuple,
M = (Qa 2, V17 V2a T Vma D, qq, Qacca QTEja O)

where Q,X,q0,Qacc and Q;; are as before, the tape alphabet I' being defined as before
from ¥ by including left and right end markers {#, $} and O as in 2qfa-MOb is the
set of observables excluding the primary observable, with the timings of measurements
for every observable, assumed to be well-defined. V* = {V}, 0 € T'},i € {1,2,---,m}
, where each V! : I5(Q) — 12(Q). Also, D : @ — {—1,0,1} and it is understood
that transition functions (Js) for the automaton are constructed from V%’s and D
as in Eqn.1, with V? replacing V in the equation. Each transition function obtained
is well defined for any i, since all V! are unitary. The component of the machine
decides which transition function can be chosen at any moment.

During any moment of evolution, the machine is in exactly one of the components
i € {1,2,---,m}. If the symbol read by the head is o, then the next stage of
evolution operates V! on the current internal state of the machine and the machine
goes to a new internal state. Different modes of acceptance can be defined for these
distributed automata. The difference between the modes arises from the definition
of allowed transitions from one component to another, for the machine. Acceptance
is defined exactly in the same way as in 2qfa-MOb with respect to the outcome of
measurements of the primary observable.

4.1.3 Modes of Acceptance

There are four possible modes of acceptance:

e x - mode - The transition from component ¢ to some other component j can
occur at any arbitrary stage of the evolution.

e = k - mode - The transition from component ¢ to some other component j
occurs after exactly k transitions using the V’s.

e > k - mode - The transition from component ¢ to some other component j
occurs after at least k transitions using the V's.

e < k - mode - The transition from component ¢ to some other component j
occurs before k£ + 1 transitions using the V's.

The language accepted by a D-2qfa-MOb M using mode of acceptance a, o € {*,=
k,> k,< k|k > 1} is denoted by L(M,«). Note that, in some cases the automata
constructed is such that, all strings belonging to L are accepted definitely, whereas
strings not in L are accepted with a finite probability bounded by a small value
(Automata with one-sided bounded error). In such cases, the bound is also included
in the notation as L(M, a, bound).
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4.2 Multiple-Choice 2qfa-MOb (MC-2gfa-MOb)
4.2.1 Introduction

The Multiple-Choice-2gfa-MOb (MC-2gfa-MOb) is the quantum computational model
corresponding to the classical non-deterministic finite state automata(NFA). ie.,
There are choices in the evolution at any stage, and one of the choices can be chosen
non-deterministically.

4.2.2 Definition
A MC-2¢gfa-MOb is defined as a tuple,

M = (Q7 %, V. D, qo, Qace, Qrej; O)

where @,X,q0,Qacc and @Qr.; are as before, the tape alphabet I' being defined as
before from ¥ by including left and right end markers {#, $} and O as in 2qfa-MOb
is the set of observables excluding the primary observable, with the timings of mea-
surements for every observable, assumed to be well-defined. Now, V = {V,|o € T'}.
Each V, is now, a finite multiset of unitary operators, unlike the 2qfa-MOb wherein,
Vo is just a single operator. ie., Vo = {V(54),7 € N}, and V(53 : [2(Q) — 12(Q)-

As usual, D : Q — {—1,0,1} and it is understood that transition functions (ds)
for the automata are constructed from V' and D as in Eqn.1, with any V/, ;) replacing
V5 in the equation. Any of the transition functions obtained can be used for the
evolution of the automaton.

At any moment of evolution, if the symbol at the head is o, then one of the op-
erators in V; is chosen non-deterministically and is operated on the current internal
state.

4.2.3 Choice of an Operator at an Instant

It should be noted that V, is a multiset since repetition of operators is allowed. The
number of times a particular operator recurs in the set affects its probability of choice
from the whole set. Suppose, a particular operator V occurs n times in V,, which is to
say, card({i|V(,; = V}) = n. Then, the probability that V is chosen for evolution in
the next stage is equal to ﬁ(%). (Here, card(X) denotes the cardinality of the set
or multiset X). Note that, for any MC-2qfa-MOb M (Q,%,V, D, qo, Qacc, Qrej O), an
equivalent MC-2gfa-MOb M'(Q, 3, V', D, qo, Qace, Qrej, O) with card(Vy) = card(Vy)
for all o, 8 € T (ie., all V] having the same number of operators) can be constructed
trivially, in the following way:

Let N be the L.C.M. (Least common multiple) of all the cardinalities, card(V}).
For each o € T, find replication(o) = mjjvw and construct V! from V, by repli-
cating each operator V € V,, replication(o) times. (If the operator occurs n times,
it is replicated n x replication(o) times). Now, card(V)) = N, for any o € T'. Also,
this operation leaves the probability of selection of any operator in V, unchanged.
This is because, for any V occurring n times in V,, the probability of selection of
V from V! is given by "2 hjc\?tion(”) = carz?(va)' Hence, the probability remains the
same. So, M’ is equivalent to M and also has the same number of operators in each
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V(o) .

From now on, it is assumed without loss of generality that, any MC-2qfa-MOb M
has the same number of operators in each of its Vs, and this number is referred to as
the choice dimensionality (number of possible choices) of M. Also, it is understood
that when simply written as 2qfa-MOb, it means that, there is no choice for the
selection of operators. The language accepted by a MC-2qfa-MOb M is denoted by
L(M). In case of automata with one-sided bounded error, the bound is also included
in the notation as L(M, bound).

5 Equivalence of MC-2gfa-MOb and 2qfa-MOb

5.1 Nature of Equivalence

In this section, the MC-2qfa-MOb is shown to be equivalent to the 2qfa-MOb. An
exact equivalence is got in the case when the choice dimensionality (number of
operators to choose from) is of the form 2", for some n € N. When it is not of such
a form, then an equivalence can be obtained arbitrarily accurately (with bounded
error).

5.2 Derivation of the Result

Theorem 5.2.1 Any MC-2qfa-MOb M(Q, %, V, D, qo, Qaccs Qrej, O) can be reduced
to an equivalent 2qfa-MOb M'(Q', 2, V', D', ¢4, Qpees @rejr O') with single choice for
evolution operators.

Proof: M’ is constructed as follows:
Let N be the choice dimensionality of M. Two cases are considered.

5.2.1 Case-I: N is of the form 2", for some n € N - Exact Equivalence

Construction:

Counsider the set C = {1,2,---, N}. The Hilbert space constructed with elements
in C (I3(C)), is denoted by Q. Now Q' = Q ® C. ie., Any valid state of M’ is of
the form ) ,a(4)lq.4).9 € Q,i € C,Za%q}i) = 1. (Here, the a(,;’s denote the
amplitudes, and |g, ) stands for |q) ® |4)).

D'(|q,1)) = D(q) for all ¢ € Q,i € C.

:zcc = Qacc ®C.
;‘ej = Qrej ® C.

ab = o Lii (g0, ).

O’ = (0®C)Uw, where w is the observable (Q®10)) D (Q®|1))®---®(Q®|N))
which is to say that, all the original observables are preserved here by expanding the
subspaces in the decompositions to the whole configuration space corresponding to
@', with the addition of a new observable, w which measures the |i) portion of the
superposition ) i a9 i). The original timing information of the observables in
O is still carried over to the corresponding observables in O'. As far as measuring
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w is concerned, a measurement is made after every step in the evolution.

Now, let
1 1
B(1) = j§< 1 -1 )

Construct E(i)s recursively from F(i — 1)s using,

By - (EG- 1) B0 )

The E(i) are matrices of order 2°. It is easily seen that, for any i, E(i) is unitary
(since E(i) x E(i)T = I, where I, is the identity matrix of order 2¢). Also, E(i)

has the property that, each element in it is either 12i or ——.

V2
Now, the V' is constructed from V and E(n) (Note that N = 2") as follows: If
the internal state of the automaton is |¢,7) and the symbol on the head is o, then

the evolution on applying V. should be such that,

Vo(la, 1)) = Vie,)(lg)) ® E(n)(]i))

The construction is as below when the states and operators are expressed explicitly
in matrix form. Let Q = {q1,92,--,qs}, s = card(Q). The amplitudes of the the
current superimposition of states of the machine can be expressed as a column vector

of the amplitudes a(, ;s as
(0(g1,1)s g1} 5 q1)> U1 2) K22 Ugo)) -
Now, if
aill a9 ... a|lN
a1 @92 . . . Q2N
E(n) =
aNi1 anN2 . . . QNN
then
Vo)) xann (Vigz)) xa1a . . . (Vign)) X ain
Vo)) xaann (Vig2)) xaz . . . (Vi) X asn
V! =
(V(U’l))xam (WU’Q))XGNQ S (V(U’N))XCLNN

The construction of V(o) is very similar to that of a tensor product and it can be
easily verified that V is unitary using the fact that, all V,s and E(n) are unitary.
Proof of equivalence:

The proof rests on the fact that, the |i) component of the internal state |q, ) for
M’ simulates the operation of V(o,i) on the current state |g) on M, when the symbol
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read by the head is 0. Consider any intermediate step in the evolution of M. Let
the symbol read on one of the paths at instant ¢ — 1 be ¢ and the state be q. Now,
one of the matrices in V; is chosen non-deterministically. Without loss of generality,
we assume that, Vi, ;) was chosen. Now, the new state of the machine becomes
Viej)(l2)) = |v) (say), the head moves in the direction D(|v)) and all observables
that can be measured at that instant, as per the timing specification in O can be
measured. If the primary observable is measured, then the halting/non-halting and
acceptance/rejection decisions are made. The time now becomes ¢. If not halted, the
evolution proceeds in the same manner for time instant ¢.

The same situation translates into the construction and functionality of M’ as
follows. At time ¢ — 1, the symbol read on the path is ¢ and the state of the
automaton is

r(t—1) = = Y (19, 4).

The form above corresponds to the state |g) of M, as will be evident, once the
evolution is understood. Now, a measurement of w is done. This collapses state
r(t — 1) to the state |q, j) with the same probability % as in the case of M. Now,
V! is applied on the state |g, j) to give

Vo(14,5)) = Vo (1) @ E(n)(15)) = [v) ® S0, (14)

which takes the machine to the state
r(t) = o S (jv, 1))

which corresponds to the state |v) of M in the same way as before. This consistent
correspondence of the states of M’ to those of M is because, F(n) is such that,

for any k € C and correspondingly |k) € Q, E(n)(|]k)) = LNZZ]L(M) The head

moves in the direction D'(]v,i)) = D(|v)) for any i. The measurements mentioned
above are made with respect to corresponding observables in M’ and as seen, the
primary observable of M’ is defined consistently in terms of Qg and Q;;. Also,
the initial state g; is such that a measurement of w initially would set the state
to |qo, ) for some j. Thus, M' exactly simulates the behaviour of M, and hence
the languages accepted by them are exactly equivalent (the exactness here, also,
includes acceptance with one-sided bounded error, since the probabilities of the

choice of operators have been taken care of, accurately).

5.2.2 Case-1II: N is NOT of the form 2", for any n € N - Equivalence with
bounded error

Construction:

The equivalence in the previous case was proved when N is of the form 2".
The matrices F(i) defined above have order 2!. Matrices with similar properties
(unitarity and equal distribution of amplitudes), but orders not of the form 2 can-
not be constructed. Hence, when the choice dimensionality is not of the form 27,
equivalence cannot be proved in exactly the same way before. Here, equivalence
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is proved allowing small violations in the probability of choice of operators. Such
violations in anyway do not affect the class of languages, accepted by automata with
certainty. Only the probability of acceptance or rejection, in the case of automata
with bounded error, is affected. This deviation can be made arbitrarily small, as
shall be shown below. In this way, M’ can simulate M as accurately as possible.

The construction is done by choosing a large number N’ = 2™, for some m € N,
such that N’ > N. Let f be the quotient and g the remainder when N’ is divided
by N. For each o € T, replicate V|, ;, for every 4, f times. Then, reinclude the
first g operators, {V(, ;|1 < i < g}. Let the set of operators now be denoted V”,.
Consider the automata M” = (Q, %, V", D, qo, Qqccs Qrej: ©). The number of oper-
ators in each of V", is now 2. Then, the construction is done exactly as in Case-I
and the automata M’ is got. Now, it is clear that, M’ accepts the same class of
languages accepted by M, and only in the case of languages accepted with finite
one-side bounded error, the probabilities of acceptance or rejection might slightly
differ.

The probability of choosing the i*” operator, Vioi) from V5 at any moment is %,
whereas the probability of choosing the same operator from V” is equal to either
% or f;,',l. As shown below, the difference in the two probabilities can be made
arbitrarily small, by appropriately choosing N’; and hence, M” (and hence M’) can
be made to simulate M arbitrarily accurately.

Choice of N':
Suppose the bound that we impose on the difference in the probabilities is €. ie.,

+1 1
fN/ - N < €.

To achieve this bound, N’ is chosen as follows. Find numbers m and X\, with A < ¢

such that,

1 N—1 1
g > A> (S )gm

m and A can be found for any given e, since it is always possible to choose as high
an m as possible (corresponding to lower and lower X values). Now, N/ = 2. This
choice of m and A gives

:>2M(=N")>(85A): = N-NN'A<L
Since the remainder g is non-zero (at least one), we have
1<N' -Nf<N
= N'—=Nf>N-NN'\

= N(f+1) <N'(14+ N

which reduces to,

In an exactly similar way, the choice of N’ for the bound,

—%<6
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can be done. In order for both the bounds to hold good, we choose the bound cor-
responding to the lesser of the two differences, and choose N’ based on that.

The bound on the probability difference translates directly to the bound on the
difference in the probabilities of one-sided rejection. Hence, if the choice dimension-
ality is not of the form 2", an equivalence with bounded error can be obtained.

5.3 Result

Thus, the MC-2qfa-MOb are reducible to the 2qfa-MOb, exactly when the choice
dimensionality is of the form 2" and arbitrarily closely otherwise. ie., for every MC-
2gfa-MOb M, there exists a 2qfa-MOb M’ such that, L(M) = L(M'). If M has
acceptance with bounded error (bound ¢), then a 2qfa-MOb M” can be constructed
such that, L(M,e) = L(M”,9), such that, |e — 9| < ¢, for any arbitrarily small ¢.

6 Equivalence of D-2qfa-MOb and MC-2gfa-MOb

6.1 Theorem:

For any D-2qfa-MOb M, there exists a MC-2qfa-MOb M’, such that, L(M,«) =
L(M'), for any o € {*,= k,< k,> k}. In the case of M being a D-2qfa-MOb
with one-sided bounded error € for acceptance, then, a MC-2qfa-MOb M’ can be
constructed such that, L(M, o, e) = L(M',¢)

6.1.1 Proof:

The result is proved by reducing a D-2qfa-MOb M to a MC-2gfa-MOb M’, for each
mode of transition, as below:
Case-l: a = %

Let M = (Q,%, VL, V2. V™ D,qo, Qaces Qrej» O). The equivalent MC-2qfa-
MOBb is constructed as follows. M’ = (Q', %, V', D', g5, Quees Qrejr O')-

Let C = {1,2,---,m}. Let H = lo(C) denote the Hilbert space constructed using
the elements of C' as basis. Also, let s = card(Q).

Q' = Q ®H. ie., Q can be represented as {[¢,i]|]l < i < m,q € Q}. The

amplitudes of the current superimposition of states of the machine can be expressed
as a column vector of amplitudes,
(aél,aéz,---,a,}s,agl,---,ag’;)T, where Q = {¢;|1 < i < s} and aflj is the amplitude
corresponding to the internal state ¢; € @, when the machine is in component
1. Since the machine can be in only one of the components at any instant, the
amplitudes corresponding to all other components are zeroes.

D'([q,i]) = D(q), for all ¢ € Q and i € C.

o = [q0,1]-

:zcc = {[qain € Qace,t € C}
;‘ej = {[qai”q € Qreja'i € C}

' is obtained as follows. For an observable (decomposition) O € O with O =
S1BS2®- - -® S, for some [, then an observable O’ = (S1QH)D(S2QH)®- - -®(S;QH)
is included in O’, with the same timing specifications as that of O.
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To construct V', the various possible transitions among the components of V
are represented as permutations over the set C . A permutation over C is a one-one
mapping P : C — C. It can be conveniently represented as a m-tuple (P (1), P(2),-- -,
P(m)). For any given mode of transition in M, there are many allowed permutations.
Let P,; denote the set of all allowed permutations over C' for the mode of transition
defined in M. As shown below, each allowed permutation corresponds to a choice in
the operators in V/. When the machine is in component i, the head reads symbol o
and the permutation (m-tuple) P = (P(1), P(2),---, P(m)) is chosen, the following
is done.

e The operator V! is used to transform the current internal state of the machine.
This is achieved through the function matrices described below.

e The machine then transits to the component P(7) in the next step. This is
achieved through the transition matrices described below.

Let P = (P(1), P(2),---,P(m)) be an allowed permutation over C, for the mode of
transition in M. P induces a transition matrix T'(P) which specifies the transforma-
tion of the state in M’ corresponding to the change of component in M. Also, for
each o € T, there is a function matrix F'(o) which specifies the evolution of the state
in M', when the symbol read is 0. F(o) is essentially derived from the Vs of the
various components in M..

To understand the construction of these matrices, it is helpful to think of them
as m x m grids of cells, with matrices of order s x s in each cell. Let I(s) and O(s)
denote identity and zero matrices of order s x s respectively. The grid cell at the
k" vow and I" column is denoted by C(k,1).

Now, F(o) is defined as the matrix of cells Cp(k,1),1 < k,I < given below.

crtey={ G 17

T(P) is defined as the matrix of cells Cr(k,1),1 < k,l < given below.

| I(s) P()=k
Cr(k,l) = { O(s) otherwise

For instance, the construction of the matrices are shown for the case m =4, s = 2
and P = (4,1, 3,2) (Take component 1 to component 4, component 2 to component
1, etc...) is shown below.

(V;) (0(2) (0(2)) (0(2))
Flo)= | (9Q) (V2)  (0(2)) (02)
(02) (02) (7)) (02)
(02)) (0(2)) (0(2) (V)

(0(2)) (1(2)) (02)) (0(2)
rpy = | (OQR) (0Q2) (0Q2) (1(2)
(0(2)) (0(2)) (1(2)) (0(2)
(1(2)) (0(2)) (0(2)) (0(2)
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ie.,

O =H OO O O oo
— O oo oo oo
A e A e
(=il ell s ==l
SO = OO O oo

A A -

OO O OO OO
A N N
SO OO O+ O O

SO OO OO O

=

3

Il
TN N N N
NS N N N
NS N N N
NS N N N
O O OO = O OO
N—

O R OO OO OO
_ o OO o o oo
S OO = OO OO
SO = OO O oo

OO OO OO O
=l eleoNeoNoNeN =)
SO OO O+ O O
SO OO = OOO

T (10w om=(0)

Now suppose the machine M was in component 2 in state (a1, a2)”, where a1, as are
the probability amplitudes corresponding to states g1, g2, the only states in ) and the
current symbol read is 0. Then the state of the machine M’ is the column vector
a = (0,0,a1,a2,0,0,0,0)7. Now, the choice of the permutation P = (4,1, 3,2)
would mean that, the component should change to 1 after the application of V2.
This is essentially accomplished by the operation T(P) x (F (o) x a). Suppose V.2 x
(a1,a2)T = (b1, by), then the above operation (T' x F x «) would result in the state
B = (by,b2,0,0,0,0,0,0)” in consistence with the description of the correspondence
of states in M’ to states in M.

Since V! is unitary for all i, F(o) is also unitary (F(o)FT (o) = I). Also, it
is evident that, the transition matrices are unitary too (since there is exactly one 1
in each row (column) with the rest being zeroes, the rows (columns) are linearly
independent). Now,

Vi ={T(P) x F(0) | P & Pu}

Thus, M’ simulates the function of M, provided the allowed permutations in M’
clearly reflect the mode of transition of M. In the "*-mode” of transition, since
a transition from the current component ¢ to some component j can occur at any
instant, P,; includes all permutations over C'. ie., all permutations are valid, since
any permutation specifies a valid transition between components for M. Hence,
when V' is constructed as above, using the permutations in P,;, M’ simulates M
exactly. Since the event of choosing any of the matrices from V is equally likely, all
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permutations are equally likely, which means that, the probability of switching from
the current component i to a component j is the same as that of switching to any
other component k (There are equal number of permutations that take component
i to component j, as there are for transitions from i to k). Also, it is easy to see
that, acceptance in M’ is defined in exact correspondence to observables in M, and
the initial state is defined consistently.

Thus, M' is exactly equivalent in behaviour to M, and hence
L(M,” x —mode”) = L(M").

Case-ll: a =7 =k”

The proof for the "=k mode” is very similar to that of the ”"*-mode”. The
derivation is looked in the following way. The system M, is looked upon as an
equivalent system
M = (Q,5, V'L VI2 ... VIE V2 ... V™ D qo, Quees Qrej, O), where for all i,
Vit of M” is a component created by an exact replication of V? of M, and now, the
transitions are to be forced between components 11 and 12, etc... whereas, there is
a choice in transition between ik and j1, for any 7,5 € C. This is accomplished by
constructing the MC-2gfa-MOb M’ in the same way as before, except for a change
in Py. All permutations are not allowed, since as said above, some transitions
are to be forced. Hence, only permutations that translate ij to i(j + 1), if j < &k
and to ml otherwise, are allowed. The transition matrices corresponding to these
permutations are constructed and V] are constructed as before, by premultiplying
the function matrix with these matrices. Then, M’ simulates M exactly, and hence,
L(M,” =k —mode”) = L(M").

Cases-lll and IV: a =" < E”|” > k"

The proof for these cases is exactly similar to that of the previous cases. The
key to the proof lies in the fact that, the mode of transition in M can be exactly
simulated in M’ by appropriately defining P,; by identifying the permutations that
specify valid transitions of components for M.

6.2 Result

Hence, any D-2qfa-MOb is exactly reducible to a MC-2gfa-MOb, for any of its modes
of acceptance. Combining this result with the equivalence of MC-2qfa-MOb and
2gfa-MOb, the following result is also true. For any D-2qfa-MOb M, there exists
a 2qfa-MOb M’, such that, L(M,a) = L(M'), for any a € {x,= k, < k,> k}. In
the case of M being a D-2gfa-MOb with one-sided bounded error € for acceptance,
then, a 2qfa-MOb M’ can be constructed with, L(M, «,e) = L(M',9) such that,
le — Y| < g, for any arbitrarily small c.

7 D-1qfa-MOb

In a way exactly similar to 2-qfa, distributed and multiple choice 1-gfa can also be
defined. The corresponding results also hold good here, once multiple observables
are allowed. Thus, both D-1qfa-MOb and MC-1qfa-MOb are equivalent in power to
the 1gfa-MOb with single choice, and acceptance with certainty, whereas, in the case
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of automata with bounded error, D-1gfa-MOb and MC-1gfa-MOb can simulate the
behaviour of 1gfa-MOb arbitrarily closely.

8 Conclusion

Thus, in this work, first, quantum automata were generalized to include multiple
observables. Then, distribution was attempted. Multiple Choice quantum automata
and Distributed quantum automata were considered, in lines with classical NFA and
distributed finite state automata, and it is found that, the power of these automata
are the same as that of the simple quantum automata with multiple observables and
single choice. But the question as to whether allowing multiple observables results
in increase in power (whether the 2qfa-MOb are more powerful than 2gfa) has not
been answered in this work.
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