Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varji and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 158 - 169, 2004.

On Cooperating Distributed Grammar Systems
with Competence Based Start and Stop Conditions

Jiirgen Dassow

Otto-von-Guericke-Universitat Magdeburg
Fakultat fiir Informatik

PSF 4120, D-39016 Magdeburg
dassow@iws.cs.uni-magdeburg.de

Abstract

We define cooperating distributed grammar systems with start and stop
conditions which are based on the competence of a component on the current
sentential form. We distinguish six different types of competence conditions
which result in 18 types of grammar systems. We summarize the results on
the generative power known from the literature (where they are sometimes
not related to competence) and determine the power of some further grammar
systems.

1 Introduction

Cooperating distributed grammar systems were firstly investigated by R. Meersman
and G. Rozenberg in [14]. A systematic study of these systems was started in [6].
Summaries of results are given in [9] and [11].

Intuitively, a cooperating distributed grammar system (CD grammar system for
short) consists of some grammars or sets of productions which work on a common
sentential form. A certain grammar, for which the start condition holds, starts the
derivation, and it has to stop the derivation, if a certain stop condition is satisfied.
Then another component satisfying the start condition continues the derivation until
the stop condition holds etc.

Mostly one has considered the case where the start condition is true for any
grammar and any sentential form and the stop condition is satisfied iff the derived
sentential form y is obtained by & (or > k or < k) direct derivation steps with respect
to the chosen grammar or the grammar contains no rule which can be applied to y.

The idea behind these conditions was as follows. CD grammar systems have a
motivation in the blackboard architecture of Artificial Intelligence. Here the gram-
mars correspond to agents/experts, the nonterminals represent open problems and
the application of a rule is a step to the solution. Thus the above conditions can
be interpreted such that k& (or > k or < k) steps can be contributed to the solu-
tion. Therefore the stop condition is only satisfied if the component has a certain
competence. However, this does not really reflect competence, because in the k-
step derivation we can replace the same nonterminal in any step, i.e., we contribute

158

On CDGS with competence based start and stop conditions

only to a special subproblem and not to all subproblems. Therefore the condition
considered in [14] is more appropriate, where the start condition requires that any
nonterminal occurring in the sentential form can be replaced, i.e., the agent can con-
tribute to any subproblem; we call this restriction full competence of the grammar
on the sentential form.

In this paper we define the competence as the number of subproblems which
can be (partially) solved by the grammar. Formally, the competence of a set P of
productions on a sentential form x is the cardinality of the intersection of the set
of nonterminals occurring in = and the set of nonterminals which can be rewritten
by P. Now one can define competence k (or > k or < k or # k) and maximal and
full competence. This leads to 18 types of CD grammar systems where the start
condition as well as the stop condition is one of the competence types mentioned
above or a negation of such a competence type.

We summarize the results on the generative power of such CD grammar systems
obtained by M. ter Beek, E. Csuhaj-Varji, M. Holzer, Gy. Vaszil and the author
and add the results on two further systems.

The paper is organized as follows. In Section 2 we recall the definitions of some
language families to which the families studied in the paper will be related. In
Section 3 we introduce the concept of a cooperating distributed grammar system
and the competence conditions. Section 4 contains the results. We finish with some
remarks on topics of research to be done in this area.

2 Some Language Families

For an alphabet V', we denote the set of all (non-empty) words over V' by V* (and
V', respectively). The length of a word w € V* is denoted by |w|. For a letter
a € V and a word w € V*, #,(w) denotes the number of occurrences of a in w.

A contezt-free grammar is specified as a quadruple G = (N, T, P, S) where

— N and T are disjoint alphabets of nonterminals and terminals, respectively,

— P is a finite subset of N x (N UT)*, and

— S is an element of N.
Instead of (A, w) for an element of P, we shall write A — w. Elements of P are called
context-free rules. We set Vo = N UT. The derivation process in a context-free
grammar and the generated language are defined as usually (see e.g. [17]).

A Russian parallel grammar is a quintuple G = (N, T, Py, P,, S), where

— N, T, and S are specified as in a context-free grammar, and

— P, and P, are finite sets of N x (N UT)*.
z € Vg directly derives y € V7 (written as = y), iff one of the following
conditions hold:

—z=1'A2", y = 'wz" for some z’, 2" € Vi and A - w € P, or

—x =x0Az1Aze .. . Tp_1Azn, n > 0,2, € (Ve\{A})* for1 <i<n, A—>wehP,
and y = LoWIT LWL ... Tp_1WTny-
The language L(G) generated by the Russian parallel grammar G is defined as

LG)={z|z€eT", S=" 2z},

159

J. Dassow

where =* is the reflexive and transitive closure of =.

A random context grammar is a quadruple G = (N, T, P, S) where

— N, T and S are specified as in a context-free grammar, and

— P is a finite set of triples » = (p, R, Q) where p is a context-free production
and R and @) are subsets of V.
G is called a forbidden random context grammar if all rules of P are of the form
(p,0,Q). For z,y € V, we say that z directly derives y, written as z = v, iff there
is a triple r = (A — w, R, Q) € P such that

-z =2'Az" and y = 2'wz” for some z', 2" € V{,

— any letter of R is contained in z, and no letter of Q) occurs in z.
The language L(G) generated by G is defined as

LG)={w|weT", S="w},

where =" is the reflexive and transitive closure of =—.

A extended tabled interactionless L system (ETOL system) is an (r 4+ 3)-tuple G =
(V,T, P, Ps,...P.,w) where

— V is an alphabet, T is a subset of V,

— w is a non-empty word over V and,

—for 1 <14 < r, P is a finite subset of V x V* such that, for any a € V, there is
at least one element (a,v) in P;.
Again, we shall write a — v instead of (a,v). x € VT directly derives y € V*
(written as x = y), if

-z =x1%9...T, for somen >0, xz;, € V, 1 <i<n,

~Y=y1y2...yn and

— there is an j, 1 < j <7 such that z; — y; € Pj for 1 < < n.
The language L(G) generated by the ETOL system G is defined as

L(G)={z|z€T", w=" 2z},

where =" is the reflexive and transitive closure of =—.

A random context ETOL system (RCETOL system in short) is an (r + 3)-tuple
G=(V,T,P,P,,...P,w) where
—for 1 <i<r, P,=(P],R;,Q;) where R; and Q; are subsets of V,
-G =(V,T,P/,P;,... Pl,w) is an ETOL system.
z € VT directly derives y € V* (written as z = y), if
— any letter of R; occurs in z and no letter of (); occurs in z, and
— 2 = y holds with respect P/ in G’
The language L(G) generated by the RCETOL system G is defined as

L(G)={z|z€T", w=" 2z},

where =* is the reflexive and transitive closure of =—.

By L(CF), L(RC), L(fRC), L(rp), L(ETOL) and L(RCETOL) we denote the
families of all context-free languages, random context languages, forbidden random
context languages, Russian parallel languages, ETOL languages and random context

160

On CDGS with competence based start and stop conditions

L(RC)
L(fRC) L(RCETOL)

~

L(ETOL)

|

L(rp)

|

L(CF)
Figure 1:

ETOL languages. For a detailed information on these languages we refer to [10], [12],
[17] and [16].
In Figure 1 we recall the hierarchy of the languages defined above.

3 Cooperating Distributed Grammar Systems

We now present the notion of cooperating distributed grammar systems.

A cooperating distributed grammar system (for short, CD grammar system is an
(n 4 5)-tuple
G = (NaTaPIaPQa"'aPnaSaCaCI)7

where

— N is a set of nonterminals and T is a set of terminals,

— for 1 <14 < n, the component P; is a set of context-free productions,

— S € N is the start element,

— ¢ is the start condition and ¢’ is the stop condition, i.e., ¢ and ¢’ are predicates on

{({Pw)|PCNx(NUT)"and w e (NUT)*}

(the conditions are defined on pairs consisting of a set of context-free productions
and a word).
We say that
T=T)—> T] —> T2 — ... —=> Ty = Y

is a derivation with respect to P; and the conditions ¢ and ¢’ (written as z =%)
if

— ¢(P;,) is true,

—for1 <j <m+1, z; = x4 is a direct derivation step using a production of P;
—for 1 <j<m-—1, d(P;,z;) is not true, and

— (P, y) is true or y contains no letter of dom(P;).

161

J. Dassow

The language generated by G consists of all words z over T such that there is
derivation
S =z :>}Bi1 21 :>Z‘2 29 :>}Bi3 :>*Pim Zm = Z.

In this paper we discuss CD grammar systems where the start and stop conditions
depend on the competence of the components to work on the sentential form. The
competence is formalized in the following way.

Let N and T be two disjoint sets (of nonterminals and terminals, respectively).
Further, let V.= NUT and let P C N x V* be a (finite) set of context-free
productions and w be a word over V. We set

nt(w) ={A| A€ N and #4(w) > 1}
(i.e., nt(w) is the set of nonterminals which occur in w),
dom(P)={A| A— w € P for some w € V*}

and
comp(P, w)) = #(nt(w) N dom(P)) .

We say that P has

competence k on w ifft comp(P;,w) =k,

competence < k on w iff comp(P;,w) <k,

competence > k on w ifft comp(P;,w) >k
(P w)

maximal competence on w iff comp

full competence on w iff nt(w) C dom(F;).

The most obvious idea is to require that a component can start a derivation if it
has a certain competence A and has to stop if it does not have the competence A.
Therefore besides the competence conditions introduced above we have to consider
the negations of the above conditions. Clearly, the negations can also be used as
start conditions. Obviously, P has not competence > k (< k) iff it has competence
< k—1(>k+1, respectively). Therefore we get the following additional notions.

P; has competence # k on w iff comp(P;,w) # k,

P; is not maximal competent on w iff thereisa P;, 1 <j<mn,i# j,

with comp(Pj, w) > comp(P;, w),

P; is not fully competent on w iff there is an A € nt(w) with A ¢ dom(P;).
By these definitions, competence of P; on w is given, if dom(P;) contains at least
one element of nt(w). Thus we also formulate:

P; is competent on w it comp(P;,w) > 1,

P; is not competent on w iff comp(P;, w) = 0.

We use the following abbreviations for the competence conditions (in the order of

their definition):

=k, <k, >k, maz, full, # k, -maz, —full, comp, ~comp .

162

On CDGS with competence based start and stop conditions

Because comp and > 1, # 1 and > 2 as well as < 1 and = 1 coincide, we can restrict
to k£ > 2 and have to add the condition = 1.
As an example we consider the CD grammar system

G = ({S’AaBaAlaB”F}7{a‘abaC}aPlaPQaP3aP4aP57P6787ma$7_'max)a
P = {S—)AB},

P, = {A—ab B — c},
Py = {A—aA'b, B F},
P, = {A' > F,B— B},
P = {A'— A B'— F},

Ps = {A— F,B'— B}.

Obviously, after the application of P;, P, and P have maximal competence. If we
apply P», then we have to terminate the derivation and get abe. If we apply P;, we
only can apply A — aA’b and loose the maximal competence. We have to apply in
succession B — B’c of Py, A — A of Ps and B’ — B of Ps and obtain aAbBc (if we
apply the other rule of the components we get a sentential form containing F' and
we cannot terminate the derivation). We can iterate this process. Therefore

L(G) = {a"b"c" | n > 1}

Note that we cannot combine an arbitrary competence condition as start condition
with another arbitrary competence condition as a stop condition. Obviously, we
cannot take the same condition as start condition as well as stop condition, because
by definition the component can start the derivation but it also has to stop the
derivation, which is impossible. However, there are also other situations of this
type. For instance, full and maz cannot be taken as start and stop condition,
respectively, since any full competent component is maximal, too.

Moreover, we have to exclude those combination which do not allow terminating
derivations. For instance, this situation occurs in the case of start condition > 4
and stop condition < 2. If a derivation starts then the sentential word has at
least four nonterminals. However, if the derived sentential form contains at most 2
nonterminals, we have to stop the derivation (and no component can continue the
derivation by the start condition). Therefore we cannot derive terminal words. This
situation also occurs if we have stop conditions of the types < k with & > 2, =1
and comp.

Furthermore, we shall exclude such situations where the start condition as well
as the stop condition can be satisfied, but it is not necessarily true that both have
to be valid. For instance, if N = {A, B,C} and the start condition requires the
competence > 2 and the stop condition requires competence > 3, then the derivation
can start start on AB, but it cannot start on ABC' since the start condition as well
as the stop condition are satisfied. The pairs (maz, full) and (full,= k) with &k > 2
of start and stop conditions can also lead to conflicts.

Taking all these restrictions into consideration we have to investigate the follow-
ing pairs of of start conditions and stop conditions, where k > 2 and [> 2:

163

J. Dassow

(a) (full, = full), (full,=comp), (max,—maz), (mazx,—comp), (comp,—comp),
(=1,—comp), (>1,—comp), (<1,~comp), (=1,-comp), (=1,> k),
(=1,=k),
(b) (full,—mazx), (=full, full), (=full,—~comp), (—=maz, mazx),
(<l,=k)and (<1,> k) withl <k, (=1,=k) with | # k,
(=1,>k) withl < k, (#k,=k)
By L(c,d') we denote the family of all languages which can be generated by CD
grammar systems with the start condition ¢ and the stop condition /. If we restrict
the CD grammar systems which have at most n components, then we denote the
corresponding family of languages by L, (c,c).
By definition, we have the following statement.

Lemma 1 For any n > 1 and any pair (c,c') of start and stop conditions,

‘Cn(ca C’) - ['n-l-l(ca C’) C E(Ca cl) :

4 Results

In this section we present the results which — at least partially — give the place of
some families £(c, ') within the hierarchy given in Figure 1.

Theorem 2 ([6]) For any n > 3,

L(CF) = Ly(comp,—~comp) = Lo(comp, —comp)
C Ly(comp,—~comp) = L(comp,—comp) = L(ETOL) .

Theorem 3 ([14], [5], [4]) For any n > 3,

L(CF) = Li(full,~full) C Lo(full, ~full)
C Lo(full, —full) = L(full, ~full) = L(RC).

Theorem 4 For any n > 3,

L(CF) = Ly(full,~comp) C Lo(full, ~comp)
C Ly(full,—~comp) = L(full,—comp) = L(ETOL) .
Proof. L(full,—comp) C L(ETOL). Let L € L(full,—comp). Then L = L(G) for
some CD grammar system G = (N, T, P, Py, ..., P.,w, full, mcomp). We set
N = NuU{A'|Ae N}U{F},
‘ B a ifa€dom(P)uT
hila) = { a if a ¢ dom(F;)
Qi = {A—=hi(w)|A—-wePRP}U{B— F|B¢dom(P;)}, for1 <i<n,
Q = {A'— A|Ae N},
G = (NlaTa QlaQ?a"'QTaQawacompa ﬁcomp)

for 1 <17 <mn,

164

On CDGS with competence based start and stop conditions

Let 1 <4 < n. If a word = contains a symbol B ¢ dom(P;), then Q; derives in G’ from
2 a word containing the letter F'. Since there is no rule with left-hand side F' in any
component of G’, we cannot terminate the derivation. Therefore in a terminating
derivation we can only apply a component @Q; to z if nt(z) N (N \ dom(F;) = 0,
or equivalently, nt(x) C dom(F;), i.e., P; is fully competent on z. Therefore Q; is
applicable in a terminating derivation in G’ to z if and only if P, is fully competent
on z if and only if P; is applicable to = in G.

Moreover, in both cases we only stop if the component is not competent on
the derived sentential form. Since we introduce primed versions of the letters of
N\ dom(P;) applying Q; we obtain

r=py iff =70 hi(y).

Furthermore, no component @; with 1 < i < n is competent on h;(y) since it only
contains primed letters and terminals. Thus we have to continue with () which
replaces all primed letters A’ by their original A. Thus

r=py it =0 hily) =0v.

This implies L(G) = L(G"). By Lemma 2, L = L(G) = L(G") € L(ETOL).

L(ETOL) C L3(full,~comp). In [6], Theorem 3, iii), it has been shown that,
for any ETOL language L, there is a cooperating distributed grammar system G =
(N, T, Py, Py, P3, S, comp,—comp) such that L = L(G). Moreover, it is easy to see,
that any component of G is competent on a sentential form z if and only if it is
fully competent on z. Hence G' = (N, T, Py, P, P, S, full, mcomp) generates L, too.
Thus L(ETOL) C L3(full,~comp).

By Lemma 1, we obtain
L(ETOL) C L3(full,—comp) C Ly (full,~comp) C L(full,—~comp) C L(ETOL)
for any n > 4, which implies
Lo (full,—~comp) = L(full,—~comp) = L(ETOL)

for any m > 3. Obviously, L(CF) = L1(full,—~comp). Now the assertion follows by
Lemma 1. O

Theorem 5 ([7]) L(rp) C L(maz,~maz) C L(RC).
Theorem 6 L(max,—comp) = L(RCETOL).

Proof. L(RCETOL) C L(maz,—~comp). Let L € L(RCETOL). Then there is a
random context ETOL system

G = (‘/a T7 (PlaRla Ql)a (P25R27Q2)5 sy (P’NRWQT)’UJ)
such that L = L(G). Let

V = {alaa25"'aan}a
Ri = {ai71,ai’2,...,ai7si} forlgigr.

165

J. Dassow

We set

N = {d]aeV}u{d'|aeV}U{A4,S,F}U{B;|1<i<n+1}
Ufdijp|1<i<r1<j<si+21<k<n+1},

Zinit = {S—=Adij11Ai12. . Aignaw' |1 <i<r}
U{S = B1B;...Bpyjw'},
Zin = {Bi—>XA|[1<i<n+1}U{d = F|d e N\T'}U{d - alaeT},
Zij = {Aijk— Aijiig | 1<k <n+1}uU{a; - d;
for1<i<nr,1<j5<s,
i = {Aijr = Ak | 1<k<n+1}U{A - F}
for1 <i<nr1<j<s,
Zigiv1 = {Aist1p = Aok | 1<k <n+1}U{d 2 a"[a eV \Qi}
Ut > FlbeQi}for1 <i<r,
Zigivas = {Aisitok = A 1<k<n+1}U{d" = |a—=ueP}

U{A = AAy11Ai10. . Aiip | 1 <3 <71}
U{A—)BlBQ...Bn+1} for 1 <1< T,

!
G = (Na T, Zinit, Zfina Zl,la Z1,2 SRR Zl,s1+2a Z2,1a SRR Zr,sr+2a
! ! ! ! !
Zi1: 219 Ly g3 Lotse s Ly s, Sy maz, ~comp) .

If we start a derivation in G’ (from S) we get AA;114;12...Ai1pr1w for some i,
1 S 1 S r, or 3132 .. .Bn+1w'.

We now discuss the continuation of the derivation of a sentential form of type
B1By...B,1v" where v is a sentential form of G. Since v’ contains at most n
different letters, Z;, is the only component with maximal competence and we derive
the terminal word v or a word containing an occurrence of F, i.e., the derivation
cannot be terminated. If v is a terminal word, then v € L(G) as well as v € L(G").

Now let us consider the derivation starting from AA;;14;12... Ai’L,H_lv’ for
some %, 1 <7 < r and some sentential form of G. Now ZZ(’1 has maximal competence,
and its applications yields a word containing F' such that we cannot terminate
the derivation. If a;-’l is present, then Z;; has also maximal competence, and its
application yields AA;91A4;99...4;2n+101 where v is obtained from v’ by replacing
any occurrence of a;’l by a;-”l. Therefore we cannot terminate the derivation or all
letters of R; are present in v and we have a derivation

*

! *
AAigaAing. . Aiinnv =7, ... =7z, Adir 1142 Aipni vz

where all occurrences of primed versions of letters of R; in v’ are replaced by their
doubly primed versions to obtain vo. Now Z; ., 1 is the only component with max-
imal competence, and its application yields a word containing F', if v’ contains a
primed version of a letter in @Q;, or we get AA;, 1214;r,422 ... Air+2n+10". Now
we have to apply the only component Z; ;.. | o with maximal competence which results
in AAi’,l,lAi’,1,2 ce Ai/71,n+1zl or B1By... Bn+1z' where v —p 2 is a derivation step
in the RCETOL system G.

166

On CDGS with competence based start and stop conditions

Hence we can simulate in G’ all derivations in G, and any terminating derivation
In G’ corresponds to a derivation in G. Therefore L(G') = L(G) = L which proves
L € L(max,-comp).

L(maz,—~comp) C LIRCETOL). Let L € L(maz,-~comp). Then L = L(H) for
some CD grammar system H = (N, T, Py, P,..., P,, S,max,—comp). Obviously,
for any word w € (NUT)*, the set nt(w) uniquely determines the set of components
which are of maximal competence on w. Let f : 2V — 2{P1:P2»Pn} he the function
where f(M) is the set of components which have maximal competence on words w
with M = nt(w).

We now construct the random context ETOL system H' with the the underlying
alphabet V.= NUT U{A} U{[i] | 1 < i < n}U{Ay | M C N}, the terminal
alphabet T', the start word AS and the following tables:

({A— Ay} U{z >z |z e V\{A}},{AYUM,N\ M) for M C N

(this table is only applicable to a word Av with M = nt(v), i.e., by this table we
determine nt(v), and we obtain A,,yv),

Ay = i) | Pe f(M)}U{z—z|zeV\{An}}, {An},0) for M C N
by this table we derive [i]v from A,;(, v, where P, has maximal competence on v),
(v)

([= [}V P U{z = 2|z € V\ (dom(B;) U {[i]}}, {[i]}, 0)
([i] = Ay U{z =z [z € V\ {[i]}}, {[d]}, dom(F))

(by these tables, in H' we obtain a derivation
[i]v = [i]v1 = [i]Jve = ... = [i]om, = Az
where v =}, z holds in G, P; has maximal competence on v and F; is not competent

on z),

{A—=ANU{z—z|ze N\{A4},{4},N)

(we cancel A and produce a word over T'). By the explanations added to the tables,
it is easy to see that L(H') = L(H) = L which proves L € L(RCETOL). O

Theorem 7 ([1]) L(fRC) C L(=1,> 2) C L(RC).
Theorem 8 ([8]) L(=1,—-comp) = L(> 1,—~comp) = L(ETOL).
Theorem 9 ([8]) For all k > 2, L(= k, ~comp) = L(> k,—comp) = L(RCETOL).

Theorem 10 (/8]) For all k > 1, L(< k,—~comp) = L(ETOL).

167

J. Dassow

5 Concluding Remarks

In the preceding section we have characterized — in some cases only partially — the
families given in item (a) in the list at the end of Section 3. We do not know any
result on the families mentioned in item (b) such that the generative power of these
families has to be studied.

Above we have mentioned that some combinations of start and stop conditions
do not allow the derivation of terminal words. Especially, this holds for the combi-
nations (= k,# k) and (> k,< k — 1) for any & > 2. In order to get terminating
derivations in these cases one has some possibilities.

In [1] and [2] the authors allow that there is a special terminating phase. If this
phase is started, then the component has to stop with a terminal word and for all
intermediate sentential forms of this step the competence of component is at most
k.

Another approach is presented in [3] where in each derivation of a component
one has to perform a parallel derivation as in L systems.

For the classical types of stop conditions hybrid systems have been introduced,
i.e., the start and stop condition is not associated with the system, it is only associ-
ated with a component, and the start conditions and/or the stop conditions can be
different for different components (see e.g. [15] and [13]). Such hybrid systems can
also be defined if one uses competence based start and stop conditions.

References

[1] M. ter Beek, E. Csuhaj-Varji, M. Holzer and Gy. Vaszil, On competence in
cooperating distributed grammar systems. Submitted, 2004.

[2] M. ter Beek, E. Csuhaj-Varji, M. Holzer and Gy. Vaszil, On competence in
cooperating distributed grammar systems, part II. Submitted, 2004.

[3] M. ter Beek, E. Csuhaj-Varji, M. Holzer and Gy. Vaszil, On competence in
cooperating distributed grammar systems with parallel rewriting. Submitted,
2004.

[4] H. Bordihn, On the number of components in CD grammar systems. In: E.
Csuhaj-Varji and Gy. Vaszil (Eds.), Proceedings of the Conference on Descrip-
tional Complexity of Formal Systems, Budapest, 2003.

[5] H. Bordihn and E. Csuhaj-Varji, On competence and completeness in CD
grammar systems. Acta Cybernetica 12 (1996) 347-361.

[6] E. Csuhaj-Varji and J. Dassow, On cooperating/distributed grammar systems.
Journal of Information Processing and Cybernetics (EIK) 26 (1990), 49-63.

[7] E. Csuhaj-Varjd, J. Dassow and M. Holzer, On a competence-based cooperation
strategy in CD grammar systems. Submitted, 2004.

[8] E. Csuhaj-Varju, J. Dassow and M. Holzer, CD grammar systems with compe-
tence based entry conditions in their cooperation protocols. Submitted, 2004.

168

On CDGS with competence based start and stop conditions

[9]

[10]

[11]

E. Csuhaj-Varjui, J. Dassow, J. Kelemen and Gh. Paun, Grammar Systems -
A Grammatical Approach to Distribution and Cooperation. Topics in Computer
Mathematics 5, Gordon and Breach Science Publishers, Yverdon, 1994.

J. Dassow and Gh. Piun, Regulated Rewriting in Formal Language Theory.
EATCS Monograph on Theoretical Computer Science 18, Springer-Verlag,
Berlin-Heidelberg-New York, 1989.

J. Dassow, Gh. Paun and G. Rozenberg, Grammar systems. In: [17], Vol. II,
Chapter 4, 155-213.

J. Dassow, Gh. Piun and A. Salomaa, Grammar with controlled derivations.
In: [17], Vol. II, Chapter 3, 101-154.

H. Fernau, M. Holzer and R. Freund, Hybrid modes in cooperating distributed
grammar systems: internal versus external hybridization. Theor. Comp. Sci.
259 (2001) 404-426.

R. Meersman and G. Rozenberg, Cooperating grammar systems. In: J.
Winkowski (ed.), Proceeding Mathematical Foundations of Computer Science
1978, Lecture Notes in Computer Science 64, Springer-Verlag, Berlin, 1978,
364-374.

V. Mitrana, Hybrid cooperating/distributed grammar systems. Computer and
artrificial Intelligence 12 (1993) 83-88.

G. Rozenberg and A. Salomaa The Mathematical Theory of L Systems. Aca-
demic Press, New York, 1980.

G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages. Vol. I —
IT1, Springer Verlag, Berlin-Heidelberg-New York, 1997.

169

