Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varji and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 179 - 199, 2004.

Modelling Grammar Systems by Tissue P Systems
Working in the Sequential Mode

Rudolf Freund, Marion Oswald

Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, A-1040 Wien, Austria
{rudi,marion}@emcc.at

Abstract

We consider tissue P systems where rules are applied when moving through
a channel from one cell to another one. In a very general manner (i.e., work-
ing on arbitrary objects as strings, arrays, graphs, etc.), these tissue P systems
equipped with the sequential derivation mode allow for the representation of hy-
brid co-operating grammar systems using the classic basic derivation modes *, ¢
and < k,= k,> k, for k > 1, as well as the internally hybrid modes (> kA < ¢)
for k,£ € N,k < {,and (tA < k), (A =k), (tA > k), for k > 1. Moreover, we
also show how these tissue P systems working in the sequential mode allow for
the simulation of random context grammars, too.

1 Introduction

For the many variants of P systems (introduced as membrane systems in [24]) in-
vestigated so far we refer the reader to [25] for a comprehensive overview as well
as [28] for the actual state of research. We assume the reader to be familiar with
the original definitions and explanations given for these models, as going into more
details would go far beyond the scope of an introductory article to a new field of
applying the ideas of membrane computing as this one is intended to be. In this
paper, we consider a general model of tissue P systems that will allow us to model
hybrid co-operating grammar systems when working in the sequential derivation
mode, which result will be established for arbitrary object types, e.g., strings and
arrays.

Co-operating distributed (CD) grammar systems first were introduced in [20]
with motivations related to two-level grammars. Later, grammar systems became a
vivid area of research after relating CD grammar systems with Artificial Intelligence
(AI) notions [2], such as multi-agent systems or blackboard models for problem
solving [22]. A first survey on grammar systems is given in [4]. The main idea of
(hybrid) CD grammar systems is the co-operation of several components (“agents”)
on the same sentential form; non-deterministically, one component takes the senten-
tial form, performs some derivation steps, and according to some specific stopping
condition returns it back such that another component may continue the work.
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There are several ways to formalize this collaboration. The following (derivation)
modes have thoroughly been investigated in the literature:

e —=F: the component which takes the sentential form in order to work on it
has to perform at most k& derivation steps.

e —=F: the component ... has to perform exactly k derivation steps.

e —2F: the component ... has to perform at least k derivation steps.

e —!: the component ... has to perform as many derivation steps as possible.
e —>*: the component ... can perform arbitrarily many derivation steps.

In CD grammar systems, all components work according to the same mode. In
hybrid CD grammar systems introduced by Mitrana and Paun in [21, 23], different
components may work in different modes. In a series of papers on hybrid modes in
CD grammar systems, the internally hybrid modes (> kA < ), for k,/ € N,k <
L,and (tA<Ek), (tA=k), (tA > k), for k > 1, were considered: [7] introduced
hybrid modes in CD array grammar systems as a natural specification tool for array
languages, [15] investigated accepting CD grammar systems with hybrid modes,
while [14] as well as [1] stressed descriptional complexity issues. In [12], results on
the combination of the modes ¢ and > k were presented, in [13], results on the
combination of the modes ¢ with the modes < k£ and = k were presented. Most
parts of [12, 13, 14] are contained in the report [9].
The internally hybrid modes informally can be described as follows:

o —(2k1A<k2): the component which takes the sentential form in order to work
on it has to perform at least k1 and at most k9 derivation steps.

o —(A2k). the component ... has to perform as many derivation steps as
possible, and at least k steps.

o —("=K). the component ... has to perform as many derivation steps as
possible, and exactly £ steps.

o —(A<k): the component ... has to perform as many derivation steps as
possible, and at most k steps.

Combinations (x A f) for f € {x,t}U{ < k,=k,> k,| k € N } are only an alternative
notation of the original mode f.

The rest of the paper is organized as follows: In the next section, we start
with introducing a general model for (sequential) grammars as well as for random-
context grammars and ordered grammars, and then we recall some notions for string
grammars and array grammars in the general setting used in this paper. In the third
section, we define a general model of grammar systems covering the variants of hybrid
co-operating distributed grammar systems considered above. In the fourth section,
we define the general model of tissue P systems with channel rules to be used in the
following section for modelling hybrid co-operating distributed grammar systems of
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arbitrary types. In the sixth section, we show how random-context grammars can
be simulated by tissue P systems with channel rules. Some results for the array and
the string case that can be derived from the general results proved in the preceding
sections are recalled in the seventh section. An outlook to future research concludes
the paper.

2 Preliminary Definitions

The set of integers is denoted by Z, the set of non-negative integers by Ng and the set
of positive integers by N. An alphabet V is a finite non-empty set of abstract symbols.
Given V, the free monoid generated by V under the operation of concatenation is
denoted by V*; the elements of V* are called strings, and the empty string is denoted
by A; V*\ {A} is denoted by V. For more details on formal language theory we
refer to [6] and [30].

2.1 Grammar schemes

In the following, we shall deal with various types of objects and grammars, hence,
we first define a general model of a grammar scheme:
A grammar scheme G is a construct

(O,Or, P,—>¢) where

O is the set of objects;

Or C O is the set of terminal objects;

P is a finite set of productions;

= C O x O is the derivation relation of G induced by the productions in P.

The derivation relation = is obtained as the union of all =,C O x O, i.e.,
=>q:= Upep =), where each =, is a relation which we assume at least to be
recursive. The reflexive and transitive closure of = is denoted by :*>c;.

In the following we shall consider different types of grammar schemes depending
on the components of GG, especially with respect to different types of productions.

Based on grammar schemes of specific types, we now define the notion of a
(sequential) grammar.

Let G = (0,01, P,—>¢) be a grammar scheme. Then the pair (G,w) with
w € O is called a grammar, w is the aziom (start object).

The language generated by (G,w) is the set of all terminal objects (we also
assume v € Op to be decidable for every v € O) derivable from the axiom, i.e.,

L(G,w):{UEOT|w:*>Gv}.

The family of languages generated by grammars of type X is denoted by £ (X).
In many cases, the type X of the grammar scheme allows for the following feature:
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A type X of a grammar scheme is called a type with unit rules if for every
grammar scheme G = (O,Or, P,=—>¢) of type X there exists a grammar scheme
G = (0,0r,PUPT, =) of type X such that

o Pt ={p*|peP}
e for all z € O, p is applicable to z if and only if p™ is applicable to z, and

e for all z € O, the application of p™ to z - in case p™ is applicable to z - yields
z back again.

2.2 Random-context grammars and ordered grammars

Let G = (0,01, P,=—>¢) be a grammar scheme of type X.
A random-context grammar scheme Gpre of type X is a construct

(Ga Plapa f7 :>GRC)
where

e P’ is a subset of P;

e p is a function assigning a set of permitting productions from P to each pro-
duction in P’;

e f is a function assigning a set of forbidden productions from P to each pro-
duction in P’;

® —> G, is the derivation relation assigned to G rc such that for any z,y € O,
T =>G,e v if and only if z = y by some ¢ from P’ and, moreover, at least
one production from p(q) is applicable to x as well as no production from f(q)
is applicable to .

A random-context grammar is a pair (Ggrc,w), where w € O is the aziom. A
random-context grammar (scheme) is called a grammar (scheme) with permitting
context if f(q) = () for every ¢ € P' and a grammar (scheme) with forbidden context
if p(q) = 0 for every g € P'. The families of languages generated by random-context
grammars, by grammars with permitting context, and by grammars with forbidden
context of type X are denoted by L (X-RC), L(X-pC), and L (X-fC), respectively.
Obviously, for any arbitrary type X, £L(X-yC) C L(X-RC) for y € {f,p}.
An ordered grammar scheme Go of type X is a construct

((O’ OT,P, :>G) < :>GO)

where < is a partial order relation on the productions in P and = ¢, is the deriva-
tion relation assigned to G such that for any z,y € O, v =, vy if and only if
x = y by some ¢ from P and, moreover, no production r with r > ¢ is applicable
to .

An ordered grammar is a pair (Go,w), where w € O is the aziom. The family
of languages generated by ordered grammars is denoted by £ (X-0).
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In the general setting used in this paper, the model of ordered grammars is very
much related with the model of grammars with forbidden context:

Theorem 2.1. For every ordered grammar Go of type X we can construct a
grammar with forbidden context Gic of type X such that L(Go) = L(Gyc), ie.,
L(X-0) C L(X-fC) for any arbitrary type X.

Proof. Let G = (0O,0r1,P,—>¢) be a grammar scheme of type X and let
(G, <,=>@,) be an ordered grammar of type X. Then we construct the grammar
with forbidden context (G, P, f,=q fc) of type X by defining

fa)={plp>q}
for all ¢ € P. Obviously, by this construction L (Go) = L (Gy¢). O

The reverse inclusion only holds true for grammars with forbidden context that are
not using additional rules in the sets of forbidden rules:

Theorem 2.2. For every grammar with forbidden context Gtc of type X with
((O’ OT,P, :>G) 7Pa f’ :>ch)

we can construct an ordered grammar Go of type X such that L(Gsc) = L(Go).

Proof. We construct the ordered grammar ((O, Or, P,=>¢), <,=¢q,,) by defining,
for all ¢ € P,

p>qifand only if p € f(q).
Obviously, by this construction L (Gf¢) = L(Go) . 0
2.3 String grammars
A string grammar scheme usually is defined as a construct
(N, T, P) where
e N is the alphabet of non-terminal symbols;

e T is the set of terminal symbols, N NT = (;

e P is a finite set of productions of the form u — v with v € V* and v € V*,
where V := NUT.

In the general notion of the preceding subsection, a string grammar scheme G now
is represented as

((VUT)* ,T*,P, :>G)

183



R. Freund, M. Oswald

where the derivation relation for u — v € P is defined as usual by zuy =, VY
for all z,y € V*, thus yielding the well-known derivation relation = for the string
grammar scheme G. A string grammar then is a pair (G, S) where S € V — T is the
start symbol.

As special types of string grammars we consider string grammars with arbitrary
productions, context-free productions of the form A — v with A € N and v € V*,
M-free context-free productions of the foorm A — v with A € N and v € VT,
(right-)regular productions of the form A — v with A € N and v € TV UT,
the corresponding types of grammars denoted by ENUM, CF, CF_), and REG,
thus yielding the families of languages £L(ENUM), i.e., the family of recursively
enumerable languages, as well as L (CF), L(CF_,), and L (REG), i.e., the families
of context-free, A-free context-free, and regular languages, respectively. Observe that
the types ENUM, CF, and CF_) are types with unit rules (of the form w — w for
w — v € P), whereas the type REG (in the definition given above) is not a type
with unit rules (therefore, we often allow regular productions to be of the general
form A — v with A € N and v € T*V UT™).

2.4 Arrays and array grammars

In this subsection we introduce the basic notions for n-dimensional arrays and array
grammar schemes and array grammars (e.g., see [16], [29], [31]).

Let d € N. Then a d-dimensional array A over an alphabet V is a function A :
Z? — VU{#}, where shape (A) = {v € W | A(v) # #} is finite and # ¢ V is called
the background or blank-symbol. We usually write A = {(v, A(v)) | v € shape (A)}.

The set of all d-dimensional arrays over V is denoted by V*¢. The empty array
in V*¢ with empty shape is denoted by A4. Moreover, we define V¢ = V7 \ {A ).

Let v € Z4, v = (vy,...,v4). The translation 7, : Z% — Z? is defined by
7, (w) = w + v for all w € Z¢, and for any array A € V*¢ we define 7, (A), the
corresponding d-dimensional array translated by v, by (7, (A)) (w) = A (w — v) for
all w € Z%. The vector (0,...,0) € Z¢ is denoted by Q.

A d-dimensional array production p over V is a triple (W, Ay, As), where W C
Z? is a finite set and A; and Ay are mappings from W to V U {#} such that
shape (A1) # 0. We say that the array By € V*¢ is directly derivable from the array
By € V*@ by the d-dimensional array production (W, Ay, Az), i.e., B; =, By, if and
only if there exists a vector v € Z¢ such that By (w) = Bs (w) for allw € Z\ 7, (W)
as well as By (w) = Ay (T—y (w)) and By (w) = Ag (17— (w)) for all w € 7, (W), ie.,
the sub-array of By corresponding to A; is replaced by A, thus yielding Bs.

A d-dimensional array grammar scheme is a grammar

((N uT)*, T P, jg) where

e N is the alphabet of non-terminal symbols;
e T is the set of terminal symbols, N NT = (;

e P is a finite set of array productions over V, V := NUT;
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e — is the derivation relation induced by the array productions in P according
to the explanations given above, i.e., for arbitrary By, By € V*¢, By = B,
if and only if there exists a d-dimensional array production p = (W, A1, As) in
P such that By = Bs.

A d-dimensional array production p = (W, Ay, As) in P is called

o #-context-free, if shape (A1) = {Qq}; a d-dimensional #-context-free array
production p = (W, A1, A3) in the following will be represented in the form
A1 (Q4) = As (Qg) {(v, A2 (v)) |v € U} with U =W — {Q4}.

e context-free, if it is #-context-free and shape (A1) C shape (Asg);
e strictly context-free, if it is context-free and shape (As) = W;

e regular, if it is strictly context-free and of one of the following forms:

1. A=>b, AEeEN,beT;
2. A= b{(v,C)}, A,C € N,beT, and v is a vector with norm 1.

A d-dimensional #-context-free array production p = (W, A, A3) in the following
will be represented in the form A; (24) — Az () {(v, A2 (v)) |v € U} with U =
W —{Q4}.

A d-dimensional array grammar is a pair (G,w) grammar where G is a d-di-
mensional array grammar scheme and {(vg, S)} with S € N and vy € Z? is the start
array (axiom,).

An array grammar (scheme) is said to be of type d-ENUM A, d-#-CFA, d-
CFA, d-SCFA, d-REGA, respectively, if every array production in P is of the cor-
responding type, i.e., a d-dimensional arbitrary, #-context-free, context-free, strictly
context-free or regular array production, respectively. The corresponding families of
d-dimensional array languages of type X are denoted by L (X). L(d-ENUMA) is
the family of recursively enumerable d-dimensional array languages. Observe that
only the types d-ENUM A, d-#-CF A, and d-CF A are types with unit rules.

3 A General Model for Grammar Systems

In this section we define a general model of grammar systems covering the variants
of hybrid co-operating distributed grammar systems considered in this paper.
Let
G = (07 OTa P7 :>G)

be a grammar scheme of arbitrary type X. A hybrid co-operating distributed gram-
mar scheme Gpop of type X is a construct

(G,Pl, vy P, :>g;’é;f”)> where
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predicate ‘ definition
Q(=k,m,i,y) m=k

Q(< k,m,i,y) m <k
Q> k,m,i,y) m >k
Q(x,m,1,y) m >0
Q(t maiay) —E|Z(y =i Z)
Q((fl/\fQ)amaiay) Q(f1,m,i,y)/\Q(f2,m,z',y)

Table 1: Definition of predicate ) for k¥ € N and fi, fo € B

e P, C P 1<1<mn,n>1, are tables of productions;

. :>g; ’C;f n) is the derivation relation for Ggcp, which is defined as follows:

For two objects z,y € O define x+ =—; y if and only if y can be derived
from x by applying a production from P; according to the derivation re-
lation =>¢:; © ==; y stands for a derivation in m, m > 0, such deriva-
tion steps. Now define the classic basic (derivation) modesB = {x,t} U
{<k,=k,>k|keN} and let D = BU{(CEA</O) |kLeNE</L}U
{(N<Ek),tAN=Ek),(tAN>k) |k € N}. For f € D, we first define a predi-
cate @) (see Table 1) and then the relation :>{ by = :>{ y if and only if
Im > 0: (z = y A Q(f,m,i,y)). For two arbitrary objects =,y € O, now
x :g;c,;fn) y if and only if for some i, 1 <i < n, z :>fl

A hybrid co-operating distributed grammar system Gpcp (HCD grammar system)

of type X is a pair (Ggop,w) where w € O is the axiom. The language generated

by a HCD grammar system is defined as:

L(Gucp) := {u €07 |w :>f” .. :>f:nm Wy, = U

If FF C D, then the family of languages generated by HCD grammar systems of type
X with degree at most n, each component working in one of the modes contained
in F, is denoted by L(HCD,, X, F). In a similar way, we write L(HCD,, X, F)
when the number of components is not restricted. If F' is a singleton {f}, we simply
write L(HCDy,, X, f), where n € N U {x}; in that case, the HCD grammar system
is called a CD grammar system, and we also write Ly (G) instead of L (G) to denote
the language generated by the CD grammar system G¢p in the mode f.

Observe that in the string case usually a hybrid co-operating distributed gram-
mar system Ggop = ((V*,T*,P, ), Pry oy Py, =1 dn)

b ,w) is written in the
HCD
form

(V _TaTa (Plafl)a'“a (Pnafn) 7w)

for some w € V —T.
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4 A General Model of Tissue P Systems with Channel
Rules

In this section we define the general model of tissue P systems in which we are going
to represent the different variants of grammar systems considered in this paper; it
is based on the model of tissue-like P systems with channel states introduced in [17]
and works in the sequential derivation mode (see [18] and [19]).

Let

G= (anTa‘Pa :>G)

be a grammar scheme of arbitrary type X. A tissue P system (of degree m > 1)
with channel rules (tP system for short) IT of type X (—,0,+) is a construct

<G7 m, W, syn, (R(Z,])) (i,j)Esyn’ iO) )

where

e m is the number of cells assumed to be labelled with 1,2,...,m;

e W C O™ are m strings over O representing the initial finite multisets of objects
present in the m cells of the system (we here do not consider communication
with the environment);

o syn C {(i,7) | 4,7 € {1,2,...,m}} is the set of links (also called synapses or
channels, between two cells);

® R; ;) is of the form R, +R or —R, where R C P is a finite set of rules (we say
that R(; ;) is associated with the channel (4, j) € syn); syn and (R(i’j))(i Hesyn
represent the connection graph of II;

e i, €{1,2,...,m} is the output cell.

The computation starts with the configuration specified by W. In each time unit,
a computation step takes place; in the sequential derivation mode (:>ffq“) we first
choose a synapse (i, j) such that,

R if R(; j) = R and the application of a rule from R applied to some object z in cell
1 yields y, then z is removed from cell ¢ and y is added in cell j, or

+R if R; ;) = +R and if each rule from R can be applied to some object z in cell
i, then this object x can move from cell ¢ to cell j remaining unchanged, or

—R if R jy = —R and if no rule from R can be applied to z, then this object = can
move from cell 7 to cell j remaining unchanged.
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Observe that we also allow R = (), i.e., a transition via —{ is always possible (and a
transition via +( is never possible and therefore makes no sense). The reflexive and
transitive closure of the derivation relation =" is denoted by :*>;fqu. If none of
the variants of a derivation step described above is possible for any of the synapses,
then the derivation stops (halts), yet in contrast to many other variants of (tissue)
P systems we do not only consider terminal objects in a halting computation as
results, instead the results of a computation are described by the terminal objects
from Or present in cell i, at any step during an arbitrary computation, i.e., the
language generated by 11 in the sequential derivation mode is defined as

L (11, sequ) = {u €Or | W :*>£ U,u=pri, (U)};

the configuration of II can be described by a vector whose components are the
contents of all m cells 4; pr; is a projection yielding the contents of cell . The
family of languages generated by tP systems of type X (—,0,+) is denoted by
L(tP, X (—,0,4)).

If no synapse R; ;) € syn in II = (G,m,W, sym, (R(i’j))(i’j)esyn,io) is of the
form +R, then we call IT a tP system of type X (—,0), if no synapse R(; ;) € syn
in II is of the form —R, then we call IT a tP system of type X (0,+), and if all
synapses are of the form R only, then we call T a tP system of type X (0). The
families of languages generated by tP systems of type X (—,0), X (+,0), and X (0)
are denoted by L (tP, X (—,0)), L(tP, X (0,+)), and L (tP, X (0)), respectively.

5 Tissue P Systems and Grammar Systems

In this section we give a purely structural proof for the main result saying that
grammar systems of arbitrary type can be modelled by tissue P systems of the same
type working in the sequential derivation mode.

—0

Figure 1: x-mode, = 1-mode, > 1-mode, < k-mode

o=t

1
Figure 2: x-mode in extended variant

Theorem 5.1. For every HCD grammar system Ggcp of type X we can construct
a tP system of type X (—,0) working in the sequential derivation mode such that
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L(Guep) = L (1, sequ), i.e., L(HCD,, X, F) C L(tP,X (—,0)) for any arbitrary
non-empty set of derivation modes F.

Proof (sketch). Let G = (O, Or, P,=>¢) be a grammar scheme of type X and let
GHCD - (G, Pl, ceey Pn’ :}g}l;c'éfn)’w)

be a HCD grammar system of type X. Then we construct the corresponding tP
system

II= (Ga m, W, syn, (R(i,j))(i,j)esyna Z'O)

as follows:
We take cell 1 as starting point of our derivations as well as the output cell 7,
too, i.e.

e W= (w,0,..,0) and

P
Ot
1 2 k

Figure 3: = k-mode

P
G_PQ_P i@p
1 P k

Figure 4: > k-mode

For each pair (P, f;), 1 < i < n, we now construct a number of cells together
with the corresponding synapses; instead of giving formal descriptions, we describe
the structure of the necessary cells and their synapses by illustrative figures; observe
that the “starting point” of all simulations is cell 1.

The derivation modes x, = 1, > 1, < 1, and even < k for k£ > 2 have the same
effect and can be simulated in IT as described in Figure 1, i.e., for a pair (P, f) with
fe{x=1,>1}U{<k |k > 1} we only need a simple loop and only one additional
cell (as a technical detail we mention that we need to go back with a synapse having
assigned —( because each synapse may carry only one —R or R; we could avoid this
by allowing finite sets of such objects assigned to a synapse, which would yield the
even simpler solution depicted in Figure 2.
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Figure 5: t-mode

For a pair (P, f) with f € {=k |k > 2} we need a simple loop with k — 1
additional cells and the structure as depicted in Figure 3.

For a pair (P, f) with f € {> k| k > 2} we again need a simple loop with k — 1
additional cells as well as an additional loop at cell £ and the structure as depicted
in Figure 4.

A pair (P,t) with the -mode needs only one additional cell, but a nontrivial
synapse with — P as depicted in Figure 5.

P

r
r
Y
W B
1 2 k k+1 14

Figure 6: (> kA < £)-mode, k <1

Suitable simulations of the internally hybrid modes (> kA < /), for k, £ € N,k <
¢ (observe that for k¥ = [ the derivation mode (> kA < ¢) coincides with the mode
=k) and (tA < k), (A =k), (tA > k), for k > 1, are illustrated in Figures 6, 7, 8,

and 9. p
—P
1 2 kE+1

Figure 7: (tA < k)-mode

In a depictive way, all the figures explained above show how the tP system II can
easily be constructed from the given HCD grammar system G gop of type X. More-
over, from the given construction we immediately infer L (Ggcop) = L (11, sequ) ;
again we should like to stress that this result holds true for any arbitrary type X.O
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-P
1 2 k+1

Figure 8: (tA = k)-mode

_p
G_PQ_P i@p
1 2 k41

Figure 9: (tA > k)-mode

Now let X be a type with unit rules. Then except for the t~-mode and the hybrid
modes containing the t-mode, tP systems of type X (0) are sufficient:

Corollary 5.2. For every HCD grammar system Gpcp

GHCD — ((Oa OT,P, :>G) apla "'7Pna :>g;7c'éfn)7w)
of a type X with unit rules such that {f1,..., fn} is a subset of
(P U{<k=k2k[k21}U{(ZkAN <) [k LeENE <}

we can construct a tP system of type X (0) working in the sequential derivation mode
such that L(Gucp) = L (11, sequ) , i.e.,

L(HCD,,X,F)C L(tP, X (0))
for any arbitrary non-empty set of derivation modes

FC{lU{<hk=k>k|k>1JU{(>KkA<O)|kLeNE<L}.

1 2

Figure 10: non-t-modes with unit rules

Proof (sketch). In the construction of the tP system in the proof of Theorem 5.1,
the *-mode now can be simulated as shown in Figure 10, where P is the set of unit
rules corresponding to the set of rules P. O
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For more restricted sets of derivation modes, the result of the preceding corollary
even holds for arbitrary types X; moreover, we only need one synapse as shown in

Figure 11:
(I Dm

1

Figure 11: *-mode with unit rules

Corollary 5.3. For every HCD grammar system Gpcp

Gucp = ((Oa OTaPa :>G) s Pryey Py, :>(f1,~--7fn)’w)

Guop

of an arbitrary type X such that
{fi, s fn} C{x,=1,>1}U{< k| k>1}
we can construct the tP system
II=((0,0r,P,=¢q),1,W,{1} ,R( 1), 1)

of type X (0) with R(1,1y = Ui P working in the sequential derivation mode such
that L (Guep) = L (11, sequ); hence,

L(HCD,,X,F)=L(X)CL(tP,X(0))
for any arbitrary non-empty set of derivation modes
FCin=1>1}U{<k|k>1}.

For the inverse inclusion relations we just mention that the tP systems investigated
in this section exactly characterize the corresponding variants of HCD grammar
systems when having the specific connection graphs, i.e., the structures of synapses
and their connections, as described above, the other cells always being arranged
around the output cell, which also carries the only input object.

6 Tissue P Systems and Random-Context Grammars

To prove our next result in the general case, we need channel rules R; ;) of the form
+R (which allows us to check for permitting context or to check for competence as
this is called by Jiirgen Dassow in [5]).

Theorem 6.1. For every random-context grammar Grco of type X we can construct
a tP system 11 of type X (—,0,4) working in the sequential derivation mode such
that L(Gre) = L(I1, sequ), i.e., L(X-RC) C L(tP, X (—,0,4)).

Proof. Let G = (O,Op, P,—>¢) be a grammar scheme of type X and let
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GRC = (GaP’apa f’ :>GR0)

be a random-context grammar of type X with P’ = {q,...,¢,}. Then we construct
the corresponding tP system

I = (G,2n + 1, W, syn, (R j)) (i,j)esyns 1)
by using the simulation described in Figure 12 for every production ¢; in P’, i.e.:
e syn={(l,i+1),(i+1,204+1),(20+1,1) | 1 <i<n};
® Ry =+p(q),1<i<m
® Riyi2i41) = —f (), 1< <m;

® Roip11) =1{q}, 1<i<n.

{ai}

1 1+ 1 21 +1

Figure 12: II simulating Grc

Observe that even in case f(¢;) = @ the simulation still works correctly. In the
case p (q;) = () we have to omit one cell and the channel rule +p (g;) (see Figur 13);
another possibility is to set p(gi) := {¢;} instead, which is always possible, too.
Obviously, by this construction L(Ggre) = L(I1, sequ); again we should like to stress
that this result holds true for any arbitrary type X. O

The following corollaries for grammars with forbidden context G'yc and grammars
with permitting context G,c are immediate consequences of the construction given
in the proof of the preceding theorem:

Corollary 6.2. For any arbitrary type X, L(X-fC) C L(tP,X (—,0)).

Proof. The simulation now works as depicted in Figure 13, i.e., we construct the
corresponding tP system

I = (G,n+1,W,syn, (R ;) ij)esyns 1)
with
o syn={(1,i+1),(i+1,1)[1<i<n};

 Rujpy=—f(a),1<i<my

® R,y =14}, 1<i<n. O
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{ai}
—f(ai)

1 1+ 1

Figure 13: II simulating G ;¢

Corollary 6.3. For any arbitrary type X, L(X-pC) C L (tP, X (0,+)).

Proof. The simulation now works as depicted in Figure 14, i.e., we construct the
corresponding tP system

0= (G,n+1,W,syn, (R ;) ij)esyns 1)
with

{ai}

+p(q:)

1 1+ 1

Figure 14: II simulating G,¢

e syn={(l,i+1),(6+1,1)|1<i<n};
® Rty =+p(q),1<i<m;
o Ry ={a}.1<i<n

As a special technical proof detail we mention that without loss of generality we
may assume ¢; € p(q;) . O

If the underlying type X is a type with unit rules, we do not need channel rules
R; jy of the form +R as is shown in Figure 15 and Figure 16 - observe that in case
of p(g;) = 0 we have to take p(¢;)" = {¢:}" ( = {@:t} ); hence, we obtain the
following results:

{ai}

1 1+ 1 21 +1

Figure 15: II simulating Grc with unit rules

Corollary 6.4. For any type X with unit rules, L(X-RC) C L (tP, X (—,0)).
Corollary 6.5. For any type X with unit rules, L (X-pC) C L (tP, X (0)).
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{ai}

p(qi) "

1 1+ 1

Figure 16: II simulating Gpc with unit rules

7 Tissue P Systems Working on Strings and Arrays

Based on the general result presented in the preceding section, we can immediately
infer the corresponding results for the types of string and array grammars defined
in the second section.

For example, in the string case we cite the following two results from Theorem 19
and Corollary 21 in [13]:

Corollary 7.1. If 0 A F C{=k,> k, (> kA <L),(tAN> k) |2 <k <L}, then

L(HCD,,CF,FU{(tAn = 1)}) = L (ENUM).

Corollary 7.2. Let 0 #F C {+,t} U{< k,=k, >k, (tA> k)| k>1}U
{(ZEN<L) |k, t>1k<L}. Then, for every m > 2,

L(HCD,,CF,FU{(tA =m)}) = L(ENUM).

Obviously, from these results we immediately obtain the following one due to The-
orem 9.1:

Corollary 7.3. For every recursively enumerable string language L we can con-
struct a tP system 11 of type CF such that L (I1,sequ) = L, i.e.,

L(ENUM) = L (tP(—,0),CF).

The structure of the connection graph of the tP system II in Corollary 7.3 depends
on the set of derivation modes F' we take according to Corollary 7.1 or Corollary 7.2.
Moreover, from Corollary 5.3 we immediately obtain the following result:

Corollary 7.4. Let 0 # F C {x,=1,>1}U{<k|k>1}. Then
L(HCD,.X,F) = L(X)

for X € {ENUM,CF,CF_\}U{d-ENUMA,d-#-CFA,d-CFA|d>1}.

Several other results proved in the preceding sections carry over to the case of array
grammar systems of various types (e.g., see [3]), too. Following the results elaborated
in [8] and [11], we even get applications of tP systems of types 2-(#-)CF A in the
area of character recognition, e.g., see [10].

A generalization of the two-dimensional case to arbitrary dimensions of a result
proved in [16] shows that, for any arbitrary dimension d > 1,
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L(d-ENUMA) = L (d-#-CF A-O);
according to Theorem 2.1,

L (d-#-CFA-O) C L(d-#-CFA-fC);
due to Corollary 6.2,

L (d-#-CFA-fC) C L(tP,d-#-CFA(-,0)).

In sum, we get the following result:

Corollary 7.5. For any arbitrary dimension d > 1,

L(d-ENUMA) = L (d-#-CFA-0) =
L(d-#-CFA-fC) = L (tP,d-#-CFA(—,0)).

Without proof we should like to mention that for d € {1,2,3} we could even show
that

L(d-ENUMA) = L (tP,d-#-CF A (0)) .

8 Summary and Future Research

We have shown that hybrid co-operating distributed grammar systems of arbitrary
types equipped with arbitrary classic basic derivation modes as well as internally
hybrid derivation modes can be simulated by tissue P systems with channel rules
of the corresponding types when working in the sequential derivation mode and
with only specific structures of the underlying connection graph. Moreover, we have
shown how random-context grammars can be simulated by tissue P systems, too.
This paper has to be seen as a starting point for future research only. Many
technical details remain for being investigated in a more precise way. Moreover,
we have not considered other models of grammar systems, for example, parallel
communicating grammar systems, as has been done by Gheorghe Paun, see [26].
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