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Abstract

In this paper we consider multiple choice probabilistic automaton and show
that it can be simulated by a (single choice) probabilistic automaton. We define
distributed probabilistic automata with four cooperating modes and show that
distribution does not give any additional power.

1 Introduction

Recent developments in the field of Computer Science are towards processing in-
formation that are distributed among geologically different locations. In various
fields like Artificial Intelligence, Cognitive Psychology etc, we have to deal with
more and more complex tasks distributed among set of 'processors’, which are work-
ing together in a well defined way. Parallel computers, computer nets, distributed
databases and knowledge sources are practical materialization of this idea. Formal
Language Theory constructs, namely Grammar Systems, modelling distribution and
parallelism were coined in the early nineties. [1] deals with many types of Grammar
Systems. Distributed Automata have been considered in [2].

Very often, in the world of distributed information processing systems, there arise
situations where the system is random and its course of operation nondeterministic.
Probabilistic grammars were introduced as mathematical generative models for cap-
turing the randomness in a classical computing environment [3, 4]. Probabilistic
grammar systems were studied in [5, 6] with application to network-load modelling
[7].

In this paper we study distributed probabilistic automata. We first study mul-
tiple choice probabilistic automaton where we include the idea of both randomness
and non-determinism. We show that a multiple choice probabilistic automaton can
be simulated by a single choice probabilistic automaton. We define distributed
probabilistic automata and consider four standard modes of cooperation between
the components, viz, x,= k,< k,> k modes. We show that a distributed proba-
bilistic automaton can be simulated by a multiple choice probabilistic automaton.
Since multiple choice probabilistic automaton can be simulated by a single choice
probabilistic automaton, we see that distribution does not increase the power of
probabilistic automaton in any of the four modes of cooperation.
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In the next section we define probabilistic automata. In section 3 we define
multiple choice probabilistic automata and show the equivalence to single choice
probabilistic automata. In section 4 we define distributed probabilistic automaton
with four modes of cooperation and show that in any mode, it can be simulated by
a multiple choice probabilistic automaton. The paper concludes with some remarks
in section 5.

2 Probabilistic Automaton

In this section, we consider the definition of probabilistic automaton. For the defini-
tion and details of probabilistic grammars, the reader is referred to [3, 4]. A study
of probabilistic automata is done in [8].

Definition 2.1 A finite probabilistic automaton over a finite alphabet V is an or-
dered triple PA = (5,59, M) where S = {s1, s9, 83, ..., S} is a finite set with n > 1
elements(the set of internal states), sq is an n-dimensional stochastic row vector(the
initial distribution) and M is a mapping of V' into the set of n-dimensional stochastic
matrices. For z € V, the (i,5)!" entry in the matrix M (z) is denoted by p;(s;, z)
and referred to as the transient probability of PA to enter into the state s;, after
being in the state s; after consuming the input z.

As an example, consider the following example. PA; = ({s1, 52}, (1,0), M) over the
alphabet {z,y} where

01 1/2 1/2
M(‘”):ll 0] M(y):l1;2 1?2]
The initial distribution indicates that s is the initial state. From the matrices M
we see that s; changes to s9 with a probability of 1/2 on reading the symbol y. This
can be indicated in a diagram with the states being the nodes and arcs having labels
in the form z(p) where z is the symbol while p is the probability of transition from
one node to the other on scanning the symbol z.

For a finite probabilistic automaton, we increase the domain of M from V to V*
as follows:

1. M(e) =1
2. M(wz)= M(w)M(x)

Now for a word w, the (4, j)" entry of M(w) would denote the probability that the
automaton would move to state s; after getting the input w if it were initially in
state s;.

Definition 2.2 Let PA = ({s1,...,5,},50, M) be a finite probabilistic automaton
over V and w € V*. The stochastic row vector soM (w) is termed as the distribution
of states caused by the word w and is denoted by PA (w).

We notice that for a word w, the i* entry of PA(w) is the probability that the
automaton is in state s; starting from the initial distribution sq.
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Definition 2.3 Let 51 be a n—dimensional column vector, each component of which
equals either 0 or 1, and the PA as in the previous definition. Let 7 be a real number
such that 0 < n < 1. The language accepted in PA by 5; with the cut-point 7 is
defined by

L(PA,51,7) = {wlsoM(w)s1 = n}.

A language L is n—stochastic if for some PA, n and 517, L = L(PA,37,7). A language
L is stochastic if it is n—stochastic for some 7.

Theorem 2.1 FEvery regular language is stochastic. Further, every reqular language
is n—stochastic for every 0 < n < 1.

Theorem 2.2 FEvery 0-stochastic language is reqular.

3 Multiple-Choice Probabilistic Automaton

Now we consider multiple choice probabilistic automaton.

Definition 3.1 (Multiple-Choice Probabilistic Automaton) A finite Multiple-
Choice probabilistic Automaton over a finite alphabet V is an ordered triple NDPA
= (S, 50, M) where S = {s1,89,...,8,} is a finite set with n > 1 elements (the set
of internal states), sg is an n—dimensional stochastic row vector(the initial distribu-
tion) and M is a collection of mapping of V' into the set of n—dimensional stochastic
matrices. For z € V, the (i, )" entry in each of the matrices in M (z) is denoted
by p;(si,x) and referred to as the transient probability of NDPA to enter into the
state s; after being in the state s; and consuming the input z.

We define the language accepted in a similar fashion as above, with the consideration
that whenever a matrix needs to be chosen for an alphabet symbol a, the choice
is made non-deterministically among the matrices in M(a). We talk about two
different modes of acceptance, namely the maxr—mode and the p—mode.

Definition 3.2 L., (NPA,57,7) = {w|maz{soM (w)s1} > n}, where 51, n and sg
are as defined above and {sqM (w)s7} denotes the set of all derivations of the string
w.

Definition 3.3 L,(NPA,s7,n) = {w|prob{soM(w)s1} > n}, where 57, n and s¢
are as defined above and prob{soM (w)s1} denotes the probability of the derivation
of the string w considering all possible derivations of the string w.

Let Lpqar (NPA) denote the family of languages generated by multiple choice prob-
abilistic automata in the maz— mode, L,(NPA) denote the family of languages
generated in the p—mode and L(PA) denote the family of languages generated by
probabilistic automata, i.e. let it denote the family of stochastic languages.

Theorem 3.1 L,(NPA) = L(PA).
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Proof. Let M(z), Ma(z), ..., Mi(z) be the various choices for the alphabet z. Let
the system be in distribution s7, and the input which is read next is z. The proba-
bility that the new state is s; is :

k n
pi =Yl Z % pij (i, 7))
=1 =

Where

e pj; is the probability that the automaton is in state s; after reading the alphabet
T.

e 51 is the i*" entry in 37. In other word, it stands for the probability that the
system were in the state s; initially.

e p;i(si,x)) is the transient probability in M;(x) that the automaton would
change from state s; to s; on encountering the symbol z.

e p(l) is the probability of choice of the matrix M;(z).

Noting that the matrices are chosen non-deterministically, the above equation re-
duces to

k n
pj = Z 1/k) * Z plj 8, T))
=1 i=0
Now the above can be written in the vector notation as

k

7= Y (1/k) * 57 Mi(x)

=1

or in other words,
k
S = Z (1/k) * My(z

If we consider the PA with (S, sg, M), with the set of all matrices for each alphabet
replaced with their arithmetic mean, we obtain the same distribution of states at each
stage. So, this clearly proves that Multiple-Choice probabilistic automata are at least
as powerful as probabilistic automata. Also, since every probabilistic automaton is
also a multiple-choice probabilistic automaton, the inclusion holds the other way
too. Hence the theorem. O

4 Distributed Probabilistic Automaton

We now define the various kinds of distributed probabilistic automaton with certain
restrictions as to transfer of control, and we study various families of languages
accepted.
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Definition 4.1 (Distributed Probabilistic Automaton) A distributed finite
probabilistic automaton over a finite alphabet V' is an ordered (k + 2)-tuple DPA
= (S,s0, M1, My, ..., My), where S = {s1,89,...,8p} is a finite set with n > 1
elements(the set of internal states), sp is an nm—dimensional stochastic row vec-
tor(the initial distribution) and each of the M;’s is mapping of V into the set of
n—dimensional stochastic matrices. For z € V, the (j, k)" entry of each of the ma-
trices in M;(x) is denoted by p;x(s;, z) and referred to as the transient probability
of DPA to enter into the state s, after being in the state s; after consuming the
input z in component 1.

We now define the various modes of cooperation. To achieve that end, we first define
the various modes of transition.

Definition 4.2 (Transition Modes) There are four possible modes of transitions.

e x-mode: The transition from M; to some other component M; occurs at any
arbitrary stage.

e =k-mode: The transition from M; to some other component M; occurs after
exactly k transitions in M;.

e > k-mode: The transition from M; to some other component M; occurs after
at least k transitions in M;.

e < k-mode: The transition from M; to some other component M; occurs before
k+1 transitions in M;.

We note that conventional ¢t—mode does not make sense in this context since all
the matrices involved are stochastic, and hence the derivation in any M; cannot
terminate unless the string has been completely processed. Also the derivation
always starts with My (without loss of generality, this can be assumed).

Definition 4.3 L, . (DPA,n) = {w € V*|prob{soM (w)31} > n}, where a is the
transition mode, @ € {x,= k,< k,> k|k > 1} and prob{soM(w)s1} denotes the
probability of derivation of the string w considering all possible derivations of the
string w.

Definition 4.4 L(y4;.4)(DPA,n) = {w € V*maz{soM(w)51} > n} , where « is
the transition mode, o € {x,= k,< k,> k|k > 1} and max{sqM (w)s7} refers to
the maximum probability of the derivation of the string w amongst all the possible
derivations of it.

We study the acceptance power of DPA in the various modes of transition. We
prove that L, ) generates just a stochastic language in the following theorem. We
leave the study of L(;;,44,q) as an open problem.

Theorem 4.1 Given o € {*,= k,< k,> k} and given a DPA M, there exists a
PA M" such that L, o(s0, M,n) = L(so, M",n).

291



G. N. Sathana Krishnan, K. Krithivasan, A. Choudhary

Proof. Case 1: o = .

Let M = (S, sg, M1, My, ..., M;). Let the cardinality of the set S is n. We try
to define a corresponding PA M"” = (S, 5§, M") in the following way.

S" ={[g,i]]1 <1i <1l,q € S}. Without loss of generality, we assume that the
machine starts working in the first component. s{ is a nl stochastic row vector, which
defines the new initial state distribution in M”. Since we have assumed that the
machine M starts working in the first component, so if the initial state distribution
in M is (pg;sPgss - - -+ Pgn ), then the initial state distribution in machine M" would
be represented as:

50 = (Digy 11 Plgo,1]s - - - » Plgn,1]5 05 05 - - -, 0(nl — m)times)

At any instance of time, the machine M can be in any one of the component.
Suppose at current instance ¢, the machine M is in component ¢, then the state
distribution in M would have been represented as:

St = (pQ17p(I2a v 7p(In)

The corresponding state configuration in machine M"” would be represented by a nl
stochastic row vector as:

S;’ = (0301 <3 Plg1,i]2 Plga,i]s « + + 3 Plgni]» 0,0,... 30)

where the non-zero entries are from the position n(i — 1) + 1 to n(i — 1) + n and
Dlg;,i] = Pg;» V1 < j < m. Also the final state configuration has to be changed in M”.
If the final state configuration in M is (pg,, Pgs, - - -, Pg,)" Where each of the values
Dgi» Vi,1 <14 < nis either 0 or 1, then the corresponding final state configuration in
M" would be represented by a nl-dimensional column vector:

(p[ql,l}ap[qg,l]a cee ap[qn,l]ap[ql,Q]ap[QQ,Q}a v ap[qn,Q}a v 7p[q1,l]ap[q2,l}7 v 7p[qn,l})T

where py,. i1 = pg;, Vi,5,1 < i < n,1 < j < I. From each of the M;, we have [
possible matrices to choose and from each of the matrices, we choose the matrix for
given alphabet. We can encompass both these steps into a single step. The change
of M; to M; can be done by having the present stochastic vector, representing the
current state distribution, multiplied by the following matrix:

00 0
M@i,j5)=|0 I 0
00 0

where M is a (nl)x(nl) matrix and I is a nxn identity matrix which starts off at the
entry (1 — 1)n+ 1, (j —1)n + 1. It can be easily seen that the matrix carries the
transition from M; to M;. For example, consider M (1,2). This is a matrix which
carries out the transformation from M; to M. Considering that n = 2,1 = 3 we
have:

(001000'
000100
000000
ML2) =10 600 0 0
000000
Loooooo_
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Suppose the state were 5 = (p1, p2,0,0,0,0).
Then 57 =35 % M(1,2), which is

(plaan 03 03 03 0) *

SO OO OO
OO OO oo
OO OO O
SO oo~ O
SO OO OO
OO OO oo

which is (0,0, p1, p2,0,0).
We thus see that M (i, j) transfers control from M; to M;.
For each alphabet a, we define the matrix as follows:

Ml(a) 0 . 0
M"(a) — 0 MQ‘(a) 0
0 . M(a)

Consider the same example as above. Suppose, we have [ = 3 and n = 2. Suppose,
the present vector is (p1,p2,0,0,0,0), and we read the symbol a. The matrix for a
would be

I pu(sl,a) plg(sl,a) 0 0 0 0
P11 (82, a) p12(82, a) 0 0 0 0
ne oy _ 0 0 p21(s1,a) paz(s1,a) 0 0
M (a) o 0 0 p21(82, a) pQQ(SQ, a) 0 0
0 0 0 0 pgl(sl,a) p32(51,a)
L 0 0 0 0 p31(s2.a) paa(se,a) |

Now,consider 35.
52 =5 M"(a), which is

p11(s1,a)  pi12(s1,a) 0 0 0 0
pi1(s2,a) pi2(s2,a) 0 0 0 0
(91,92,0.0,0,0) 0 0 p21(s1,a)  p22(s1,a) 0 0
0 0 p21(s2,a)  p22(s2,a) 0 0
0 0 0 0 p31(s1,a)  paz2(s1,a)
i 0 0 0 0 p31(82,0)  P32(s2,a) |

which is (p1 * p11(s1,a) + p2 * p11(s2, @), p1 * p12(s1, @) + p2 * p12(s2,a),0,0,0,0).
We can view it in other way. The above can be seen as follows in the block
matrix-multiplication format.

Sp,1 * Mi(a) Sp2* 0 Sp,3 %0
Sn,1 x0 Sn,2 * MQ(G) Sn,3 *x0
Sp,1 %0 Sp2* 0 Sn,3 * M3(a)

where s, 1,5,2 and s, 3 represent the first, second and third n elements in the
current state configuration. In the context of the above example, s, 1, 5,2 and s, 3
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represents the first, second and last two elements in the current state configuration.
So, we now see that M" (a) helps us process the string as if it were under the control
of one M;.

In order to incorporate the transition from M; to M;, we premultiply M"(a) by
M(i, 7).

Consider the above example. Instead of having just M"(a), we will have M (1, 2)x
M"(a), M(1,3)xM"(a), M(2,1)xM"(a), M(2,3)xM"(a), M(3,1)xM"(a), M(3,2)x
M"(a) and of course M"(a) itself. For each alphabet, thus we have [ x (I — 1) +
1 matrices to choose from. We are now left with the p—mode of acceptance in
the multiple-choice probabilistic automaton, which we have already proved to be
equivalent to probabilistic automaton.

bl
3

Case 2: a = =k.
Suppose we are given a distributed probabilistic automaton M with [ components
and n states

M = (S, sg, M1, Mo, M3, ..., M)

Without loss of generality, we assume that initially the automaton is in the first
component. Since the mode of cooperation is = k, the automaton should spend
exactly k steps in the current component before switching to some other component,
other than the present component.

To simulate the working of this distributed automaton with a single probabilistic
automaton, we look at M in a different way. We think that we have exactly & copies
of each of the components My, Moy, M3, ..., M i.e

M1, Mg, Mg, ..., Mg

Msy1, Moo, Mag, ..., My

My, Mo, My3, . .., My

Here M;; = M; ,Vi,5 ,1<i<1[,1<j<k.

All the transition matrices in Miy, My, M3, ..., My, are identical as in Mj.
Similarly all the transition matrices in Ma1, Moo, Mos, ..., Mo, are identical as in
Ms and so on. Now the original distributed probabilistic automaton M is converted
into another distributed probabilistic automaton M’ as follows:

M’ = (SI, 56, M11, Mlg, ey Mlka Mgl, MQQ, ceey MQk, ceey Mlla MZQ, ey Mlk)
where

e S’ is the new set of states in M’ such that S’ = {[¢,4j]|]1 <i<[,1<j<k,q€
S}. In M’ since the components are replicated, we also include the number
of the component and the number of the copy of the component to which the
state belongs along with each state in the new set of states. The cardinality
of the set S’ is nik.
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e s( is a n* [ * k stochastic row vector which denotes the new initial probability
distribution of M. If so = (pg,, Pgss - - - » Pg,) then we have :

50 = (p['Ith’p[lILlH’ o5 Plgn,11]5 0,0, - ,0(n x 1 x k — n)times)

such that pg; = pjg,11) Vi,1 <4 < n. Here py; is interpreted as the probability
of being in state ¢; in M and Dlg;.11] 18 interpreted as the probability of being
in the state [g;,11] in M'.

o My, Mg, ..., My, Moy, Moo, ..., Moy, ..., My, Mo, ..., My are the set of tran-
sition matrices such that :

Mit = Mip = Mjz = ..., = My = M;,Vi, 1 <i <L

The probabilistic state distribution at any instance of time is given by a n %[ x k
stochastic row vector such that if at current instance the ijh component is active
then the probability distribution is:

(Oa Oa teey Oap[ql,ij]ap[qg,ij]a <+ 3 Plan,ij]s 07 07 B 70)

where the non-zero entries are from the position [( — 1) * k+ 75 — 1] *n + 1 to
[ — Dk +j — 1] +n 4+ n.

In the original DPA M, if the system is in some component M;, then it remains
in M; for exactly k steps and after that it non-deterministically switches to some
other component M;, 1 < j <1, j # i for next k steps. This step is simulated in M’
by forcing the transition from M;; to Mo, from M;s to M;s,. .., from Mi(k_l) to M
and then from M, to Mj; , 1 <j <1, j#1i. Also M’ makes sure that the system
spends only one step in any component M;;, 1 <4 <[,1 < j < k at any instance
of time. The change of component from M;; to M1y, Vi,j, 1 <1 <[,1 <j <k
is done in M’ by having the present stochastic row vector representing the current
state distribution multiplied by the following matrix:

M(ij,i(j + 1)) =

o O O
O NO
o OO

where M (ij,i(j + 1)) is a (nxl*x k) x (n [ *k) matrix and I is a n * n identity
matrix staring at the entry [(i —1)k+j —1n+1,[(i — 1)k + jln+ 1.

The change from the component M;, to Mji, Vi,j , 1 <i<[,1<j<li#j
is done in M’ by having the present stochastic row vector representing the current
state distribution multiplied by the following matrix:

M{(ik, j1) =

o O O
O ~NO
o O O

where M (ik,j1) is a (nx [ k) x (n*[* k) matrix and [ is a n * n identity matrix
staring at the entry (ik — 1)n+1,[(j —1)]n + L.
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To understand the above notions, we take an example. Suppose we have [ =
3,k = 4,m = 2. Then in M’ the state configuration is represented by a 1 x 24
stochastic row vector. Suppose that at current instance the machine M’ is in the
component Moo, then the present configuration is :

51 = (07 0,0,0,0,0,0,0,0, Oap[q1,22]7p[q2,22]7 0,0,0,0,0,0,0,0,0,0,0, 0)

To switch the current component from Mas to Moz we multiply 57 with the following
matrix:

M(22,23)=

O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O O O O O +H O O O O o o o o o o
O O O O O O O O O O O O +H O O O O o o o o o o o
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O O O O O O o o o o o o o o o <o
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O 0O O O O o o o o o o o o o o o©
O O O O O O O O O 0O O O O o o o o o o o o o o o©

Multiplying 57 with M (22,23) we get new state distribution as :
S2 = (07 0,0,0,0,0,0,0,0,0,0, Oap[q1,23]7p[q2,23]7 0,0,0,0,0,0,0,0,0, 0)
such that pig, 2) = Plg, 22 and plg, 23] = Plgy 22)-
Now we construct an equivalent probabilistic automata M” having single com-
ponent with multiple choice for each alphabet symbol from M’ as follows:
MII _ (SII S” II)

- 120

where

o S" =9
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e s = s
e M" is the set of transition matrices.

The final state configuration in M"” has to be changed. If the final state configuration
in M is (pg,; Pgs»- - - Pgn) ", then the corresponding final state configuration in M”
is represented as a nlk-dimensional column vector
(0,0,...,0(nk — n)times, piq, 1k], Plgs,1k]s - - - » Plgn,1k], 05 05 - ., O(nk — m)times, piq, 241,
Dlg2,2k]> -+ + 5 Plgn,2k]s - - -» 0,0 ., 0(nk — n)times, pig, ik]> Plgaik]s - - - ,p[qn’lk])T
where pig, k] = Pgi> Vi,5,1 < i < n,1 < j < 1. The matrices in the set M" is
constructed from the matrices My1, Mia, ..., My as follows:

For each alphabet a, we define the transition matrix M"(a) as follows:

[ Mu(a)
Mlg(a)
M21(a)
MQQ((L)
MII —
(a) Moy (a)
Mll(a)
Mn(a)
i Mik(a) |
Here M;;(a) = Mi(a) ,Vi,j ,1<i<1[,1<j<kE.
Example: Suppose we have [ = 2,k =2,n =2, then M “(a) is defined as:
[ Pl (s1,a) Pl11,2] (s1,a) 0 0 0 0 0 0 ]
P[11,1](52aa) P[11,2](52aa) 0 0 0 0 0 0
0 0 P[12,1](31aa) P[12,2](31aa) 0 0 0 0
0 0 P[12,1](32aa) P[12,2](32aa) 0 0 0 0
0 0 0 0 pp1,1(s1,a) pp1,2)(s1,a) 0 0
0 0 0 0 p1,17(s2,a) pp1,2)(s2,a) 0 0
0 0 0 0 0 0 ppaz,1 (81, @) a2 (s1. @)
i 0 0 0 0 0 0 pp22,1) (s52,a) P[22,2] (s2,0) i

where

Py (s1,0) P12 (s1,0) _ | Prza (s1,a) P22 (s1,a) _
= M1 (a)
Py (s2,0) P12 (s2,a) Pri2,1) (s2,a) P22 (s2,a)

Similarly

p[21,1](8170) P[21,2}(Slaa) _ P[22,1](51aa) P[22,2}(Slaa) = Ms(a)
Pp21,1) (s2,a) Pl21,2 (s2,a) P22,1] (s2,a) Pl22,2] (s2,a)

Now as in the case of *-mode, we will premultiply M”(a) with the matrices which
forces M" to switch the component from M;; to M;(;1) if j < k or otherwise from
M to Mj; V1 <i<[,1<j<1,i#7j.
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Example: In the above example, we will have M (11,12)(a) x M"(a), M(21,22)(a) *
M"(a), M(12,21)(a) * M"(a), M(22,11)(a) x M"(a).

So now in M"” we have [(k—1)+I(l—1) matrices in total for each alphabet symbol
a. Thus from the distributed probabilistic automaton M we get a multiple choice
probabilistic automaton M”, and we have already proved that any multiple choice
probabilistic automaton can be simulated by a probabilistic automaton(with single
choice). Thus a distributed probabilistic automaton with = k-mode of cooperation
in p-mode of acceptance is equivalent to a probabilistic automaton.

Case 3: a =<k.

The idea of the proof in this case will be same as that of = k-mode. Suppose we
are given a distributed probabilistic automaton with [ components

M = (Sa507M17M27-"7Ml)

We construct M’ from M and M” from M’ in the same way as in the case of = k-
mode. The final state configuration here has to be changed as it is changed in = k-
mode, with slight difference. If the final state distribution in M is (pg,, Pgos - - - s Pan ) 5
then the corresponding final state configuration in M” is represented by a nlk-
dimensional column vector:

(p[ql,ll]ap[qz,ll]a s ap[qn,lk]ap[ql,m]ap[QQa 12]7 <3 Dlgn,12]5 - - - 2 Plgu k] Plgo,lk]o - -+ 5
Plgnak))T> Where pg. = pg. im)s Vi, jom,1 < i <n,1<j<Il,1<m <k Theonly
difference here occurs in the choice of matrices in M”. Since the machine M is
working in < k-mode, the system remains in any component at most k steps after
which it has to forcibly switch to some other component. This is simulated in M"” by
forcing the machine to make the transition from M;; to My 1) or My, Vi, 3,7 : 1 <
1<1,j <k, 1<r<lI,r#iorfrom My to My ,Vi,k,r:1<i<[,1<r<Ir#i.

Example : Considering the same example as in = k-mode with [l =2,k = 2,n = 2,
in M” we will have M(11,12) x M"(a), M(11,21) * M"(a), M(12,21) * M"(a),
M(21,22) x M"(a), M(21,11) * M"(a), M(22,11) * M"(a).

So, for each alphabet symbol a we will now have ll(k — 1) + I(l — 1) matrices
in total in M”. Thus the distributed probabilistic automaton M is reduced to a
multiple choice probabilistic automaton M” and we have proved that any multiple
choice probabilistic automaton is equivalent to a probabilistic automaton with single
choice for each alphabet symbol. Hence the theorem holds for the < k-mode also.

Case 4: a = > k.

The proof is similar to the < k-mode. Suppose we are given a distributed
probabilistic automaton with / components

M = (S, s0, M1, My, ..., M)

We construct M’ from M and M” from M’ in the same way as in the case of = k-
mode. The only difference here occurs in the choice of matrices in M”. Since the
machine M is working in > k-mode, the machine spends at least k£ steps in each
component before switching the component. This is simulated in M” by forcing the
transition from M;; to M;(; 1), Vi,5,1 <@ <1, j <k or otherwise from M;; to My
or M1, Vi,r,1 <i<I,1<r<I,r=#1i. Also the final state configuration has to be
changed exactly in the same way as in the case of = k-mode.
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Example: Considering the same example as in > k-mode with [ = 2,k = 2,n = 2,
we will have M (11,12) « M"(a), M (12,12) x M" (a), M (12,21) x M" (a), M (21,22) *
M"(a), M(22,22) x M"(a), M(22,11) * M"(a).

So, in general for each alphabet symbol a we will have I(k — 1) + 1+ (I — 1)
matrices in M". Thus the original distributed probabilistic automaton is reduced to
a multiple choice probabilistic automaton M” and we have shown that any multiple
choice probabilistic automaton is equivalent to a probabilistic automaton with single
choice for each alphabet symbol. Hence the theorem holds for the case a = > k-mode
also.

5 Conclusion

In this paper, we have considered multiple choice probabilistic automaton and we
have shown that it can be simulated by a (single choice) probabilistic automaton.
We defined distributed probabilistic automaton with four cooperating modes. We
have shown that in each of the modes, a distributed probabilistic automaton can
be simulated by a multiple choice probabilistic automaton and hence by a (single
choice) probabilistic automaton. Here we have not considered probability of tran-
sition between components, which can also be taken into account and the above
results can be established with appropriate modifications in the proofs.
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