Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varji and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 200 - 211, 2004.

A Possible Connection Between Two Theories: Grammar
Systems and Concurrent Programming

Maria Adela Grando*

Research Group on Mathematical Linguistics, Rovira i Virgili University
PIL. Imperial Tarraco 1, 43005 Tarragona, Spain
mariaadela.grando@estudiants.urv.es

Victor Mitrana

Research Group on Mathematical Linguistics, Rovira i Virgili University
Pl. Imperial Tarraco 1, 43005 Tarragona, Spain,
and
Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 70109 Bucharest, Romania
vmi@fll.urv.es

Abstract

The aim of this paper is to show how PC grammar systems and concurrent
programs might be viewed as related models for distributed and cooperating
computation. We argue that it is possible to translate a grammar system into
a concurrent program, where one can make use of the Owicki-Gries theory and
other tools available in the programming framework. The converse translation is
also possible and this turns out to be useful when we are looking for a grammar
system able to generate a given language.

In order to show this we use the language: L., = {a™b™c"*d™ | n,m > 1},
called crossed agreement language, one of the basic non-context free construc-
tions in natural and artificial languages. We prove, using tools from concurrent
programming theory, that L.y € NPC3(REG) (non-returning PC grammar
systems with regular components) solving an open problem introduced in [2].

We also discuss the absence of strategies in the concurrent programming
theory to prove that L.; ¢ Xo(REG), for X € {PC,CPC,NPC,NCPC}, but
we prove this in the grammar system framework.

Keywords: PC grammar systems, multiprogramming, Owicki-Gries theory.

1 Introduction

In the beginning of computation theory, classic computing devices were centralized,
that is the computation was accomplished by one central processor. But in modern

*This work was possible thanks to the research grant “Programa Nacional para la formacién del
profesorado universitario”, from the Ministry of Education, Culture and Sports of Spain.

200

Grammar systems and concurrent programming

computer science distributed computing systems that consist of multiple communi-
cating processors play a major role. The reason is illustrated by the advantages of
this kind of system: efficiency, fault tolerance, scalability in the relation between
price and performance, etc.

Since 1960, when the concept of concurrent programming [1] was introduced, a
huge variety of topics related to parallelism and concurrency have been defined and
investigated such as operating systems, machine architectures, communication net-
works, circuit design, protocols for communication and synchronization, distributed
algorithms, logics for concurrency, automatic verification and model checking.

The same trend was observed in classic formal language and automata theory as
well. In the beginning, grammars and automata were modeling classic computing
devices of one agent or processor, hence a language was generated by one grammar
or recognized by one automaton. Inspired by different models of distributed sys-
tems in Artificial Intelligence, grammar systems theory [3] has been developed as a
grammatical theory for distributed and parallel computation. More recently, similar
approaches have been reported for systems of automata [10].

A grammar system is a set of grammars, working together, according to a speci-
fied protocol, in order to generate one language. There are many reasons to consider
such a generative mechanism: to model distribution and parallelism, to increase the
generative power, to decrease the (descriptional) complexity, etc. The crucial el-
ement here is the protocol of cooperation. The theory of grammar systems may
be seen as the grammatical theory of cooperation protocols. The central problems
are the functioning of systems under specific protocols and the influence of various
protocols on various properties of considered systems.

One can distinguish two basic classes of grammar systems: sequential and paral-
lel. In this paper we consider the second class, called parallel communicating (PC)
grammar system [14]. In the next section, we recall the basic definitions related
to this model as well as the basic concepts of concurrent programming and Owicki-
Gries theory which is known as the first complete programming logic used for formal
development of concurrent programs.

Owicki-Gries theory [11] and other strategies of programming were developed to
help programmers in the analysis and design of multiprograms. In this paper we
argue that grammar system theory can benefit from the tools already developed in
the programming framework. For example, given a grammar system one can prove
that it generates a specific language by a direct reasoning or one can translate the
grammar system into a multiprogram and prove the same statement by some strate-
gies of programming developed in the well known Owicki-Gries theory. Furthermore,
we propose another approach to solve problems of the following type: Given a lan-
guage find a grammar system that generates the given language. The strategy widely
used so far is as follows: first one proposes a grammar system and then proves by
means of language theory that the proposed grammar system generates indeed the
given language. We give an example of how Owicki-Gries logic of programming
could guide us in obtaining, simultaneously, the grammar systems that generates
the given language and a proof that it really generates it. This new approach might
be of a great benefit for the grammar systems theory. We apply this strategy for a
well-known non-context-free language, namely L.q = {a"b™c"d™ | n,m > 1}.

201

M. A. Grando, V. Mitrana

In [2] it was proved that L.y € CPC4(CF) (see the next section for notations), we
improved this result showing that L.q € NPC5(REG), providing thus a solution to
an open problem mentioned in that work. During the workshop, G. Paun proposed
us a more economical solution with respect to the number of components of the
grammar system, namely L., € NPC3(REG), based on a similar strategy. We
give here, in Section 3, the solution proposed by Piun. As we shall see in the
same section, this is actually the most economical solution. The strategy consists
in translating the problem of finding a non-returning, non-centralized PC grammar
system I' with regular components that generates L4, into the problem of finding
a multiprogram P, with three programs Prog;, ¢ = 1,2,3, running concurrently,
which is correct with respect to the specification:

{(w1 = S1) A (w2 = S2) A (w3 = S3)}P{w1 € Leg}-

Then this multiprogram is translated back into a PC grammar system [' with three
regular components, the whole behavior of I' being similar to that of P. Actually,
this means that the language generated by I' is included in L4 but the detailed
reasoning presented in the third section allows us to conclude the equality.

In this paper we also show that though PC grammar systems theory can benefit
from concurrent programming theory to get positive results, the later theory cannot
provide any strategy to deal with negative results of the type: A given language
cannot be generated by any grammar system of a specified type. This kind of problems
has to be attacked in the grammar system framework, with the tools available there.
We exemplify this with a proof that L.y ¢ NPCy(REG).

2 Preliminaries

An alphabet is a finite and nonempty set of symbols. Any sequence of symbols from
an alphabet V is called word over V. The set of all words over V is denoted by V*
and the empty word is denoted by A. Further, V* =V \ {\}.

For all unexplained notions the reader is referred to [15].

2.1 PC Grammar Systems

A PC grammar system of degree n,n > 1, is an (n + 3)-tuple
I'= (Na Ka T, (Pla Sl)a (PQ, 82)7 (P3783)a seeey (Pna S’n)) ;

where:

— N is a nonterminal alphabet,

— T is a terminal alphabet,

- K ={Q1,Q2,......,Qn} (the sets N, T, K are mutually disjoint),

— P, is a finite set of rewriting rules over NUK UT, and S; € N, forall1 <i < n.

Let Vi = NUKUT. The sets P;, 1 <14 < n, are called the components of the system,
and the elements ()1, Qo,, Q, of K are called query symbols, the index i of Q);
points to the component P; of I'. A component is said to be regular if all its rules

202

Grammar systems and concurrent programming

are right-linear ones. An n-tuple (21,2, ...,) with z; € V¥ forall i, 1 <i <n, is
called a configuration of T'. A configuration (z1, z9,,) directly yields another
configuration (y1, 42, ,yn) if either:

e No query symbols appears in z1, z2,, £, and then we have a componentwise

derivation, z; = y; in each component P;,; 1 < i < n (one rule is used in each
component P;), except for the case when z; is terminal, z; € T*; then z; = y;,
or

e Query symbols occur in some x;. Then a communication step is performed:
every z; (containing query symbols) is modified by substituting z; for each
occurrence of a query symbol @), providing z; does not contain query symbols.
After all words z; have been modified, the component P; continues its work
on the current string (in the non-returning case) or resumes working from
its axiom (in the returning case. The communication has priority over the
effective rewriting: no rewriting is possible as long as at least one query symbol
is present. If some query symbols are not satisfied at a given moment, then
they have to be satisfied as soon as other query symbols have been satisfied.

If only the first component is entitled to introduce query symbols, then the system
is called centralized.
The language generated by a PC grammar system I as above is

L) ={zeT"| (51,52,5)) = (z, a9, ..,), ; € V7,2 < i < m}.

Hence, one starts from the n-tuple of axioms, (Si,S2,....5,), and proceeds by re-
peated rewriting and communication steps, until the component P; produces a ter-
minal string. The component P; is called the master of the system.

The class of languages generated by non-centralized, centralized, non-returning
non-centralized, non-returning centralized PC grammar systems with k regular com-
ponents is denoted by PCy(REG), CPC,(REG), NPC,(REG),and NCPCy(REG),
respectively.

2.2 Programming
2.2.1 Sequential Programming

A sequential program consists in:

— A number of declarations,
— A sequence of instructions or actions.

The actions take place one after another. That is, an action does not begin until the

preceding one has ended. Because a sequential program has a sequence of actions

we consider a program as a transformer of states or predicates (see, e.g., [4] and [7]),

where a state { P} describes the relationships between the variables of the systems

and their values by the predicate P . Each action § transforms the current state of

the system, called precondition of S, to the state {@Q} which is called postcondition.
A Hoare triple is a sequence {P} S {Q} , where:

203

M. A. Grando, V. Mitrana

— § is an action or instruction,
— {P} is a state representing the precondition of S,
- {Q} is a state representing the postcondition of S.

Its operational interpretation is as follows: {P}S{Q} is a correct Hoare triple if
and only if it is true that each terminating execution of S that starts from a state
satisfying P is guaranteed to end up in a state satisfying (). More precisely, if
{P} S{Q} holds and S starts in a state satisfying P, we can be sure that S either
terminates in a state satisfying) or does not terminate at all. Consequently, a
program ought to be annotated in such a way that each action carries a precondition.
In other words, from a logical perspective a sequential program may be viewed as a
sequence of Hoare triples.

We can now formulate the concept of local correctness of a predicate () in a
program. We distinguish two cases:

— If @ is the initial predicate of the program, it is locally correct whenever it is
implied by the precondition of the program as a whole. Also we may say that Q
satisfies the hypothesis of the problem which is to be solved.

— If Q is preceded by {P} S, i.e. by atomic action § with precondition P, it is
locally correct whenever {P} S {Q} is a correct Hoare-triple.

A sequential program is partially correct if all its predicates are locally correct and
the last predicate satisfies the requirements of the problem solved, provided that it
halts. A sequential program is totally correct if it is partially correct and always
halts.

2.2.2 Concurrent Programming

Concurrent execution or multiprogramming means that various sequential programs
run simultaneously. Actions change the state of the multiprogram, so the critical
question now is what happens if two overlapping actions change the same state of
the multiprogram in a conflicting manner.

Now we are ready to formulate what we call the Core of the Owicki-Gries
theory (see [10]). We consider a multiprogram annotated in such a way that the
annotation provides a precondition for the multiprogram as a whole and a precon-
dition for each action in each individual program. Then, by Owicki and Gries, this
annotation is correct whenever each individual predicate is correct, i.e.:

— locally correct as described above and

— globally correct. Predicate) in a multiprogram M is globally correct whenever
for each {P} S, i.e. for each action § with precondition P, taken from a program of
M, {P AQ}S{Q} is a correct Hoare-triple.

To understand how powerful is the concurrent programming, and also how hard
is to prove global correctness we give this simple example:

Example 1 Consider this program:

P ox= y+1; a
z:= y%
Ti= T—Y c

204

Grammar systems and concurrent programming

If we start in an initial state {z = 7 Ay = 3}, it will deliver {z =6 Ay =3} as a
final state.

Example 2 Also consider this simple program.:

P y:= x+41; U
yi= % v
Y= y—2x

When started in the same initial state {x =7 Ay = 3}, it yields {x =7 Ay = 42}.

Now if we run these programs concurrently we will get 20 possible values for x and
y. For instance, one possibility is to run the two programs as follows: a,u, b, v, w,c
(the letters represent the program lines) starting from the same state and get the
output {z = —224,y = 240}. While each of the individual programs is of an
extreme simplicity, their composition leads to a rather complicated output. For
more examples we refer to [5].

Here we can see the analogy: the components of a grammar systems are similar
to the simple programs in a multiprogram. We introduce a proof that shows how to
take advantage of this analogy.

3 Main Result
Theorem 1 L., € NPC3(REG)

Proof. We want to find a non-returning, non-centralized grammar system I' with
regular components that generates L.qy. This problem is transformed into the equiv-
alent problem of finding a multiprogram P that behaves like I' and is correct with
respect to the specification:

{(w1 = S1) A (w2 = S2) A...... A(wp =8p) | n > 1YP{w € Leg}-

The problem remained the same, but we changed the tools to solve it: instead of
induction and analysis by cases available in the framework of grammar systems we
used Logic, Owicki-Gries theory and programming strategies from the programming
framework.

The strategy used for this proof is one frequently used for the development of
programs, called refinement of the problem that consists in:

1. First, start with an outline of the solution, which identifies the basic principle
by which the input can be transformed into the output. Define pre and post condi-
tions for each of the subproblems that are identified as part of the solution for the
hole problem.

For our problem we proposed this idea:
{(wl :Sl)/\(w2 :SQ)/\ /\(wn :Sn)}
Subproblem 1: (Rewrite)?, with p > 1
{(wy = S1) A ... A(w; =aPS;) A ... N (wj = cPSj) A ... A(wn, =8Sp)A(p>1)}
Subproblem 2: (Rewrite; Communication)™

205

M. A. Grando, V. Mitrana

Find a way to stop the productions of a’s and c¢’s, through synchronization by
communication.

{(w1 :aTNl)/\ /\(wk :CTNQ)/\ /\(wn:Sn)/\(’)"Z 1)/\(N1,N2 EN)}
Subproblem 3: (Rewrite)™, with m > 1

{ (w1 = a"b" Q) A A (wg = c"d™ IN3) A ... A (wn = Sp)A }
(rym > 1) A (Q € K) A (N3 € N)

Subproblem 4: Communication

{(w1 = a"b™c"d™ ' N3) A (r,m > 1) A (N3 € N)}
Subproblem 5: Rewrite

{(wy = a"b™c"d™) A (rym > 1)}

or equivalently

{w; € {d"V"c"d" ANr>1|m >1}}

2. Now we make precise the outline indicated, refine the subproblems trying to
find simultaneously the instructions that solve the subproblems and the proof of its
local correctness. We also discuss the difficulties we can have when proving global
correctness.

In our refinement of subproblems 1, 2, 3, 4 and 5 we proposed three programs
Progi, Progs and Progs. These programs forming the multiprogram P, run simulta-
neously behaving like a non-returning, non-centralized grammar system with regular
productions and behave locally correctly with respect to the subproblems that we
have identified in the previous step.

In the case of Subproblem 1 we propose this refinement:

{(wl = 51) A (’UJ2 = 52) 74\ (’UJ3 = 83)}
Subproblem 1: Rewrite™, with n > 1

Prog; rewrites n — 1 times S7 to aS; and then rewrites S; to aA, Progs rewrites
n — 1 times Sy to ¢Sy and then rewrites Sy to ¢B and Progs rewrites n — 1 times Ss
to S3, until it decides to finish the production of a’s and ¢’s, rewriting S3 to Q2.

To be sure that wy = ¢™B when Progs introduces ()2, Progs should not be
able to rewrite Sy, and after Progs introduces B it should rewrite it for another
nonterminal and not introduce B anymore.

The reason why w; = a™ A and wy # a™S; is that this is the only possibility that
do not lead to deadlock, as the states of the next subproblem show.

{(w1 = a"A) A (wa = c"B) A (w3 =Q2) AN(n > 1)}

For Subproblem 2 we propose this sequence of rewritings and communications as a
refinement:

{(wy = a"A) A (wa =c"B) A (w3 =Q2) AN(n > 1)}

206

Grammar systems and concurrent programming

(Communication

{wy =ad"ANwy =c"BAw3g=c"BAn>1}

Rewrite

Progl rewrites A to A’, Prog2 rewrites B to ()1 and
Prog3 rewrites B to D

We do not allow other possibility than

Subproblem 2<{ w; = a"A’ ANwy = c"Q1 ANw3z =c"D.

To be sure that w; = a™ A’ after the rewriting step,
we need Progs to be only defined for A’, and after Prog;
introduces A’ it should rewrite it to another
nonterminal and not introduce A’ anymore.

{wy =ad"A ANwy =c"Q1 ANwg =c"D An > 1}
Communication

{(w; = a"A’) A (wg = c"a"A’) A (wg = c"D) A (n>1)}

In the case of Subproblem 3 this is a possible refinement:
{(w; = a"A’) A (wg = c"a"A’) A (wg =c"D) A (n>1)}
Subproblem 3: Rewrite™! | with m > 1

Prog; rewrites A’ to A” and rewrites m — 1 times A” to bA”, and then rewrites A”
to bQ3, Progy always rewrites A’ to A’ and Prog3 rewrites D to D’, then D’ to D”

and rewrites m — 1 times D” to dD”
{(w1 = a"b™Q3) A (wg = "a"A") A (w3 = "d™"'D”) A (n,m > 1)}

Refinement for Subproblem 4 and Subproblem 5 is very simple:
{(w1 = a"b™Q3) A (wg = "a"A") A (w3 = "d™"'D”) A (n,m > 1)}
Subproblem 4: Communication
{(w1 = a"o™c"d™ D) A (wg = "a"A’) A (w3 = "d™'D”) A (n,m > 1)}
Subproblem 5: Rewrite
Progy rewrites D” to d
{(wy € {a"b™c"d™) A (n,m >1)}}

Equivalently we proposed a non-returning, non-centralized grammar system [with

three regular components, defined in this way:

I'= (N, K7 {a7 b7 G, d}a (Ph Sl)a (PQ, 82)7 (P3a 83))

where:
N = {SlaSQaS37AaA’aA”aBaDaD’7D”}
K ={Q1,Q2,Q3}

Pi=1{8 — a8, 51 — ad, A — A A'—s A7, A7 — hA”, A" — bQs,
D’ — d}

Py = {SQ — CSQ,SQ — CB,B — Ql,A’—> A’}

Py=1{S3 —+ S3,583 — Q2,B — D,D — D’,D’—» D”, D" —» dD"}.

3. The last and hardest step is to prove global correctness. In our case it
means that we have to show using Owicki-Gries theory that the multiprogram P we

constructed satisfies this specification:

{(’11)1 = Sl) A (’UJQ = SQ) A (w3 = Sg)}P{wl € Lcd}-

207

M. A. Grando, V. Mitrana

Furthermore, P outputs the word a"b™c"d" for any input formed by the pair of
positive integers n,m. This is equivalent to prove that L(I') = L.4.

According to how we defined Prog;, Progs and Progs, behaving like G, G and
Gs3, respectively, we propose the following state:

V(w; =a"0"A” Av>1An>0)V (wg =a’"Qs Av>1An>1)V
wy = a’b"cId"D” Nv,n,g > 1AR>0)V (wy =ablctd" Ne, fg,h > 1
(we =¢S5 Nqg>0)V(we=c!BANg>1)
(we =c?Q1 ANqg>1)V (ws =cla" A Ag,r > 1)
A (w3 =8S3) V(w3 =Qa2)V(ws=c"BAn>1)V(w3=c"DAn>1)V
L V(ws =c"D’An>1)V (wg =c"d™D” An>1Am >0)

(l (wy =a"S1An>0)V(wy =a"AAn>1)V (w; =a”A An> 1)V])
A
V()

A

J

But by Owicki-Gries theory of global correctness one can prove that after n rewritings,
with n > 1, the only possible combination of values for the sentential forms wy, wo
and w3 that do not lead to a deadlock, is the one expressed by the state:

{(w1 =a"A) A (wa =c"B) A (w3 =Q2) AN(n>1)}

And from this state it can be proved that the only valid continuation is the sequence
of rewritings and communications described in step 2 of the refinement process, that
reaches to the state containing {w; € {a"0™c"d™ | n,m >}} O

We have proved in the framework of programming that it is possible to generate L4
with a grammar system with three components with regular productions, working in
non-returning, non-centralized way. The strategy we have presented differs from the
traditional approach not in complexity, because the number of cases considered in the
proofs are the same, but in the way of reasoning about the problem. We state that
Owicki-Gries methodology provides more possibilities for reasoning about problems,
in comparison with the strategies used so far in grammar system framework because:

- it allows to reason in a forward or data-driven way, as analysis by cases tech-
niques, but also in a backward or goal-directed way.

The notion of backward reasoning comes from psychology, as it is pointed in [9]
where this description of problem solving occurs: We may have a choice between
starting with where we wish to end, or starting with where we are at the moment. In
the first instance we start by analyzing the goal. We ask, “Suppose we did achieve
the goal, how would things be different- what subproblems would we have solved,
ete.?”. This in turn would determine the sequence of problems, and we would work
back to the beginning. In the second instance we start by analyzing the present
situation, see the implications of the given conditions and lay-out, and attack the
various subproblems in a “forward direction”.

- the division of problems in subproblems is possible because of the theorem: for
any Q {P}So;Si{R} <= {P}So{Q} N {Q}S1{R}. where P,R are predicates and
So, 81 are instructions. Also goals and subgoals are discussed in the psychology text
mentioned above ([9]): The person perceives in his surrounding goals capable of re-
moving his needs and fulfilling his desires... And there is the important phenomenon
of emergence of subgoals. The pathways to goals are often perceived as organized

208

Grammar systems and concurrent programming

into a number of subparts, each of which constitutes and intermediate subgoal to be
attained on the way to the ultimate goal.

These characteristics make Owicki-Gries strategies more related with human way
of reasoning.

Now we want to prove a negative result about grammar systems: There is no
grammar system of any type with two regular components that can generate L.4.
In other words, the solution we proposed is the most economical one with respect
to the number of components. If we translate this problem into the programming
framework, we have to prove that it is not possible to find a multiprogram P with
two programs P; and P, running concurrently, modifying w; and wy in a right-
linear way, that is correct with respect to this specification: {(w; = S1) A (wg =
S9)}P{w1 € {a™b™c"d™ | n,m >}}. But unfortunately we have no strategy or
result in the concurrent programming theory that could help us to reasoning about
this problem. The only strategies available in this framework are: verification that
allows to prove the correctness of a multiprogram with respect to a specification,
and the constructive approach that was exemplified in the previous proof. But
these strategies are useful to get positive results therefore we have to remain in the
grammar system framework to deal with this kind of problems. We solve it with the
tools available there, namely analysis by cases.

Theorem 2 L., ¢ Xo(REG), for X € {PC,CPC,NPC,NCPC}.

Proof. Since PCy(REG) (hence CPCy(REG), too), contains context-free languages
only ([3]), it suffices to prove that L.4 cannot lie in NPCy(REG). Assume that
L.y = L(T") for some non-returning non-centralized grammar system with two regu-
lar components I'. Take w = a™b™c"d™ with arbitrarily large n, m. There exist two
nonterminals A1, Ao such that in the process of generating w the following hold:

(Sl, 52) =" (ZBlAl,:EQAQ),{L‘l,ZEQ € {a, b, c, d}*,
(Ay, Ag) =51 (WA, vAy),u,v € {a,b,c,d}*, uv # X

for some k1 > 1. Here =" denotes a derivation of length p where the communication
steps are also counted. Let (Aj, As) be the first pair of such nonterminals met in the
process with this property. By the choice of w we infer that u € a™ and v € ¢T. First
we note that both v and v, if non-empty, are formed by one letter only. Second, if
one is empty, then the other can be “pumped” arbitrarily many times which leads to
a parasitic word. Third, by the same argument, all the other choices, except u € a™
and v € ¢, lead to parasitic words. Since the subword of w formed by b is arbitrary
long there is a pair of nonterminals (Bj, B2) such that the derivation continues as
follows:

(51,82) =" (ZB1A1,.’L‘2A2) :>rk1 (.’L‘lUrAl,.'L'QUTAQ) :>k
(z1u"y1 By, 220" y2 Bo) — Pko (z1u"y18P By, 220" yot? By) =" (w,)

for some terminal words 1,9, s,t, s € b, positive integers r, p, k, ks, and word «.
Moreover, no communication step appears in the subderivation

(x1u" Ay, zov" Ag) =" (110" y1 B1, 220" y2 Bo) — P2 (z1u"y1 8P By, zov" yot? By)

209

M. A. Grando, V. Mitrana

otherwise either an insufficient number of b’s is generated between the two sub-
words formed by a and ¢ or the generated word contains the subword ¢b which is
contradictory.

Therefore, the following derivation is also possible in I':

(81752) :>* ($1A1a$2A2) :>Tk1 ($1UTA1,£E2UTA2) :>k1k2+k

k k k k k '
(z1u"T*2y1 By, 290"yt Bo) =P (210" TF2y1 8P By, mov yot?TH By) =" (w', o),

for terminal word w' and word «'. However, w' cannot be in L.4, which concludes
the proof. O

We encourage the reader to translate this proof into the programming framework,
where the reasoning is the same, but more explanations are needed.

4 Conclusions

The traditional approach to the problem of finding a grammar system generating
a given language is: first propose a grammar system and then find a proof that it
generates the language.

In this paper we present a new approach, taken from programming framework,
that consists in finding simultaneously the grammar system that generates the given
language and a proof that the grammar system found generates it. We think that
it would be interesting to study this approach deeper trying to apply it to other
well-known languages, or trying to find other programming strategies, apart from
the strategy of refinement of problems shown here, that could be useful in solving
some problems related to grammar system theory.

Until now main efforts in grammar system theory have been dedicated to find
grammar systems with the smallest number of components or different types of
restrictions applied to productions, to show how distribution and communication
can make simple components be very powerful when they work together. So except
for some studies related with computational complexity measure of PC grammar
systems that considers the number of communication between grammars (see for
example [8] and [13]), the most investigated complexity measure has been the number
of grammars that a PC grammar system consist of, which is clearly a descriptional
complexity measure. So a very important matter has been forgotten: the efficient use
of time. The opposite has happened in the programming area (see [6] and [12]), where
the research has been focused in looking for techniques to parallelize algorithms and
to help programmers to design more efficient concurrent algorithms. We propose to
follow some of the methodical approaches developed in the programming framework
to construct more efficient grammar systems.

Also it would be very interesting not only to think how PC grammar system
theory can benefit from concurrent programming, but how programming theory can
benefit from grammar system theory. The lack of strategies in the programming
framework to prove negative results of the type: L # L(I') for a language L and
any grammar system I', make us to think that such problems might be solved by
translating them into the grammar system framework where they can be solved
using the tools available there.

210

Grammar systems and concurrent programming

References

[1] A. Burns, G. Davies, Concurrent Programming, Addison-Wesley, Wokingham,
England (1993).

[2] A. Chitu, PC grammar systems versus some non-context free constructions from
natural and artificial languages, New Trends in Formal Languages (Gh. Paun,
A. Salomaa, eds.), LNCS 1218, Springer-Verlag, Berlin (1997) 278-287.

[3] E. Csuhaj-Varji, J. Dassow, J. Kelemen, Gh. Paun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, (1994).

[4] Dijkstra, W. Edsger, A Discipline of Programming, Prentice-Hall Series in Au-
tomatic Computation (1976).

[5] W. H. J. Feijen, A. J. M. van Gasteren (Eds.), On A Method of Multi-
Programming, Springer-Verlag, Berlin (1999).

[6] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering, Addison-Wesley (1995).

[7] D. Gries, The Science of Programming, Springer-Verlag, Berlin (1981).

[8] J. Hromkovi¢, J. Kari, L. Kari, Some hierarchies for the communication com-
plexity measures of cooperating grammar systems, Theoretical Computer Sci-
ence 127, 1 (1994) 123-147.

[9] D. Krech, R. S. Cruthfield, Elements of Psycology, Knopf, New York (1958)
383.

[10] C. Martin-Vide, V. Mitrana, Parallel communicating automata systems- a sur-
vey, Korean J. Comput. Appl. Math. 7, 2 (2000) 237-257.

[11] S. Owicki, D. Gries, An axiomatic proof technique for parallel programs 1, Acta
Informatica 6 (1976) 319-340.

[12] D. Parnas, P. Clements, A rational design process: How and why to fake it.
IEEE Trans. Software Eng. SE-12(2) (1986) 251-257.

13] D. Pardubskd, On the power of communication structure for distributive gen-

8

eration of languages, Developments in Language Theory, At the Crossroads of
Mathematics, Computer Science and Biology (G. Rozenberg, A. Salomaa, eds.),
World Scientific, Hugapore (1993) 419-429.

[14] Gh. Paun, L. Santean, Parallel communicating grammar systems: the regular
case, Ann. Univ. Buc., Ser. Matem.-Inform, 38 (1989) 55-63.

[15] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-

Verlag, Berlin (1997).

211

