Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varji and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 212 - 224, 2004.

DNA Involutions and Hairpin Structures

Lila Kari

Department of Computer Science, The University of Western Ontario,
London, ON, Canada, N6A 5B7,
lila@csd.uwo.ca

Stavros Konstantinidis

Dept. of Mathematics and Computing Science, Saint Mary’s University,
Halifax, Nova Scotia, B3H 3C3 Canada,
s.konstantinidis@stmarys.ca

Elena Losseva

Department of Computer Science, The University of Western Ontario,
London, ON, Canada, N6A 5B7,
elena@csd.uwo.ca

Petr Sosik

Department of Computer Science, The University of Western Ontario,
London, ON, Canada, N6A 5B7,
sosik@csd.uwo.ca
and
Institute of Computer Science, Silesian University, Opava, Czech Republic

Gabriel Thierrin

Department of Mathematics, The University of Western Ontario,
London, ON, Canada, N6A 5B7,
thierrin@uwo.ca

Abstract

We formalize the notion of a DNA hairpin secondary structure, examining
its mathematical properties. Two related secondary structures are also investi-
gated, taking into account imperfect bonds (bulges, mismatches) and multiple
hairpins. We characterize maximal sets of hairpin-forming DNA sequences, as
well as hairpin-free ones. We study their algebraic properties and their com-
putational complexity. Related polynomial-time algorithms deciding hairpin-
freedom of regular sets are presented. Finally, effective methods for design of
long hairpin-free DNA words are given.

212

DNA involutions and hairpin structures

1 Introduction

A single strand of deoxyribonucleic acid (DNA) consists of a sugar-phosphate back-
bone and a sequence of nucleotides attached to it. There are four types of nucleotides
denoted by A, C, T, and G. Two single strands can bind to each other if they have
opposite polarity (strand’s orientation in space) and are pairwise Watson-Crick com-
plementary: A is complementary to T, and C to G. The binding of two strands is
also called annealing. The ability of DNA strands to anneal to each other allows
for creation of different secondary structures. A DNA hairpin is a particular type
of secondary structure investigated in this paper. An example of hairpin structure
is shown in Figure 1.

cC

GTGAGGGATAGH

CAGTCGCTATC

Figure 1: Hairpin loop.

The reader is referred to [9, 17] for an overview of the DNA computing paradigm.
Study of DNA secondary structures such as hairpin loops is motivated by finding
reliable encodings for DNA computing techniques. These techniques usually rely on
a certain set of DNA bonds and secondary structures, while other types of bonds
and structures are undesirable. Various approaches to the design of DNA encodings
without undesirable bonds and secondary structures are summarized in [15]. For
more details we refer the reader e.g. to [3, 4, 13, 14]. Here we apply the formal
language approach which has been used in [1, 7, 10, 11, 12] and others.

Hairpin-like secondary structures are of special importance for DNA computing.
For instance, they play an important role in insertion/deletion operations with DNA.
Hairpins are the main tool used in the Whiplash PCR computing techniques [19].
In [21] hairpins serve as a binary information medium for DNA RAM. Last, but not
least, hairpins are basic components of “smart drugs” [2].

The paper is organized as follows. Section 2 introduces basic definitions, Sec-
tion 3 presents results on hairpins, and the following two sections define important
variants on the hairpin definition. The first one takes into account imperfect DNA
bonds (mismatches, bulges), the second one is related to hairpin-based nanoma-
chines. We characterize maximal hairpin-free languages via hypercodes and study
their algebraic properties. The hairpin-freedom problem and the problem of maxi-
mal hairpin-free sets are both shown to be decidable in linear (cubic) time for regular
(context-free, respectively) DNA languages. The last section provides methods of
constructing long hairpin-free words.

2 Preliminary Definitions

In this paper we will use X to denote a finite alphabet and X™ its corresponding
free monoid. The cardinality of the alphabet X is denoted by | X|. The empty word

213

L. Kari, S. Konstantinidis, E. Losseva, P. Sosik, G. Thierrin

is denoted by 1, and X = X* — {1}. A language is an arbitrary subset of X*. A
uniform (block) code is a language all the words of which are of the same length k,
for some k£ > 0.

A mapping 9 : X* — X* is called a morphism (anti-morphism) of X* if
P(uwv) = P(u)(v) (respectively ¥(uv) = (v)(u)) for all u,v € X*, and ¢(1) = 1.
See [5] for a general overview of morphisms. An involution 6 : X — X is defined
as a map such that 62 is the identity function. An involution § can be extended to
a morphism or an antimorphism over X*. In both cases 6?2 is the identity over X*
and 671 = 6.

In our examples we shall refer to the DNA alphabet A = {4, C,T, G}, on which
several involutions of interest are defined. The simplest involution is the identity
function e. An antimorphic involution which maps each letter of the alphabet to
itself is called a mirror involution and it is denoted by p. The DNA complementarity
involution +y is a morphism given by v(A) = T, v(T) = A, v(C) = G, 7v(G) = C.
For example, e(ACGCTG) = ACGCTG = p(GTCGCA) = y(TGCGAC).

Finally, the antimorphic involution y<y (the composite function of y and 7y, which
is also equal to yu), called the Watson-Crick involution, corresponds to the DNA
bond formation of two single strands. If for two strings u,v € A* it is the case that
uy(u) = v, then the two DNA strands represented by u,v anneal as Watson-Crick
complementary sequences.

A nondeterministic finite automaton (NFA) is a quintuple A = (S, X, so, F, P),
where S is the finite and nonempty set of states, sq is the start state, F' is the set of
final states, and P is the set of productions of the form sz — ¢, for s,t € §, z € X.
If for every two productions sz1 — t1 and szg — t9 of an NFA we have that z1 # 9
then the automaton is called a DFA (deterministic finite automaton). The language
accepted by the automaton A is denoted by L(A). The size |A| of the automaton
A is the number |S| + |P|.

Analogously we define a pushdown automaton (PDA) and a deterministic push-
down automaton (DPDA). We refer to [6, 20] for detailed definitions and further
information on formal language theory.

3 Hairpins

Definition 1 If 6 is a morphic or antimorphic involution of X* and & is a positive
integer, then a word u € X* is said to be #-k-hairpin-free or simply hp(6,k)-free if
u = zvyf(v)z for some z,v,y,z € X* implies |v| < k.

Notice that the words 1 and a € X are hp(6,1)-free. More generally, words of length
less than 2k are hp(6,k)-free. If we interpret this definition for the DNA alphabet
A and the involution py, then a hairpin structure with the length of bond greater
than or equal to k is a word that is not hp(6,k)-free.

Definition 2 Denote by hpf(6,k) the set of all hp(6.k)-free words in X*. The
complement of hpf (0, k) is hp(6,k) = X* — hpf (6, k).

Note that hp(0, k) is the set of words in X* which are hairpins of the form zvyf(v)z
where the length of v is at least k. In particular, if w € hp(6,k), then w can be

214

DNA involutions and hairpin structures

written as w = zvyb(v)z with |v| = |#(v)| = k for some z,v,y,2z € X*. It is also the
case that hp(0,k + 1) C hp(6, k) for all k > 0.

Definition 3 A language L is called 6-k-hairpin-free or simply hp(0, k)-free if L C
hpf (6, k).

It is easy to see from the definition that a language L is hp(6, k)-free iff X*vX*6(v)X*N
L ={ for all |v| > k.

Ezamples.
(1) Let X = {a,b} with 0(a) = b,0(b) = a. Then:

hpf(0,1) = a* Ub*

This example shows that in general the product of hp(f,1)-free words is not a
hp(6,1)-free word. Indeed, a and b are hp(6, 1)-free, but the product ab is not.

(2) If 6 = «y is the DNA complementary involution over A*, then:
hpf(6,1) = {A,C}Y U{A,G} U{T,C}* U{T,G}*

(3) Let 8 = p be the mirror involution and let u € hpf(6,1). Since 0(a) = a for
all ¢ € X, u cannot contain two occurrences of the same letter a. This implies that
hpf(6,1) is finite. For example, if X = {a,b}, then:

hpf(6,1) = {1,a,b,ab,ba}

We now investigate properties of the languages hp(6, k) and hpf(0,k). Recall that
hp(u, k) is the set of all words containing two non-overlapping mirror parts of length
at least k.

Lemma 1 Consider a binary alphabet X. Then hpf(u,k) is finite if and only if
k<4

Proof. Denote X = {a,b} and consider a word w in the set hpf(u,4). Suppose that
w is arbitrarily long. This word is of the form

w=a"b’...a"™ b,

with ry > 0 and r; > 1, for ¢ > 1, and s, > 0 and s; > 1, for j < n. As w is in
hpf(u,4), one has that r; < 8 and s; < 8, for all 4, and n is arbitrarily large.
Consider now indices 41, %9, j1,J2 such that 1 < 4,49, 71,752 < n. There can be
at most one such index 41 with r;; > 3 — otherwise, both ba® and a3b would occur
in w. By symmetry, there is at most one j; with s; > 3. Moreover, if there is an
index 79 such that r;, = 2, then either there is no other index with this property, or
it is the case that s;, = 1 and 7;,4+1 = 2 and no other index ¢ exists with r; = 2. By
symmetry again, there can be an index j3 such that s;, = 2, and possibly s;,1 = 2,
and no other index j exists with s; = 2. Hence, we have that 7, = 1 for all k
except i1,%9 and possibly 1, n and 49 + 1, and s; = 1 for all indices | except j1, jo

215

L. Kari, S. Konstantinidis, E. Losseva, P. Sosik, G. Thierrin

and possibly 1, n and jo + 1. As w is long enough, it would contain the substring
ababababa, which contradicts the assumption that w € hpf(u,4). Hence, w cannot
be arbitrarily long and, therefore, the set hpf(u,4) is finite.

Now consider the language Ls = (aabbab)™*. The set of its subwords of length 5 is
Subs(Ls) = {aabba, abbab, bbaba, babaa, abaab, baabb}. For its mirror image p(Ls) we
obtain Subs(u(Ls)) = {abbaa,babba, ababb, aabab, baaba,bbaab}. As these two sets
are mutually disjoint, Ls C hpf (u,5).

Finally, notice that for 1 < m < k, finiteness of hpf (u, k) implies also finiteness
of hpf(u, m). Hence the facts that hpf(u,4) is finite and hpf(u,5) is infinite imply
the statement of the lemma. m|

Proposition 1 Let 0 be a morphic or antimorphic involution. The language hpf (6, k)
over a non-singleton alphabet X is finite if and only if one of the following holds:
(a) 0 = ¢, the identity involution;

(b) 6 = p, the mirror involution, and either k =1 or | X| =2 and k < 4.

Proof. (a) Let 0 be a morphism. Assume first that 6 # €. Then there are a,b € X,
a # b, such that 8(a) = b. Then at C hpf(0,k) for any k > 1, hence hpf (0, k)
is infinite.

Assume now that # = € and let w be any word of length > k|X|* + k. Since
there are |X|* distinct words of length k, there are at least two subwords of
length &k in w which are identical. Hence w = zwvyvz for some v € X* and

z,y,z € X*. Therefore hpf(e, k) is finite since it cannot contain any word
longer than k| X|* + k.

(b) Let € be an anti-morphism. Assuming that 6§ # u, the same arguments as
above show that hpf (0, k) is infinite.

Assume now that 8 = p. Apparently hpf(u, 1) is finite as shown in the examples
above. For |X| = 2 we know that hpf(u,k) is finite iff £ < 4 by Lemma 1.
Finally, for |X| > 2 and k > 1 the language hpf(u, k) is infinite as it always
contains the hp(u,2)-free set (abc)* (regardless to renaming the symbols).

O

3.1 Properties of hp(f,1)-free languages
Recall the definition of an embedding order: u <, v if and only if
U=ULU2 """ Up, V= V1UIV2U2 " UnUnUnt1

for some integer n with u;,v; € X*.

A language L is called right <.-convezr [22] if u <, w, u € L implies w € L.
The following result is well known: All languages (over a finite alphabet) that are
right<.-convez are regular. We show that hp(f,1) is right <.-convex (and hence
regular).

Lemma 2 Ifu = ujug € hp(0,1) and w € X* then uywus € hp(6,1) .

216

DNA involutions and hairpin structures

Proposition 2 The language hp(0,1) is right <. -conver.
Proof. Immediate. O

Let L C X* be a nonempty language and let:

S(L) = {w € X*|u <. w,u € L}.
Hence S(L) is the set of all the words w € X* that can be expressed in the form
W = T1ULT2UL * * * TpUpTpt1 With u = ujug -+ u, € L and z; € X*.

Recall that a set H with § # H C X is called a hypercode over X* iff z <,y
and z,y € H imply z = y. That is, a hypercode is an independent set with respect
to the embedding order.

Proposition 3 Let 8 be a morphic or antimorphic involution. Then there exists a
unique hypercode H such that hp(6,1) = S(H).

Proof. Let H = J,cx af(a), then the result is immediate. O

Ezample. Consider the hypercodes for the earlier three examples.

1. For X = {a,b} and the involution (morphic or antimorphic) 8(a) = b, 8(b) = a,
the hypercode is H = {ab, ba}.

2. For the DNA complementarity involution vy we have H = {AT,TA,CG,GC}.

3. The mirror involution over {a,b}* gives the hypercode H = {aa, bb}.

3.2 Properties of hp(f, k)-free languages

The previous results, Lemma 2 and Proposition 2, true for the case kK = 1, cannot
in general be extended to the case k£ > 1 as shown in the following example.

Ezample. Let X = {a,b} with morphic 8(a) = b, 6(b) = a. If u = a?b?, then
u = a®6(a?) and hence u € hp(6,2). The word w = abab? = a.b.abb is obtained from
u by the insertion of the word b and it is immediate that w ¢ hp(6,2).

Furthermore, the language hp(6,2) is not <.-convex, because u <. w, u €
kp(0,2) and w ¢ hp(0,2). However, the following result can be shown about
hpf (0, k)-free languages, which indicates a possible construction method.

Proposition 4 If u = ujus € hp(0,2k) and w € X, then uywus € hp(6,k) for
any k > 1.

Proof. Let u = ujug € hp(6,2k). Then u can be written as u = zvyf(v)z with
|v| = |8(v)| = 2k. The word u has v and 6(v) as substrings, which can be changed
by the insertion of w into u only if insertion happens either in the middle of v or
in the middle of f(v). In the first case; viwwve, 8(v1vy) are substrings of ujwuy with
maz(|vi|, |va]) > k, hence uywua € hp(6,k). The second case is similar. O

217

L. Kari, S. Konstantinidis, E. Losseva, P. Sosik, G. Thierrin

Proposition 5 The languages hp(0,k) and hpf(0,k), k > 1, are regular.

Proof. The language hp(0, k) can be written as hp(0,k) = Ujy|>r X wX*0(w) X*.
This language is furthermore equal to L = |Jj,=; X *wX*0(w)X*. Every language

X*wX*0(w)X*with |w| = k is regular, hence L is a union of a finite number of
regular languages. Therefore both hp (6, k) and its complement hpf (0, k) are regular.
O

Corollary 1 Let 0 be a morphic or antimorphic involution and k > 1. The following
problem of hairpin-freedom is decidable in linear time w.r.t. |M|:

Input: An NFA M.

Output: Yes/No depending on whether L(M) is hp(0, k)-free.

Proof. By definition, L(M) is hp(0, k)-free iff L(M) C hpf(0,k) iff L(M)Nhp(0, k) =
(). This problem is solvable in linear time for regular languages. O

Also the maximal hairpin-freedom problem is highly relevant: given a hairpin-free
language L; and a pool of DNA words Lo, is it possible to add new words from Lo
to L; without breaking its hairpin-freedom?

Corollary 2 Let 0 be a morphic or antimorphic involution and k > 1. The following
problem is decidable in linear time w.r.t. |M|-|Ma|:

Input: A DFA My such that L(My) is hp(6,k)-free, and a NFA M,.

Output: Yes/No depending on whether there is a word w € L(Ms) — L(M;) such
that L(M;) U {w} is hp(, k)-free.

Proof. We want to determine if there exists a word w € hpf(0,k) such that w ¢
L(My), but w € L(M,). It is decidable in time O(| M| - |Ms|) whether (hpf (0, k) N
L(Ms)) — L(M;) = (. The size of an automaton accepting hpf (6, k) is fixed for a
chosen k. O

As an immediate consequence, for a given block code K of length [it is decidable
in linear time with respect to | K| x [, whether there is a word w € X! — K such that
K U {w} is hp(6, k)-free. This is of particular interest since the lab sets of DNA
molecules adopt often the form of a block code.

The above results can be extended also for the case of context-free languages.

Corollary 3 Let 0 be a morphic or antimorphic involution and k > 1. The following
problem is decidable in cubic time w.r.t. | M| - |My]|:

Input: A DPDA M; such that L(M) is hp(0, k)-free, and a NFA M.

Output: Yes/No depending on whether there is a word w € L(Ms) — L(M;) such
that L(My) U {w} 1is hp(0, k)-free.

218

DNA involutions and hairpin structures

Proof. We want to determine if Jw € hpf(6,k) such that w ¢ L(My), but w €
L(M,). Denote M; = (Q1,X,T,q1, 29, A1,61), and let Mé = (Q2,X,qo, Az, 02)
be a NFA accepting the language hpf(6,k) N L(Ms). Consider the PDA M =
(Q,X,T,q0,7Z,A,0), where @ = Q1 X Q2, g0 = (q1,q2)- For p € Q1,9 € Qy,
and Z € T" we define:

(1) 6((p,9), 0, 2) = {((r',4),)| (P, @) € b1(p a, Z) and d5(q,a) = ¢'}

(2) 8((p,9), 2, Z2) = {((t, 0),)| (P,) € b1(p,), 2)}
A= {(p,q)lp ¢ A1 and q € Ay} Then L(M) = (hpf (6, k) N L(M2)) — L(M), and
the size of M is O(|M;|-|Ma|). Let G be a CFG such that L(G) = L(M). Note that
the construction of G takes cubic time w.r.t. |M| (see Theorem 7.31 of [6]). Finally,
it is possible to decide in linear time w.r.t. |G| (see Section 7.4.3 of [6]) whether
L(G) = 0 or not. O

We can similarly extend the hairpin-freedom result in Corollary 1. In fact, the result
is true for PDAs in general, including nondeterministic ones. The proof is remained
to the reader.

Corollary 4 Let 0 be a fixed morphic or antimorphic involution and k > 1. The
following problem is decidable in cubic time w.r.t. |M|:

Input: A PDA M.

Output: Yes/No depending on whether L(M) is hp(0, k)-free.

4 Scattered Hairpins

It is a known fact that parts of two DNA molecules could form a stable bond even
if they are not exact mutual Watson-Crick complements. They may contain some
mismatches and even may have different lengths. Hybridizations of this type are
addressed e.g. in [1] and [12]. Motivated by this observation, we consider now a
generalization of hairpins.

Definition 4 Let 6 be an involution of X* and let k& be a positive integer. A word
u = wy € X* is 6-k-scattered-hairpin-free or simply shp(6, k)-free if t <. w, 6(t) <.y
implies [t < k.

The set of words which are not shp(#, k)-free characterizes DNA structures such as
shown on Fig. 2. The depicted hairpin incorporates a bulge which is caused by a
mismatched nucleotides within a double helix.

CC
TCA TCA ATAGA
CACTE . GEtATe

CAA ACCT

Figure 2: Bulge.

219

L. Kari, S. Konstantinidis, E. Losseva, P. Sosik, G. Thierrin

Definition 5 We denote by shpf (6, k) the set of all shp(6, k)-free words in X*, and
by shp(0, k) its complement X* — shpf (6, k).

Ezample. Any word in {A,C}* is shp(0, k)-free for every k > 1.

Definition 6 A language L is called #-k-scattered-hairpin-free or simply shp(6.k)-
free if L C shpf (0, k).

Lemma 3 shp(0,k) = S(U w0(w)).
weXk

Based on the above immediate result, analogous statements as in Section 3.1 hold
also for scattered hairpins. Proofs are straightforward and left to the reader.

Proposition 6
(i) The language shp(60,k) is right <. -convexz.
(ii) The languages shp(6,k) and shpf(6,k) are regular.

(143) There exists a unique hypercode H such that shp(0,k) = S(H).

Corollary 5

(i) The scattered-hairpin-freedom problem is decidable in linear time for regular
languages and in cubic time for contexl-free languages.

(1) The maximal scattered-hairpin-freedom problem is decidable in linear time for
reqular languages and in cubic time for deterministic context-free languages.

5 Hairpin Frames

In this section we point out the following two facts. First, long DNA and RNA
molecules can form complicated secondary structures as that shown in Figure 3.
Second, simple hairpins are not always undesirable from the point of view of DNA
computing. There exist nanomachines using simple hairpins, see e.g. [21]. Hairpins
play also important role in some DNA computing techniques as we mentioned in
Section 1. Hence it may be desirable to design DNA strands forming simple hairpins
but avoiding more complex structures. Therefore we consider another extension of
the results from Section 3.1.

Definition 7 The pair (v,6(v)) of a word u in the form u = zvyb(v)z, for z,v,y,2 €
X*, is called a hp-pair of u.
The sequence of hp-pairs (v1,6(v1)), (v2,8(ve)), -+, (vj,0(v;)) of the word u in
the form:
u = 210110(v1) 212202Y20(v2) 22 - + - T0,y;0(v;) 2

is called a hp-frame of degree j of u or simply a hp(j)-frame of u.

220

DNA involutions and hairpin structures

Figure 3: Secondary structure of a DNA strand with a hairpin frame.

An hp-pair is an hp-frame of degree 1. The definition of hairpin frames char-
acterizes secondary structures containing several complementary sequences such as
that in Fig. 3.

A word u is said a hp(fr,j)-word if it contains at least one hp-frame of degree
j. Observe that there may be more ways how to find hp-pairs in u, resulting in
hp-frames of various degrees. Obviously, any hp(fr,j)-word is also hp(fr,i) for all
1<i<j.

Definition 8 For an involution § we denote by hp(0, fr,j) the set of all hp(fr,j)-
words u € X*, and by hpf (0, fr, j) its complement in X*.

Ezample. The word in Fig. 3 is in hp(0, fr,3), where 6 = pry.

The results in Section 3, concerning the languages hp(6,1) and hpf(0,1), can easily
be extended for the case of hairpin frames. Proofs are left to the reader.

Lemma 4 hp (0, fr,5) = hp(6,1)! = (U X*aX*G(a)X*)j.
aeX
Proposition 7
(i) The language hp(0,fr,7) is right <. -convez.
(ii) The languages hp(0, fr,7) and hpf (0, fr,j) are regular.
(14i) There exists a unique hypercode H such that hp(0,fr,j) = S(H).
Corollary 6

(i) The hp(fr,j)-freedom problem is decidable in linear time for regular languages
and in cubic time for context-free languages.

(i) The maximal hp(fr,j)-freedom problem is decidable in linear time for regular
languages and in cubic time for deterministic context-free languages.

221

L. Kari, S. Konstantinidis, E. Losseva, P. Sosik, G. Thierrin

6 Construction of Long Hairpin-Free Words

The following results hold for the case § = e. Let H(K) denote the minimum Ham-
ming distance between any two different codewords of a code K. A language K is
said to be a solid code [8] if (i) no word of K is a subword of another word of K,
and (ii) a proper and nonempty prefix of K cannot be a suffix of K. See [8, 18] for
background information on codes.

Proposition 8 Let k > 2 and let K be a uniform solid code of length k. If H(K) >
|k/2|, or H(K) = |k/2] and there are no different codewords with a common prefiz
of length |k/2], then the word wy...wy, is hp(0,k)-free for all n < card(K) and for
all pairwise different codewords w1, ..., wy,.

Proof. Assume there is v € X* such that wi...w, = zvyvz for some words z,vy, z. If
|z| is a multiple of £ then v = w; for some j > 1. As the w;’s are different, |y| cannot
be a multiple of k. Hence, v = s¢py11, where ¢t > j and s; is a proper and nonempty
suffix of w; and p;y; is a proper and nonempty prefix of wy;1; a contradiction. Now
suppose |z| is not a multiple of k. Then, v = s;p; 1 for some nonempty suffix s; and
prefix p;;1. Again, the second occurrence of v cannot be in K. Hence, v = syps11
for some t > j. Hence, s;p;+1 = s¢pey1- If |s;] # |s4], say |s;| > |s¢|, then a prefix of
pi+1 is also a suffix of s;; which is impossible. Hence, s; = s; and p; 11 = psy1.
Note that H(K) > |k/2| and, therefore, |k/2| < H(pj+18j41,Pt+15¢41) =
H(sjt1,8t41) < [sj1| = k — [pj41|. Hence, |pj41| < [k/2]. Similarly, |s;| < [k/2].
Also, as & = ||+ |pj1], one has that [s;], [pj41 € {[K/2], [k/2]}. ILH(K) = [k/2]
then pj11 = py41 implies that w;1 and w41 have a common prefix of length |k/2];
a contradiction. If H(K) > |k/2] then both p; ; and s; are shorter than [k/2]
which contradicts with k& = |s;| + [pj41]- O

Suppose the alphabet size |X| is [> 2. We can choose any symbol a € X and
consider the alphabet X; = X — {a}. Then for any uniform code F C X! it
follows that the code Fa is a uniform solid code of length k : Fa C X*. We are
interested in cases where the code F is a linear code of type [k — 1,m,d]. That is, F
is of length k —1, cardinality (I —1)™, and H(F) = d, and thereisan m by k—1—m
matrix G over X; such that F = {w# [[,,|G] : w € X"}, where I, is the identity m
by m matrix and # is the multiplication operation between a 1 by m vector and an
m by m matrix. Thus, u € F iff v = wz for some w € X[and z € X{“_l_m and
r = wdq.

Proposition 9 Let F' be a linear code over X1 of type [k—1,m, |k/2]]. If m < |k/2]
or k is even then the word wi..w, is hp(8,k)-free for all n < card(F') and for all
pairwise different codewords w1, ..., w, in Fa.

Proof. 1t is sufficient to show that H(Fa) = |k/2] and there are no different words in
Fa with a common prefix of length |k/2|. Obviously H(Fa) = H(F') = |k/2]. As F
is generated by a matrix [I,,|G], where G is a matrix in X" X(k—1-m , it follows that
there can be no different words in F' with a common prefix of length m. If m < [k/2|

then there can be no different words in Fla with a common prefix of length |k/2].

222

DNA involutions and hairpin structures

If k is even, consider the well known bound on |F|: |F| < |X;[F~1~[k/2]+1 Hence,
|X1|™ < | X1|¥/2] which gives m < |k/2]. Hence, again, we are done. |

By the above one can construct an hp(0, k)-free word of length nk, for some n <
card(F), for every choice of n different words in Fa. It is interesting that, for kK = 13
and |X| = 4, the famous Golay code G1s of type [12,6, 6] satisfies the premises of
the above Proposition.

Acknowledgements

Research was partially supported by the Canada Research Chair Grant to L.K.,
NSERC Discovery Grants R2824A01 to L.K. and R220259 to S.K., and by the
Grant Agency of Czech Republic, Grant 201/02/P079 to P.S.

References

[1]

[2]

[3]

[4]

M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A. Condon, B. Cohen, S.
Skiena. Algorithms for testing that sets of DNA words concatenate without
secondary structure. In Proc. 8th Workshop on DNA-Based Computers, M.
Hagiya, A. Ohuchi, Eds., LNCS 2568 (2002), 182-195.

Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro. An autonomous molecu-
lar computer for logical control of gene expression. Nature 429 (2004), 423-429.

R. Deaton, R. Murphy, M. Garzon, D.R. Franceschetti, S.E. Stevens. Good en-
codings for DNA-based solutions to combinatorial problems. DNA-based com-
puters II, in AMS DIMACS Series, vol.44, L.F.Landweber, E.Baum Eds., 1998,
247-258.

J. Chen, R. Deaton, M. Garzon, J.W. Kim, D. Wood, H. Bi, D. Carpenter, Y.-
7. Wang. Characterization of non-crosshybridizing DNA oligonucleotides man-
ufactured in vitro. In [16], 132-141.

T. Harju, J. Karhuméki. Morphisms. In [20], 439-510.

J. Hopcroft, J. Ullman, R. Motwani. Introduction to Automata Theory, Lan-
guages, and Computation, 2nd ed., Addison-Wesley, 2001.

N. Jonoska, K. Mahalingam. Languages of DNA based code words. In DNA
Computing, 9th International Workshop on DNA Based Computers, J. Chen
and J.H. Reif, Eds., LNCS 2943 (2004), 61-73.

H. Jurgensen, S. Konstantinidis. Codes. In [20], 511-607.

L. Kari. DNA computing: arrival of biological mathematics. The Mathematical
Intelligencer, vol.19, nr.2, Spring 1997, 9-22.

L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak. Sticky-free and overhang-
free DNA languages. Acta Informatica 40, 2003, 119-157.

223

L. Kari, S. Konstantinidis, E. Losseva, P. Sosik, G. Thierrin

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

L. Kari, S. Konstantinidis, P. Sosik. Preventing undesirable bonds between
DNA codewords. In [16], 375-384.

L. Kari, S. Konstantinidis, P. Sosik. Bond-free languages: formalizations, max-
imality and construction methods. In [16], 16-25.

S. Kobayashi. Testing Structure Freeness of Regular Sets of Biomolecular Se-
quences. In [16], 395-404.

A. Marathe, A. Condon, R. Corn. On combinatorial DNA word design. DNA
based Computers V, DIMACS Series, E.Winfree, D.Gifford Eds., AMS Press,
2000, 75-89.

G. Mauri, C. Ferretti. Word Design for Molecular Computing: A Survey. In
DNA Computing, 9th International Workshop on DNA Based Computers, J.
Chen and J.H. Reif, Eds., LNCS 2943 (2004), 37-46.

G. Mauri, C. Ferretti., Eds., DNA 10, Tenth International Meeting on DNA
Computing. Preliminary proceedings, University of Milano-Bicocca, 2004.

G. Paun, G. Rozenberg, A. Salomaa. DNA Computing: New Computing
Paradigms, Springer Verlag, Berlin, 1998.

S. Roman. Coding and Information Theory, Springer-Verlag, New York, 1992.

J. A. Rose, R. J. Deaton, M. Hagiya, A. Suyama. PNA-mediated Whiplash
PCR. In DNA Computing, Tth International Workshop on DNA Based Com-
puters, N. Jonoska and N. C. Seeman, Eds., LNCS 2340 (2002), 104-116.

G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, vol. 1,
Springer Verlag, Berlin, 1997.

N. Takahashi, A. Kameda, M. Yamamoto, A. Ohuchi, Aqueous computing with
DNA hairpin-based RAM. In [16], 50-59.

G. Thierrin. Convex languages. Proc. IRIA Symp. North Holland 1972, 481—
492.

224

