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1 Introduction

The model of an eco-grammar system was introduced in [6] and presented in detail in
[7]. It realizes an attempt to create formal specification for investigation of the inter-
play between the environment and agents in systems like ecosystems. Eco-grammar
systems can be used to model some aspects of the behaviour of any cooperating
communities of agents acting in a common dynamic environment. The model is
based on the approaches and methods of formal language theory using generative
framework of grammar systems [2].

Basic information on the topic can be found in overview papers [5], [11], [12],
[13] and [14]. Annotated bibliography www.sztaki.hu/mms/ecobib.html provides a
good source of information on eco-grammar systems.

The model consists of two interconnected parts. The environment, described by a
string developing by L system mode, in totally parallel manner using interactionless
rules, and collection of agents (components), each one described by its own string,
developing by L system mode using its own set of rules. The agent locally changes
the environment using its action rules. Actual state of the environment can influence
development of agents and the state of each agent can influence the development of
the environment by the choice of the action rules.

The original model is described in a quite general way in order to demonstrate
wide possibility of the model to investigate various aspects of the behaviour of eco-
systems and to present formal background for such an investigation.

To get insight to the behaviour of eco-grammar systems different special cases,
characterized by various restrictions, were studied. We mention simple eco-grammar
systems, for example, where agents influence the development of the environment
just by their action rules (but not by the states of agents). (See [2], [4], [8], [9], [17].)

In the present paper we study eco-grammar systems, where the behaviour of the
environment is really influenced by the state of agents (not only by the existence
of agents and their action rules). We discuss in detail the generative power of
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monocultures and the generative power of eco-grammar systems with homogeneous
environments. The results are related to the number of components of the systems.

In the Section 2 we give formal definition of the eco-grammar system and fix
notations used in the paper.

Section 3 contains various examples of eco-grammar systems and some prelim-
inary results concerning the properties of eco-grammar systems generating some
typical languages of eco-grammar systems.

In Section 4 we start to study systems with identical components, called mono-
cultures. The restriction to monocultures with fized number of components restricts
also the generative power of eco-grammar systems. An important result is that any
language of eco-grammar system can be transformed to a language of monoculture
simply by adding one word to the original language. Corresponding eco-grammar
system for the monoculture have the same number of components as the original
one. Still open problem remains the equality of the languages classes of monocul-
tures and the (general) eco-grammar languages when no restriction to the number
of components is considered. Number of components is important for the generative
power of monocultures. Language classes with different number of components are
incomparable.

In Section 5 we consider systems with homogeneous environment (systems with
environment described by strings over the unary alphabet). In this case number of
components in eco-grammar systems introduces full hierarchy on the corresponding
language classes. Eco-grammar systems with less components are more powerful.
Languages of unary eco-grammar systems can be generated by eco-grammar systems
with single component.

In Section 6 the unary monocultures are treated, i.e. eco-grammar systems with
identical components and unary alphabet of the environment. Unary monocultures
are as powerful (generative power) as unary eco-grammar systems. This solves an
open problem from Section 4 for unary monocultures. The number of components
in unary monocultures introduces partial hierarchy on the corresponding language
classes, depending on the fact, whether the number of components of the one of the
system is a multiple of the number of components of the other system.

In all previous results context rules are used for action of the components in
the environment. Consequences of the restriction to context-free action rules are
discussed in Section 7. Eco-grammar systems with context-free action rules are
less powerful as those with context action rules. The restriction to the context-
free case leads to different results for the problems we are dealing with. Language
classes of eco-grammar systems with different number of components are incompara-
ble. Monocultures with context-free actions are less powerful as general context-free
eco-grammar systems. Last result holds even if no restriction to the number of com-
ponents are treated. Each context-free eco-language can be extended by one word
to a language of context-free monoculture. Incomparability of language classes with
different size of components is presented, too.
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2 Eco-Grammar Systems: Original Model and its Spe-
cial Versions

The models of eco-grammar systems are introduced in [6], [7]. An eco-grammar
system . consists of two mutually influencing parts, an environment characterized by
an 0L scheme E = (Vg, Pg) and a collection of n agents A; = (Va, Pi, @4, Ri, 1), 1 <
i < n characterized by inner developmental rules P; used to develop i-th agent,
action rules R; influencing the environment locally in the chosen place. Selection
functions ¢;, 1; determine actually active rules.

Definition 2.1 An eco-grammar system of the degree n (EG(n) for short) is a
structure 3 = (B, A1, Ag, ..., Ay), where

o £ = (Vg,Pg) is an OL schema called an environment of the EG(n)
o A; = (Vi, P, Ri, i, i, w;), for 1 < i < n is i-th agent of EG(n), where

— V; is a finite alphabet,

— P; is a finite complete set of context-free rules over Vj,
— R; is a finite set of rules over Vg,

— @; is a function Vi — P(P;),

— i is a function V" — P(R;),

— w; 18 an aziom, w; € V;*.

Definition 2.2 A configuration (or state) of EG(n) system % is an (n+1)-tuple
(v) = (vg,v1,v2,...,0y), where vg is a state of the environment and v; for1 <i <n
is a state of the i-th agent. The starting configuration is an (n + 1)-tuple {(w) =
(wg, wy, wa,...,w,), where wy is a starting state (an axiom) of the environment
and wy,ws, ..., w, are arioms of the agents Ay, Ao, ..., Ay, respectively.

Definition 2.3 A derivation step in the EG(n) system ¥ = (E, Ay, Ag,..., Ay) is
a binary relation =y, over Vi x Vi* x V5f x ... x V' such that
(vE,v1,V2,...,0,) =>x (Vg, 0], 0, ..., v},) if and only if
o vp =B a1, - .. an—1Bi, an,

v = af, an B, - - an 1B, s

where

ap =g o),0<k<mn,

Bip = Bl € i (wi), 1 <k <, {in, ... in} = {1,2,...,n}.

o v =— v, 1 <i<n.

vi(vE)

We assume that all agents are active in any derivation step (expressed by {i1,...,i,} =
{1,2,...,n}).

In the case when it is clear which y is considered the symbol 5, can be omitted.
A transitive closure of the relation = is denoted by =1 and a transitive and
reflexive closure of the relation = is denote by =—*.
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A derivation is in a canonic form, if moreover

v = B1B2...Bnan,

oy = BLf...Bhal.

In the case when the choice of an action rule is independent on the actual state of
agent A, i.e. 14(v) = Ra for allv € V| the environment is independent on actual
states of the agents and agents influence the development of the environment by the
set of its action rules only. The selection function for activity of agents is universal
(any action rule can be active). In this case we specify agents simply by A = {R4}.
Such an agent is called a simple agent. An eco-grammar system with simple agents
only is called simple eco-grammar system.

A configuration of the simple eco-grammar system consists only of the state of
the environment. A derivation step =y over V; of the simple eco-grammar system
Y. = (FE, Ay, Ag, ..., Ay) has the form v =>x v’ if and only if
v = aofi,a1fiy ... an—1Bi,om, and v' = oy fj A B, ... q, 1B ay,, for
ar =g a),0 <k <n,and B, — B € Ri,,1 <k<mn{i,....in} ={1,2,...n}.

Definition 2.4 A language of an EG(n) system ¥ = (FE, A1, Ag,..., Ay) and the
wiatial state of the environment wgy 4s a language of all states of the environment
which can be derived from the initial configuration, i.e.

L(Z,wy) = {v: (wg, w1, wa, ... wy) =" (v,v1,v2,...0p)}.

Definition 2.5 An EG(n) system 3 is monoculture (MEG(n) for short) if A; = A
for all 1 <i <mn. We shall use the denotation ¥ = (E, A™) in this case.

An EG(1) system is evidently monoculture.

Definition 2.6 An EG(n) system ¥ is unary (UEG(n)) if |Vg| = 1. Unary mono-
culture with n agents is denoted by MHEG (n).

Definition 2.7 The language class of eco-grammar systems (monoculture, unary,
unary monoculture) of the degree n is denoted by L(EG(n)) (C(MEG(n)), L(UEG(n)),
L(MUEG(n))).

3 Systems with Locally Restricted Exponential Behav-
ior

The language L;,, = {al”‘m : 4 € N} is frequently used in the further parts of the
paper. Its typical property is that each underlining EG system for L, ,, has exactly
one rule in the environment.

Lemma 3.1 Let Ly, = L(X,wo) for an EG(n) system ¥ = (E, Ai,..., Ay). Then
Pp = {a — d"} for some j > 1.

Proof: Assume contrary, that two different rules a — a",a — a® are in Pg and
r > s. There are infinitely many words in L(X, wg) with at least one symbol rewritten
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by the rules of the environment. Therefore infinitely many pairs of words u,v in
L(3,wo) have |u| — |v| =7 —s. But L ,, does not have that property.

Let Pp = {a — a°} for some fixed number s. We have s # 0, s # 1 since L(X, wy) is
finite for Pr = {a — A} and there are infinitely many pairs of words u,v € L(X, wq)
such that v = v, with constant |u| — |v| for Pr = {a — a}.

Assume s = I/ 4 d for some fixed j and d, 0 < d < I’T! — 7. We prove that d = 0.
Let (ak, wy,wo,...,wy) = (a¥,w!,wh,... wh) for k =1'+m and &' = 1" 4+ m.
Let r > n letters are rewritten to ¢ letters by action rules and all other letters are
rewritten by the rule of the environment in that derivation step. Then

K = ks—rs+t,
' +m = ('4+m)+s—rs+t,

Now we assign ¢ = sm — rs +t — m. All numbers are constant (s,m) or limited
(r,t) so ' is limited too.

N

lss+cd = 17,
P +d)y+c = 17,
R O A

We can choice i such that I’ +d + ¢ > 0,1' > maz(|c|) so
I 4l s d+ > 1
and so for I/ —[7=1 — 1 > d we obtain
I 4 s dt o < IHHL i < [
No i exists so d = 0 and Pg = {a — a'’} for some j > 1. O

Example: Various representations of the language L;,, = {ali+m :1 € N} by
EG(m) systems are possible. They differ in the rule of the environment.

= (Ea Ay, Am_l)a
= ({a},{a = d"}),
(V.P,R,¢,9,Y),
(V’ P7 R7 (p7 w’ X)’
= {X,Y},
= {X - XY - X},
= {a—a}u{dt = d'*t1:1<i<j},
p(w) = P, forw € a*
YY) = {at —a"t 1 <i <),
P(X) = {a—a}.
Derivations in the system are of the form N
(@Y, X,... . X)= (@' X, X,... . X) = (""" X X,... . X) =
(@Hm X X, X)) = ..
In the first step, the first agent replaces [ + 1 letters by one of the words
all+1, ...,a"*1 and each of the remaining m — 1 agents leave symbol a unchanged.

SUROCIE Il SR
I

~ —
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After the first step one of the words a””_", e ,alj+m is generated. In next steps
agents leave m symbols unchanged and @' symbols are rewritten by the rule of the
environment. So L(3,a!™™) = L ,.

Lemma 3.2 Let L = {wr,...,wp},n>2 and |w;| < k—1 for all 1 <i <n. Then
L is not an EG(k) language.

Proof: Each agent of an EG(k) system rewrites at least one symbol of the envi-
ronment. Any language with at least two words produced by an EG (k) system has
to have the word of the system of the length at least k, which is chosen to be the
axiom. Otherwise no word can be generated from the axiom. O

4 Monocultures

Monocultures are eco-grammar systems with identical agents including their axioms.
Obviously, each system with one agent is a monoculture. Monocultures with at least
two agents are less powerful than eco-grammar systems with the same number of
agents.

Theorem 4.1 L(MEG(n)) C L(EG(n)) for n > 1.

Proof: We have L(MEG(n)) C L(EG(n)) by the definition.

For n > 1 L = {a""',a"} € L(EG(n)) — LIMEG(n)) and simple EG(n) system
Y = (({a},{a — a}), {a = A}, {a — a}™ ') with axiom a™ generates L(3,a") = L.
We prove L ¢ L(MEG(n)) by contradiction. Suppose that there is an MEG(n)
system X' = (E', A'"™), A" = (V' P", R, ¢', ¢/, w() producing L.

The axiom of the environment is a” since each agent rewrites in one step at least one
letter. To obtain a” ! one of the agents acts with the rule a — \. But, alternatively,
the same rule @ — X\ can be used by all agents, too, and the system X' produces A
contradictory with the form of L. O

The situation may be different in a case, where no limitation to the number of agents
is considered.
Open problem: (In)equality of classes L(EG) and L(MEG).

It is surprising that there is not too big difference between generative power of
the eco-grammar systems and monocultures. Indeed, an arbitrary language of eco-
grammar system can be transformed to language of monoculture by adding one
special word to it.

Theorem 4.2 Let L € L(EG(n)) — LM EG(n)). Then there is a word u such that
LU{u} € LIMEG(n)).

Proof: Let L € L(EG(n)) — L(MEG(n)) and L = L(3,w) for axiom w and for
Y= (E7A17A27 .- 'aAn)a E = (VE,PE)a A= (V;'aljiaRia(Pia/‘/)iawi,O)'
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Assume V;NV; = 0 for i # j and |Vg| > 1. Let us choose any u = ujus...u,
such that u; € V[ and |ul,, = 1 for i = 1,...,n. (In the case |Vg| = 1 we extend
the alphabet to the binary one, in order to get an axiom u with the above property.)

We construct an MEG system X' = (E, A"), A = (V, P, R, ¢,1,a) such that
L'=LU{u}=L(X, u):

V = VuWUu...UVyU{a}U{a;:1<i<n} for
(ViUVaU...UV,)Nn({alU{a;: 1 <i<n}) =10,

P = PURU..UP,U{a—a:1<i<n}U
U{a; 2 wijp:1<i<n},

R = R1UR2U...URnU{uZ~—>ui:lgign}U

U{ur = wlU{u; = A:2 <i<n},
u) ={a — aj,a; = wip: 1 <i<n},
v) =p1(v) Upa(v)U...Up,(v) forve L,

The derivation in ¥’ proceeds as follows:
(w,a,a,...,a) =y (u,a1,a9,...,a,) = (W, w1,0,Ww20,...,Wn0)

Y is in starting configuration of system ¥ generating language L(X,w) and next
steps follow derivation in X, therefore L(X',u) = L(X, w) U {u}. O

Theorem 4.3 L(MEG(n)) and L(M EG(m)) are incomparable for n # m.

Proof: Let n > m.

a) Lym = {a"*t™:i€ N} € LIMEG(m)) — LIMEG(n)).

For MSEG (m) system ¥ = (({a}, {a — a"}),{a — a}™) we have L(X,a'*t™) =
Ly .

Suppose there is an MEG system ¥ with n,n > m agents for L, ,,. In the
first derivation step m agents can use the same rule z — z’ and all letters in the
remaining part of the environment are rewritten to the power of n letters by Lemma
3.1. Therefore the axiom wy = 2"y is rewritten to w’ = (z™y'"), |2'|*n+|y'|*n = kn,
i.e. n +m = kn for some k and this is not valid for n > m > 0.

b) L, = {(a®®)" : i > 1} € LIMEG(n)) — L(MEG(m)). The MEG(n) system
Y = (E,A") for L, has E = ({a,b},{a — a,b — b}), A = {ab — aabb} and the
axiom (ab)™.

To prove L, ¢ L(M EG(m)) for n > m assume contrary that there is an MEG(m)
system X' = (E', A™) and L(¥',w) = L,, for some axiom w. We prove that P =
{a — a’,b — b’} for some i € N.

The environment does not contain a rule with both symbols a,b on the right
side. Otherwise some derived word contains more than n occurrences of subword ab
or ba.
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The environment contains neither rules a — b nor b — a’. Otherwise some
derived word starts with b or ends with a.

The environment contains neither a pair of rules ¢ — a'.,a — a’ nor pair of
rules b — bi,b — b for i # j. Otherwise both a'w’,a’w’ € L(X',w)) or both
w'b’, w'd € L(X',w) and L,, does not have such a property.

The environment does not contain rules a — a’,b — b for i # j, otherwise the
language L(X',w) contains words w with |w|, # |w|p.This gives E' = ({a,b},{a —
al,b — b'}) for some i > 1.

Let r be maximum number of symbols rewritten by agents and ¢ be maximum
number of symbols generated by agents in one derivation step. Let us consider a
derivation step (w,w1,...,wy,) = (W' w},...,wl,) for w = (a"o")",h > r . h > t.
The value of h guarantees that action rules u — v used to rewrite (a"b")" have u,v €
a*b* Ub*a*. Each agent can change some symbols in one neighboring occurrences of
subwords a”,b". At least one occurrence of a” or b" is rewritten by the rules of the
environment. Assume that rules of agents are applied in the prefix (a"b")™a" of w
in the discussed derivation step ((a"b")",w1,...,wy,) = (w',w}, ..., w!,). Then
the last occurrence of the string b” in w is rewritten by the rules of the environment
and we have w' = (a" b"')* = v'abh. For i = 1, h' = h, w' = w and the language
L(¥,w)) is finite. For i > 1, ' = 2h and (a"*1p"*+1)" ¢ L(X',w). Therefore
L ¢ L(MEG(m)).

¢) a*a"™ and {a™~ '} are examples of languages both in £(M EG(m)) and also in
L(MEG(n)) for n >m > 0. O

5 Unary Eco-Grammar Systems

In this section systems with homogeneous environment represented by unary alpha-
bet are studied. We compare generative power of unary eco-grammar systems with
different number of components. These language classes are ordered by inclusion
relation. The power of systems increases by decreasing the number of agents.

Theorem 5.1 L(UEG(n + 1)) C L(UEG(n)) forn > 1.

Proof: ~ To prove LIUEG(n + 1)) C L(UEG(n)) assume a UEG(n+1) system
¥ = (E, Aq, Ao, ... An,An+1), with A; = (VZ',B,RZ', (pi,’(/Jz',wZ"o) forl <i<n+1.
We construct an equivalent UEG(n) system Y’ where the last component of ¥’
simulates both the behaviour of n-th and n + 1-st component of .

Y= (E, Al, e ,An_l, B), where B = (VB, PB, RB, ©B; ’(/JB, ’UJB’O) and

Ve = VaUV.,,,
Py = P,UP.,,

Rp = {ana;prl — ﬁnﬁ;prl top — B € Rnaan—l—l — ﬁn—l—l € Rn-l—l}a
¢ = wn U@,
Yp(wpwy, ) = {a* = a'  k=ky +knp1,l =1y +lnyr1,db = a € Py, (wy),
akn+1 — aln+1 € ¢n+1(wn+1)}a
WBO = Wn,0Wpy10-
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By Vi1, Pri1s @15 Bpy1s Wy 11 o we mean primed copy of the original objects.
L(%, wg) = L(X',wg) follows from the property:

(Wi, Wiy e vy Whiy Wnt1,6) =% (Wi 1, Wi 1s - -+ s Wit 1s Wnt1,i+1)
if and only if

! !
(wj, Wy ,’wn’i’wnJrl’Z.) =y (Wjt1, W g1y ’wﬂ7i+1wn+1,i+1)'

Y and Y/ are unary, therefore place where agents act do not influence the resulting
word. Assume that agents rewrite the prefix of the actual environmental word and
that developmental rules of environment are used to rewrite its suffix. This gives
identical environmental words derived by systems X and X'

{a",a" '} € LIUEG(n)) — LIUEG(n + 1)) implies proper inclusion. O

Important consequence of the previous theorem is that unary eco-grammar systems
with one component can generate all UEG languages.

Theorem 5.2 L(UEG(1)) = L(UEG)

Proof: L(UEG(n)) C LIUEG(1)) for each n > 2 directly follows from the Theo-
rem 5.1 and

LWUEG) =2, LWOEG(n)) C LIUEG(1)) C LIUEG).
So all C has to be equality, which gives the Theorem. O

6 Unary Monocultures

According the previous Sections eco-grammar systems with homogeneous environ-
ments posses hierarchy on the language classes defined by systems with different
number of components, while monocultures with different number of components
are incomparable with respect to the generative power. In the present Section we
show that homogeneous monocultures introduce partial ordering on the language
classes of eco-grammar systems with different number of components.

Theorem 6.1 Let m,n be natural numbers n > m > Q.
LUMEG(n)) C LUMEG(m)) for m dividing n,
L(UMEG(n)) and LUMEG(m)) are incomparable, otherwise.

Proof: Let n = c¢m for ¢ > 1. We prove LIUMEG(cm)) C LIUMEG(m)). Let
UMEG(cm) system ¥ = (E,A“"), A = (V, P, R, ¢,1,wy) produces L = L(X,w).
We construct an UMEG(m) system X' = (E, B™), B = (V',P',R',¢',¢',w!) such
that L(X',w) = L(X,w) = L:

V' = vu{al,
P = PuU{Q— @},
R = {w...ap—ad)...d.:a; > a, € R)1<i<c}
Plwr) = plum)U (@ @),
P (w1 Quwe@. .. Qw,) = {mas...ac—ajdh... ol — o) € P(w;), 1 <i<cl,
why = (wo@) Lwy.

Agent B simulates the behaviour of ¢ agents A with respect to the environment, so
L(Z,w) = L(X, w).
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The above inclusion is proper. To prove it we verify Ly, = {a® ™ :i € N} €
LUMEG(m)) — LUMEG(n)).

There is a UMEG(m) system ¥ = (({a},{a — a"}),{a — a}™) such that
L(,a™"™) = Ly m.

Suppose there is an UMEG (n) system X for Ly, ;,. In the first derivation step n
agents can use the same rule and all letters in the remaining part of the environment
are rewritten to the power of n as in Lemma 3.1. Therefore wy = 2™y is rewritten
to w' = (z"y™), |z'| * n + || ¥ n = kn, i.e. n' +m = kn and this is not valid for
n >m > 0.

Lingn ={a™ " i€ N} € LUMEG(n)) — L(UMEG(m)) for m not dividing n.

To prove Ly, , is not in L(UM EG(m)) analogously to the discussion above we have
m® 4+ n = km. This can be satisfied just for m dividing n.

Languages a*a™ and {a™*!'} are both in L(UMEG(m)) and L(UM EG(n)) for
n >m > 0. (For L = a*a™ n or less agents can guarantee n letters in the derived
word, other occurrences of a can be generated by Pr = {a — A\,a — a,a — aa}.
Axiom of the system always belongs to the generated language. So eco-grammar
system for the singleton contains the only word as axiom and all rules acting in the
environment of the eco-grammar system are of the form a — a.) O

Next theorem solves the open problem from Section 3 for unary systems.
Theorem 6.2 L(UMEG) = L(UEG).

Proof: LWUEG) ==, LWUEG(n)) = LWEG(1)) = LIUMEG(1)) =
U, LIUMEG(n)) = L{UMEG).
Od

7 Context-free action rules

In this section the eco-grammar systems with context-free action rules are studied.
Such a restriction decreases the generative power of the corresponding eco-grammar
systems.

Theorem 7.1 L(0EG(n)) C L(EG(n)) forn > 1,
L(X0EG(n)) C L(XEG(n)) forn>1and X € {M,U,UM}.

Proof:  The relation C follows from the definition in all cases. To prove proper
inclusions we consider the languageLs o, = {a* 2" : i € N}.

L3on € LIUMEG(n)) and L3s, = L(X,a*"?") for the simple eco-grammar
system ¥ = (({a},{a — a*}),{aa — aa}"). To prove L3s, ¢ L(0EG(n)) assume
contrary that there is an 0EG(n) system X' = (({a}, Pj;), A}, 45, ..., A]) and v’
such that L(X',w') = Ls oy.

By Lemma 3.1 we have P, = {a — a3k} for some k. Let n symbols are replaced
by agents to at most ¢ symbols in one derivation step. Let us discuss a derivation

h
step (a® T2 wy, ... wy,) = (W' wh, ... wl).

lw'| = 3"FF 4 3%n 4 ¢
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where 0 < ¢ < t—n symbols are added by agents. We show that such a system is not
able to generate the word a3" "' +27. Assume that |w'| = 3% 4+ 3kn + ¢ = 3h+1 4 2
Then we get contradiction ¢ = 3"(3 — 3%) + n % (2 — 3%) < —n < 0 < ¢. Therefore
we conclude with L3 o, ¢ L(0EG(n)). O

We compare the power of context-free monocultures with that of context-free eco-
grammar systems. We obtain proper inclusion even if no restriction to the number
of components is considered. (Compare with open problem in general case.)

Theorem 7.2 L(MOEG) C L(0EG) and L(UMOEG) C L(UOEG).

Proof:  The relation C follows from the definition in both cases. We prove L €
L(0EG) — L(MOEG) for unary language L = {a42i c1 > 2} U {a44i+1_4 D>
1 u{a®5 0> 1),

We use 0EG system X = {F, Aj, A2} and the axiom a*' to generate L.

E = ({a},{a—a"}),
Al (‘/apaRla(pa/‘/JlﬂA)a
A2 (‘/,P,RQ,@,’(/}Q,A),
V = {A,B,C,D},

P = {A—-B,B—C,C— D,D— A},

R = {a—Xa— azo},

Ry = {a—a*a—ad’a— d®},
p:p(w) = P,

Pripi(4) = {a—= A}, e ie(A) = {a—a'},
P1(B) = {a—a®}, P2(B) = {a—a'},
P1(C) = {a— A}, P2(C) = {a—d?},
P1(D) = {a—a®}, Pa(D) = {a— a®}.

44

Derivations in ¥ for the axiom a* are of the form

(a447A’ A) :> (a45_4’B’B) :> (a46’C7 C) :> (a47_5’D’ 'D) :> (a487A’ A) :>

(a44i’ A’ A) :> (a44i+1_4’ B’ B) :> (a44i+27 C’ C) :> (a44i+3_57 'D7 'D) :>
(@ A, A) =

Therefore L = L(X, (a*', A, A)).

To prove L ¢ L(MOEG) we proceed by contradiction. Let monoculture ¥’ =
(E, A™) generates language L. We prove following points i), ..., v) for X'

i) Pp ={a— a4l} for some l € N.

To obtain an ”almost” exponential growth of the language we can use only one
environmental rule, i.e. Pp = {a — a4l} for some [ € N. (See Lemma 3.1)

ii) All agents use identical action rules in one derivation step.
Let i-th step be the first step where different action rules of agents are used

(w, wg) :>i_1 (wi_l, W15—1,W25—1 - - - wn’i_l) — (wi, W4y Wi -+ - - wn’i).
Suppose that the first and the second agents use different action rules. Denote w;
the word of the environment and let & be the difference between lengths of right
sides of action rules used by the first and the second agent. Because all action rules
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used in ¢ — 1 previous steps were the same and all right sides of action rules are the
same, similar effect to the environmental word can be obtained after 1 — 1 steps by
derivations when both agents work like the first or like the second agent, respec-
tively. Follow the i—th derivation step in both cases:
(w,w?) =11 (Wi, w11, W11, W31 - Whyim1) = (Wh Wi, w1, W W),
(w, w?) =" (wi—1, w1, Wo i1, W1 . . Wnyi—1) = (W wa i, wai, w3 . Wh ).
We have |w;| — |w}| = k and |w]| — |w;| = k, but no three-tuple of words from L
fulfills that condition.

Points i) and ii) result to the deterministic behaviour of the system X' with

respect to the development of the environment.

iii) wo = a?”.

Assume that a*" is not the axiom and follow the derivation step producing word
a*’
(@™, wy, wo, w3, ..., W) = (a44,u1,uz,...un). Then r > 45 — 4. Pp = {a — a4l}

so action rules of agents eliminate symbols of the environment. Action rules are
context-free, i.e. a — A each component eliminates at most one symbol. To produce
a*' from some a” € L we need at least 3 x 44 — 4 components. This blocks the
derivation of the word a4’ contrary with the fact that L is infinite. It gives wg = at’.

iv) [ =1 and Pg = {a — a*}.

Due to points i)-iii) there is only one possible derivation for the environment in
Y, namely

=ttt =t =t —

In this derivation the only rule, a — a4l, of the environment is used combined by
action rules of at most 4* agents.
The second part of the above derivation gives

45 =45 —d—n)sddnxi> A —4—n) x4 > 45 —4 -4 x4l > (3x4" —4) x4

This gives [ < 2.
v) We determine the number of agents n of ¥'. For derivation steps producing
a*~* and a* 5 we have

(44 —n) x4 +ixn =454, (45 —n) x4 +ixn=4" -5,
0<i<4, 1<n<4 i=3, n=05.

There is no n satisfying derived conditions. Therefore no MOEG system exists for
language L. O

Similarly as in general case we can add to a language of eco-grammar system one
special word to obtain a language of context-free monoculture. The construction
of the eco-grammar system in the proof of Theorem 4.1 does not save the context-
freeness of the action rules. We can add to the alphabet of the environment Vg new
letters uy,uo, ..., u, and use construction analogous to that for general case. In the
proof of the next theorem we give another construction which does not increase the
size of at least binary environmental alphabet. There are more than two initialization
steps needed in this case.
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Theorem 7.3 Let L € L(0EG(n)) and |alph(L)| > 2. Then there is a word u €
(alph(L))* such that LU {u} € L(MOEG(n)).

Proof: The case L € L(MOEG(n)) is trivial. Let L € L(0EG(n)) — L(MOEG(n))
and L = L(X, w) for axiom w and for ¥ = (E, Ay, As, ..., Ay), where E = (Vg, Pg)
and A; = (V;, P, R, @i, i, wip), 0 < i <n. We choose u = ba"~! for a,b in Vg and
we present MOEG (n) system ' = (E, A") for L U {ba" '}, where axiom is ba" !
and each agent A = (V, P, R, ¢,,a) is determined by:

V = MuWu...uV,U{a}U{a;;:1<14,5 <n} for
ViuVau...UV)N({a}U{a;;:1<i,j<n})=0,
P = PURU...UP,U{a—a;1:1<i<n}U

{aiij—>aiij+1:1S?jgn,lSjgn—l}u{ai7n—>wi’0:1Sign},
= RIURyU...UR,U{b—b,a— a,b— X\ a— wg},
p:pu) = {a—a:1<i<n}U
{aij = aij1:1<i<n,1<j<n—-1}U{ajn = wio:1<1i<n},

o(v) 01(v) Upa(v)U...Upy(v) forv e L,
P:pla) = {a— a,b— b},
P(ai;) = {b—blfor1<i<n-—1,
Plaij) = {a—a}fori#j1<i<n1<j<n-—1,
Ylann) = {a— wo},
P(ain) = {b—=Apforl1<i<n-—1,
P(z) = pi(z) for all z € V"

We describe the behaviour of the agents in ¥’'. All agents start with a. In the
first step each agent gets its number as the index 4 in a; ;. Symbol a; ; is the state
of i-th agent after j steps of derivation. In the environment an agent in state a; ;
rewrites symbol b for i = j, otherwise it rewrites symbol a. Two agents can have
same number k, but after k£ steps both of the agents have to rewrite symbol b and
there is only one symbol b in the environment, derivation stops. Note that the state
of the environment is identical with the axiom during these steps. In a successful
derivation we have one agent of each type after n steps. The last agent rewrites the
symbol b to wg and the other agents eliminate a-s. In the same time the states of
all agents are rewritten to their original starting state in ¥. Formally

(banfl, a”) — (banfl, a1,1,a2,1y-- -, an,l) — (banfl, a1,2,02.2, - ,(,ln’Q) ... —
(ba™ 1 a1 no1,a20-1, -  apn—1) = (ba" "' a1, a2, .., ann) =
(w07w1,0;w2,0a s 7wn,0)

¥ is in starting configuration of system X and next steps follow derivation in X,
therefore L(Z’,ba”*l) = L(Z,w) U {banﬂ}‘ :

We continue with comparison of the generative power of monocultures with different
number of components. The restriction to context-free action rules destroys the
(partial) hierarchy on language classes introduced by the number of components of
systems.
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Theorem 7.4 L(X0EG(n)) and L(XO0EG(m)) are incomparable but not disjoint
for X e {M,U, UM} and n,m € N,n # m.

Proof: Let n>m. {a™,\} € LLUMOEG(m)) — L(0EG(n)) by Lemma 3.2.

It is enough to prove Ly 1 n4+1 € LUMOEG(n))—L(0EG(m)) where Ly 11 541 =
{a(t) 441 € N} We have Lyi1n41 = L(2,a?"*?) for the simple unary
MOEG (n) system ¥ = (({a},{a — a"*1}),{a — A}").

To verify Ly 11n4+1 ¢ L(0EG(m)) for n > m assume contrary that some 0EG (m)
system X' = (({a}, Pg), A}, A, ..., A},) generates Ly {1 541. By Lemma 3.1 we have
Pl = {a — a"*V"} for some k.

Consider a derivation step (a1 +74 ) g .. wy) = (w', wh, wh, ..., w),)
For n > m at least (n + 1)7 + 2 symbols of the environment are rewritten by the

rule of the environment a — a™*)" to (n + 1)7+% + 2(n + 1)* symbols. Agents can
add some symbols ¢ > 0 up to agents maximum c*.

(n+1)7T* 1 2(n+1)* +c < (n+ 1)+ + (n+ 1) for r > £,

c<(n+ 1) —(n+ 1) 2+ D)+ (n+1) <0.

System X’ does not generate L, and there is no UOEG(m) system for
Ln—l—l,n—i—l- O
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