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Abstract

Dassow and Mitrana [2] introduced a new type of grammar system called
splicing grammar system in which communication is done by splicing of strings.
Thus segments of sentential forms determined by given splicing rules are ex-
changed. In this paper, we consider simple splicing rules in these grammar sys-
tems and thus obtain four types of simple splicing grammar systems (SSGS),
namely, < 1,3 >, <2,4> < 1,4>, <2,3>55GS. As< 1,3 > and < 2,4 >
types of SSGS are equivalent and < 2,3 > and < 1,4 > types of SSGS become
equivalent, there are essentially two types. Various properties of simple splicing
grammar systems are obtained by considering different component grammars.
We prove that context free simple splicing grammar systems with two com-
ponents can generate context sensitive languages. Moreover systems with two
regular components can generate nonlinear and context-free languages.

1 Introduction

The theory of Grammar Systems [1] is an intensively investigated area of Formal
Language Theory providing an effective grammatical framework for capturing several
phenomena characteristic of multi-agent systems such as cooperation, distribution,
communication, parallelism etc. The basic idea in a grammar system is to consider
several usual grammars and to make them cooperate in order to generate a common
language. In parallel communicating grammar systems, the components are genera-
tive grammars working on their own sentential forms in parallel and communicating
by request.

Motivated by the behaviour of DNA sequences under the influence of restriction
enzymes and ligases, Head [3, 4] defined splicing systems that make use of a new
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operation, called splicing on strings of symbols. The idea here is that given two
strings, each of these is “cut” at suitable “sites” and “pasted crosswise” yielding
new strings. Dassow and Mitrana [2] introduced a new type of parallel commu-
nicating grammar systems by replacing communication by splicing of strings, thus
exchanging segments of sentential forms determined by given splicing rules. Paun
[6] has investigated splicing grammar systems improving the results of [2].

Mateescu et al [5] have considered simple splicing systems that make use of
splicing rules that are as simple as possible. In this paper we examine splicing
grammar systems by requiring the splicing rules to be simple in the sense of [5].
Various properties of the resulting simple splicing grammar systems are obtained by
considering different component grammars.

2 Preliminaries

For basic results of formal language theory one can refer to [7]. For notions and
results pertaining to grammar system we refer to [1]. We denote the family of
regular and context-free languages by REG and CF respectively.

For an alphabet V', the set of all words over V' is denoted by V*and the empty
word by A; moreover V't = V* — {A\}. We recall the definition of a simple splicing
system [5].

Definition 1 A simple splicing system is a triple
I = (V, A, M)
where V is an alphabet, A C V* is a finite set of axioms and M C V.

The elements of M are called markers. One can consider four types of languages
over V*, corresponding to the splicing rules of the forms

a#Sa#, #aS#a, a#S#a, #aSa#

where a is an arbitrary element of M. These four rules are respectively called splicing
rules of type < 1,3 >, < 2,4>, < 1,4 >, < 2,3 >.

Clearly splicing rules of types < 1,3 > and < 2,4 > yield the same result and
for x,y,z € V* and a € M we obtain
(z,y) Fi(1,3> z iff x = z1ax9,y = y1ays, z = xT1aYy9, for some z1,T9,y1,y2 € V*

For the other types, the splicing is performed as follows:
(z,9) F&y 45 2 iff 2 = 71079,y = Y10y, 2 = T100Y2, for Some T1,72,y1,92 € V"
(z,y) Feo3s 2 iff 2 = w1072,y = Y10y, 2 = 21Y2, for some x1, 29, y1,9y2 € V™

We now define simple splicing grammar systems.

Definition 2 A < 1,3 >-simple splicing grammar system (< 1,3 >-SSGS)of degree
n is a construct

I'= (NaTa (Sl,Pl),(SQ,PQ),'“,(Sn,Pn),M)

where
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(i) N, T are disjoint alphabets and P;, 1 < i < n are finite sets of production rules
over NUT.

(ii) M is a finite subset of (NUT)#$(N UT)# with #, § two distinct symbols which
are not in NV U7T. Each element of M is a < 1,3 >-simple splicing rule.

The sets P; are called the components of I'. We can consider grammars of the
form G; = (N,T,S;,P;), 1 < i < n. By a configuration, we mean an n-tuple
consisting of words over N U T.

For Two configurations,

= (21,29, -, xy), ; E (NUT)*N(NUT)*, 1 <i<n

Y= (Y1,y2,- 5 yn), ¥i E(NUT)*, 1 <i<n

we define x = y if and only if any of the following two conditions holds:

(i)for each 1 < i < n, z; =p, yi,

(ii) there ex1st 1<1 ] <n such that

xz—max xj—x; J,
Y = x;a:vljl, yj = m am , for a#$a# € M, and
Yp = T, for k #£ 1, j

In the derivation z =1 y, in < 1,3 >-SSGS, (i) defines a rewriting step, but (ii)
defines a < 1, 3 >-splicing step, corresponding to a communication step in a parallel
communicating grammar system. There is no priority of any of these operations
over the other.

A < 2,3 >-simple splicing grammar system is analogously defined.

Definition 3 A < 2,3 >-simple splicing grammar system (< 2,3 >-SSGS) of de-
gree n is a construct

I'= (NaTa (Sl,Pl),(SQ,PQ),'“,(Sn,Pn),M)

where

(i) N, T are disjoint alphabets and P;, 1 <4 < n are finite sets of production rules
over NUT.

(ii) M is a finite subset of #(NUT)$(N UT)# with #, § two distinct symbols which
are not in NV U 7T .Each element of M is a < 2,3 >-simple splicing rule.

The sets P; are called the components of I'. We can consider grammars of the
form G, = (N, T,S;,P;), 1 <i < n. By a configuration, we mean an n-tuple con-
sisting of words over N UT.

For Two configurations,

= (21,29, xy), ; E (NUT)*N(NUT)*, 1 <i<n

Y= (Y192, 5 yn), i E(NUT)*, 1 <i<n

we define x = y if and only if any of the following two conditions holds:
(i)for each 1 < i < n, z; =p, yi,

(ii) there exist 1 < 4,5 < n such that

T = m;-a:v” z; = :v;a:v;/,

Yy = x;x;l, yj = m aam , for a#$a# € M, and

Yk = Tk, fork#z j.
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In the derivation z =1 y, in < 2,3 >-SSGS, (i) defines a rewriting step, but (ii)
defines a < 2,3 >-splicing step, corresponding to a communication step in a par-
allel communicating grammar system. Again there is no priority of any of these
operations over the other.

Moreover at any instant only one splicing operation can take place in the <
1,3 >-SSGS and < 2,3 >-SSGS.

Also < 1,3 >-SSGS and < 2,4 >-SSGS are essentially the same. Likewise
< 2,3 >-SSGS and < 1,4 >-SSGS are the same by definition.

The language generated by the i component is defined by
Li(T) = {z; € T*|(S1, S92, -, Sn) =™ (z1, 22, -+, xy), zj € (NUT)*, j#1i},
where =* is the reflexive and transitive closure of the relation =.

Two kinds of languages [2] can naturally be associated to a simple splicing gram-
mar system. One of them is the language generated by a single component and,
because no component is distinguished in any way , we may always choose the lan-
guage generated by the first component. This language will be called the individual
language of the system.

The second associated language will be the total language, namely

Example 1 Consider the < 1,3 >-SSGS with reqular rewriting rules. Let
Iy = (N,T,(S1, P1), (S2, P2), M),

N ={51,52,A,B}

T = {a,b,c}

P ={S1 —aA, A—aA, A—c}

P, ={Sy —» ¢B, B—bB, B — b}

M = {c#3c#}

This system produces the languages

Li(Ty) = {a"cb™|n > 1} U {a"¢c|n > 1}

LQ(Fl) == {cb"|n Z 0}

Here the total language is

Ly ={a"ct"|n > 1} U{a"¢c|n > 1} U {cb"|n > 0}

Example 2 Consider the < 1,3 >-SSGS with context free rewriting rules. Let
Iy = (N, T, (51, 1), (52, ), M),

N =1{51,59, A, B}

T ={a,b,c,d}

P, ={S1 — aAbd, A — aAb, A — ab}

Py, ={Sy —» decB, B— cB, B —c}

M = {d#8d#}

This system produces the languages

Li(Ty) = {a™b"dc"|n > 1} U {a"b"d|n > 1}

LQ(Fl) = {dc”|n Z 0}

Here the total language is

L; = {a"b"dc"|n > 1} U {a™b"d|n > 1} U {dc"|n > 0}
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We denote the family of individual languages generated by simple splicing grammar
systems of degree n, with components of type X by IssgsLy(X).

Similarly we denote the family of total languages generated by simple splicing gram-
mar systems of degree n, with components of type X by T'ssgsL,(X).

where X € {REG,CF}.

Remark (i) In Example 1 and Example 2, if we use the < 2,4 >-splicing rules
instead of the < 1,3 >-splicing rules i.e. M = {#c$#c} in Example 1 and M =
{#d$#d} in Example 2 , without changing the rewriting rules, then we obtain the
same languages in Examples 1 and 2 .

(ii) In Example 1, if we use the < 2,3 >-splicing rule #c$c#, instead of the
< 1,3 >-splicing rule , without changing the rewriting rules, then we obtain the
following languages:

Ly(Ty) = {a"c?b"|n > 1} U {a"b"|n > 1} U {a"c|n > 1}
Ly(Ty) = {eb"|n > 1} U {} U {e}
Li(T1) = {a"c?b"n > 1} U {a"™b"|n > 1} U {a"c|n > 1} U {cb"|n > 1} U {c?} U {}

In Example 2, if we use the < 2,3 >-splicing rule #c$c#, instead of the < 1,3 >-
splicing rule , without changing the rewriting rules, then we obtain the following
languages.

Ly(T9) = {a™"d?c"|n > 1} U {a™b"c"|n > 1} U {a™b"d|n > 1}

Ly(Ty) = {dc"n > 1} U {d?*} U {e}

Li(T1) = {a™b"d?c"|n > 1} U {a™b"c"|n > 1} U {a™b"d|n > 1}
U{dc®n > 1} U {d?} U {e}

3 The Regular and CF Cases

Lemma 1 Let ' be a regular < 2,4 >-SSGS of degree n, Then a regular < 2,4 >-
SSGS of degree n, T, exists such that Li(T") = L1(T")

Proof. Let
I'= (NaTa (Sl,Pl), (827P2)a"' ) (SnaPn)aM)a

be a splicing grammar with the above mentioned property. For proving the assertion,
we construct the system

I'= (NlaTa (Slapl)a (‘927Pé)7' o (SnaPrlL)aM)a

where
N' = NU{X}
Pl={A—aB|A—aB€eP}U{A—aX|A—a€P},2<i<n.

By this construction, all languages L;(T"),2 < i < n, become empty and L;(T")
Ly(T) or, in other words, L;(I) = Ly(T").

o

The above result holds for < 1,3 >-SSGS systems also because these two systems
are equivalent.

Theorem 1 ForY € {I,T},
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1. For X e {REG,CF}, X =Y 3>859sL1(X)
2. REG C Y<13>559sLa(REG)
3. CF C Yc135559sLa(CF)

4. Yo1358895Lo(REG) contains nonlinear languages.

Proof. The first statement immediately follows from definitions. The second state-
ment is a consequence of example 1. The third statement is a consequence of example
2.

As far as the last statement is concerned, the individual language generated by
the following < 1,3 >-splicing grammar system is the non-linear language
L= {a"cb"a™db™|n,m > 1}:

= ({Sl,SQ,A,B,X, Y, Z}, {a,b, C, d}, (Sl,Pl), (Sl,Pl),M)

P, ={S - aA,A— aA,A— cX,B—aE,E — aE,E — dZ}
P,={Sy - ¢B,B—bB, X —»dY,Y - bY,Y — b}
M = {c#3c#, d#Sd+#}
A derivation in I' runs as follows:
(S1,82) =T (a"c| X, ¢|b"B)
= (a"cb" B, cX)
= (a"cb"aF, cdY)
= (a"cb"a™E, cdb™ 1Y)
= (a"cb"a™d| Z, cd|b™)
= (a"cb"a™db™, cdZ),
for some n and m > 1. Hence we get
Li(T) = Ly(T) = {a"cb"a™db™ | n,m > 1} and Ly(T') = ¢ 0

Theorem 2 Y5 3-5595Lao(REG) also contains nonlinear languages.

Proof. In the proof of the fourth statement in Theorem 1, a < 1,3 >-SSGS splicing
grammar system was constructed which generated a nonlinear language. In this, if
we use < 2,3 >-splicing rules instead of < 1,3 >-splicing rules, i.e if we change the
rules in M as

M = {#tcSc#, #dSd#}

we obtain
Ly(T) = Ly(T) = {a™"a™b™ | n,m > 1}U{a"b"a™d?b™| n,m > 1}U{a"c*b"a™d*b™|
n,m > 1} U {a"c2b"a™b™| n,m > 1} and Lo(T') = ¢. This proves the result. O

We show that there is an infinite hierarchy of the classes Y3 3~ s5gsLy(CF')for in-
creasing n.

Theorem 3
CF = Y.33-559sL1(CF) C Yco35559sLo(CF) C -+- C Yeo3sssgsL,(CF) C ---
whereY denotes the total language or the individual language generated in the system
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Proof. We consider the following Y 2 3> ssgs simple splicing grammar system

I'= ({Sla"'as’mAla" 'aAnaDla' "aD’n}a{aab}a (Slapl)a (‘927P2)a" a(S’mPn)aM)
with

P = {Sl — aAlbDl, A1 — aAlb,Al — ab}

Py, = {SQ — DlaAQbDQ, A2 — G,Agb, A2 — ab}

P, ={S, = Dp_1aApb, Ay, — aAnb, Ay — ab}

M ={#DSDi# :1=1,2,---,n+ 1}
A useful sample derivation is as follows:
(Sl, SQ, cee Sn) = (aAlbDl, DlaAQbDQ, e ,Dn_laAnb)

=1 (e 1AbP 1Dy, D1a? ' AgbP ' Dg, -+, Dy_1aP L AP )
= (apb”|D1, D1|a”b”D2, s Dn_lapbp)

= (aPbPaPbP|Ds, , Do|aPbP D - -, Dyy_1aPbP)

= (aPbPaPb? - .- aPb?, D? D3,--- D2_))
Therefore we obtain I«9 35 5sgsLy,(CF) = T<g355595L,(CF) = {(a?bP)"| p > 2} U
{€}.

We can see that L(I") is not in Y9 355595 L, —1 (CF). In fact in any component we
can generate with CF rules only strings of the form a"b" prefixed with a nonterminal
or suffixed with a nonterminal or both but not strings of the form a™b"c”. When
we splice strings from two components we get strings whose structure is similar to
a”b"c"d" but we cannot get strings with structure similar to a™b"c"d"e" f™ with two
components. Continuing this argument, we find then L(I') cannot be generated by
a Y<23>5sgs language with n — 1 components. O

Theorem 4 Y 53.559sLo(REG) — CF # ¢
Proof. Consider the following < 2,3 >-simple splicing grammar system
I'= ({Sla ‘927 Aa B, Ca D}a {aa ba ¢, d}7 (Sla P1)7 (SQ, PQ)a M)

P ={S —aS,5 - eA, X - cX,X -dD,C — ¢}
Py,={Sy —-dB,B—bB,B—eX,A— cA,A— cC,D — dD}
M = {#eSe#, #dSd#}
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A derivation in I' runs as follows.
(Sl, SQ) — (aSl, dB)
=T (a"15;,db" B)
= (a"tteA,db"e|X)
= (a"t1 X, db"e%A)
=1 (@™ X, db"e?c™ A)
= (a"*'c™|dD, d|b"e2c™ L)
= (an+1cmbn620m+10’ dQD)
= (an—l—lcmbneQCm—l—Q’ d3D)
Clearly, this language is Context-sensitive but not CF. This proves the result. O

In [2], in the conclusion, the question of whether the hierarchy YsgsL,(REG) C
YsgsLn+1(REG),Y € {I,T}, is infinite, is left open. But the splicing operation is
not restricted to be simple. Here we prove that the hierarchy is indeed infinite.

Theorem 5 REG =Y sgsLi(REG) C YsgsLy(REG) C
-+ CYsgsL,(REG) C - --

Proof. We consider the following splicing grammar system. Let

I'= ({Sla'”ﬂsnaAla'” aAn}a{aab}a (Slapl)a (527P2)7' 1(Snapn)aM)

where for ¢ < n and ¢ odd,

P, = {Sz — ciAi, A, — aAi, A — aDi_H}

and for ¢+ < n and i even,

P, = {SZ' — CiAi, AZ' — bAi, Az' — bDZ'+1}

Fori=mn

P, ={S, = cnAn, An — aAn, Ay, — a} if nis odd

P, ={S, = chAn, Ay — bA,, Ay — b} if n is even

M ={#DSc;# |1 <i<n}

We prove the result for n even. Similar arguments hold when n is odd
For n even, the derivation is as follows

(Sla SQa Tty Sn) = (ClAl, CQAQa e aCnAn)

:>+ (Clam_lAl, Cgbm_lAQ, SRl Cnbm_lAn)
= (clam|D2, 02|me3, s ,cnbm)

= (Clambm|D2, CQDQ, C3|amD3, SR Cnbm)
= (c1a™b™ -+ -a™b™, caDa, c3 D3, - -+, cnDy)

Therefore we obtain for n = 2,4,6, ...

Y 5gsL,(REG) = {c1(a™b™)"?|m > 1}

and for n =1, 3,5, ...

YsgsL,(REG) = {c1a™(b™a™)"D/2|m > 1}.

It can be seen that L(T") is not in YsgsL,_1(REG) as it cannot be generated by
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a Ysgs language with n — 1 components. In fact with only one component strings
of the form ¢;a™ or ¢;™ can only be generated. But when there are two compo-
nents simple splicing of strings generated in the components gives strings of the
form ¢;a™b™. Extending this idea it is seen that the language specified needs n
components. a

4 Conclusion

Using simple splicing rules, we have examined the power of splicing grammar systems
with regular and CF component grammars. It remains to be seen how does this
compare with parallel communicating grammar systems.
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