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Abstract

We discuss aspects of multi-robot models suitable for study of interactions
and emergence of rational behavior. To demonstrate advantages of the gram-
matical approach, we design an eco-grammatical model of adaptive multi-robot
community. We demonstrate that this grammatical model can naturally in-
volve a reinforcement collective learning. We test two learning algorithms in an
environment with minimal communication of (almost) reactive robots. Experi-
mental results show that using the eco-grammatical model, the robot commu-
nity can be successfully trained to find a close-to-optimal solution to a given
NP-complete task of a truss construction.

1 Models of Social Robot Behavior

The design and understanding of adaptive multi-agent systems is one of the most
important challenges for theoretical robotics and artificial intelligence as well. There
has been a movement in the last decade from the traditional idea of monolithic
fabricated intelligence to the paradigm of social intelligence, see [1, 3] and others.
An intelligent behavior and learning tends to be interpreted as a result of interaction
of multiple autonomous agents. Examples of successful multi-agent robotic design
include the walking six-legged robot Genghis [2], robotic soccer [10] or rescue robot
team simulation [18], to name a few. In this paper we demonstrate that eco-grammar
systems can be particularly useful for modelling and understanding emergence of
social behavior of such simple agents.

There have been already reported some symbol- and grammar-based robotic
models. For instance, Flann et al. [11] used a grammar-based approach to generate
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Figure 1: A basic scheme of eco-grammar system.

strategies for autonomous vehicles. Takadama et al. [17] studied a grammar-based
robot community learning to perform a collective task. Dassow [9] used an eco-
grammar system for modelling the behavior of the MIT robot Herbert. Due to [17],
advantages of grammatical approach include (i) guarantee of a necessary level of
rational behavior of each robot (ii) easy adaptation of robots to possible defective or
inoperative functions (iii) autonomous behavior and emergence of rationality with
minimal communication.

We add that (iv) clear interpretation of a robot’s behavior and decision is ob-
tained, (v) a successful implementation of collective learning algorithms is possible,
and (vi) an analytical solution to the problem of deadlocks or cyclic behavior of the
community is available under some restrictions.

2 Eco-Grammar Systems

The eco-grammar system was originally created as a grammatical model of interac-
tions between an environment and organisms living in it. For motivation, examples
and basic results of eco-grammar systems we refer to [5], [6].

Various models of eco-grammar systems have been studied, taking into the ac-
count direct mutual interactions between agents (predator — prey relations), pre-
scribed teams of agents, prescribed scenarios (tables) of agent behaviors, multiplica-
tion and dying of agents etc. For these and further variants of eco-grammar systems
we refer the reader to [7, 13, 14].

Prior to formal definitions, we fix some basic notation. For an alphabet V,
we denote by VT the set of all nonempty strings over V. If the empty string, A,

301



P. Sebestyén, P. Sosik

is included, then we use notation V*. The length of a string = is denoted by |z|;
alph(z) C V denotes the set of all letters contained in z. An 0L scheme (an inter-
actionless Lindenmayer scheme) is a pair G = (V, P), where V is an alphabet and
P is a complete set of context-free rewriting rules applied in parallel. For a set of
context-free rules P we denote by dom(P) the set of left-hand sides of the rules in
P, i.e. dom(P) = {a|(a — v) € P}. We refer to [15] for further elements of formal
language theory.

Definition 2.1 An eco-grammar system of degree m,n > 1, is an (n + 1)-tuple
Y= (E,Ay,...,A,), where

e E = (Vg, Pg),

— Vg is a finite alphabet and

— Pg is a finite set of 0L rewriting rules over Vg, and
b Az = (muﬂaRZa¢27¢1) for ia 1 < 1 < n, where

— V; is a finite alphabet,

— P, is a finite set of OL rewriting rules over V;,

— R; is a finite set of rewriting rules of the form z — y with z € VET , Y EVy,
— @i Vi — 2F

— i VT — 2Ri,

(p; and 7;, 1 < i < n, are always supposed to be computable functions but
@i(x),;(y) are not necessarily complete; 2% denotes the power set of X.)

The above items are interpreted as follows:

e F represents the environment: Vg is the alphabet and Pg is the set of evolution
rules.

o A; = (V;, P;, R, i, ;) corresponds to an agent (the i-th agent), 1 <i<n: V;
is the agent’s alphabet, P; is the set of evolution rules, R; is the set of action
rules. The mapping ;, depending on the state of the environment, selects the
actual evolution rules. The mapping 1); selects the rules for the actual action
depending on the current state of the agent.

Thus the OL schemes (Vg, Pg) and (V;, P;), 1 < i < n, describe the evolution of the
environment and the agents, respectively. The production sets Rji,..., R, define
possible actions of the agents A1, ..., A, within the environment. Figure 1 gives a
schematic description of the system.

Definition 2.2 A configuration of an eco-grammar system X is a (n + 1)-tuple
o= (wg; w1, wa, ..., W),

where wg € Vi and w; € V;*, 1 < i < n; wg is called the state (evolution stage) of
the environment, and w; is the state of the i-th agent, 1 < i < n.
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In this paper we deal with the weak variant of eco-grammar system [4]. An agent
A; is said to be active in a configuration (wg;wi,ws,...,wy) if the set of its actual
action rules 1);(w;) is nonempty. Agents can be active only if they are in a nonempty
state; formally, 1;(A) =0, 1 < i < n.

A derivation step of an eco-grammar system from a configuration (wg; w1, . .., wy)
to (wi;wi,...,ws,) means:

(i) an application of a randomly chosen rule r € 1);(w;) of each active agent A; to
a randomly chosen environment al symbol;

(ii) OL rewriting of the environment wg to wy by the productions of Pg in every
place except the symbols already rewritten in phase (i);

(iii) a simultaneous OL rewriting of every w; to w} by productions of ¢;(wg).

If an agent A; enters the empty state w; = A, then it remains inactive during the
further functioning of the EG system. On the contrary, if w; # A and no action rule
of the agent is selected, i.e. 1;(w;) = (, then the agent is only temporarily inactive.
The same holds also if none of the agent’s selected rules can be recently applied
to the environment. For an example of functioning of an EG-system we refer to
Section 3.1.

A uniform formal description of eco-grammar system allows one to solve an-
alytically some important problems of behavior of a multi-robot community. For
instance, consider the problem of detection of a deadlock (blocking): is there a sit-
uation during performing a common task when one or more robots block mutually
their resources and cannot further act? Another problem is the one of stagnating
behavior: are there situations when a team is trapped in a cycle? Under certain
restrictions, answers to these questions can be effectively found in an eco-grammar
system. The following result has been shown in [6].

Theorem 2.3 There exists a polynomial-time algorithm (w.r.t. to the size of the
system) deciding whether the development of a given unary deterministic simple EG
system 1is blocking or stagnating.

Also for tabled EG systems, in which agents switch between prescribed tables of
behavior, a similar result has been shown [16]:

Theorem 2.4 There exists an algorithm deciding for a conditional tabled EG1(i,0; p)
system, 1 > 0, whether there exists an infinite acyclic sequence of configurations (i.e.
the system is non-stagnating).

We refer the reader to [6, 8, 16] for further information on unary, deterministic and
tabled eco-grammar systems.

3 A Case Study: Multiple Robots in Space

It follows by the previous description that the eco-grammar system’s architecture
corresponds to a team of behavior-based robots. There is a common environment
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Figure 2: Multiple robots in space. Capital letters denote positions: S — space
station, W — welding position, B — beam-holding position. Small letters denote
actions: b — go to beam-holding position, w — go to welding position, s — go to
station.

wg, subject to an independent evolution rules Pg. A perception function for an agent
A; is defined by ¢;, an action selection function is 1; and action rules are R;. The
learning task for multiple robots described bellow has been originally presented in
[17], where a hybrid model with grammatical aspects was presented.

Consider that there are m beams in a space station which have to be transported
and weld together to construct a truss. There are n universal robots to participate
at a solution. Each robot can perform one of the following actions:

— transport a beam from the station to the truss;

— hold a beam in a suitable position within the truss;
— weld a beam held by another robot;

— transfer between two locations.

These elementary actions can assemble to patterns of a robot behavior — roles, e.g.
to transport a beam and then hold it until it is weld by another robot. The situation
when the number of robots ready to weld is greater than the number of the other
robots is considered as a deadlock. (The ready-to-weld robots block the access of
the others to the truss.)

In our eco-grammar model the environment string wg contains a global descrip-
tion of a current state of the task. The OL scheme (Vg, Pg) defines the behavior and
properties of the environment. Each robot is represented by an agent A;, 1 <i < n.
Its internal state w; represents its current position and a sequence of its previous
actions for the purpose of training. Selection of a current role of the robot is driven
by rules in the set P;. Similarly as in [17], some rules in P; have assigned individual
weights that can be applied in a deterministic or probabilistic way.

Formally, consider a truss construction task with n robots and m beams. Let
Y =(E,A1,...,Ay) be a weak EG system describing fully the task. Denote d(X,Y)
the number of steps to move from the position X to Y, for X,Y € {S, B, W}.
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{B,S, W}k

o Pp={Dixy] = DI | 1<i<n X,Y €{B,S,W}} U {#i 5> #|1<

i < m} (recall that D™ denotes the string consisting of n symbols D) plus
completing rules of the form a — a for the other symbols a € Vg not present
on the left-hand side of the above rules.

Meaning of symbols in Vg is the following:

HHESTQAD

a travel distance element for the robot A;;

a beam located in the station;

a beam transported by the robot A;;

a beam held by the robot A; in a beam holding position;
a beam weld with the truss;

an auxiliary symbol — port for one robot.

Let A; = (V;, P, Ri, vi,¥;), 1 <i < n, be a complete description of a robot.
o V;={S,B,W,W,, Ps, Pg, Py,s,b,w, Rsp, Rps, Rpw, Rws, Rww, Rsw };

e The mappings ¢; and 1; are defined as follows. Let for each rule x — y in P;

there be a set C' C Vg of permitting symbols and a set D C Vg of forbidding
symbols. Then

z =y € gi(wg) iff C Calph(wg) and D Nalph(wg) = 0.

The mapping v; is defined in the same way w.r.t. the rules in R; and the
string w;. Due to the above convention each rule in P; or R; will be denoted
as (C,D : z — y). This type of regulation can be found in random context
grammars [15] or conditional tabled eco-grammar systems [8].

e P; contains the following rules:

({G},0: 8 — Rsp)! (0,0: Rsp — Pp)  ({Di},0: Pw — Pw)
({G},0: S = Rsw)! (0,0: Rps — Ps)  ({Di},0: Ps — Ps)

(@ {HZ,I} B — Isz)Jr (@,@ : RBW — Pw) ({Dz},@ : PB — PB)

(@ {HZ,I} B — RBS) (@,@ : RWS — Ps) (@, {Dz} : Ps — SS)
({H:},0: B — B) 0,0: Bww — Pw) (0,{H;}: Pp — §)
({L},0: B — B) (0,0 : Rsw — Pw)  ({H;},{D;}: Pg — bB)
({#:},0: W, %waw) 0. {#:}: Woe > W) (0,{Di}: Pw - W)
({#:},0: W, > wRws)'  ({GL0:W — W)

(@,{G}U{Hj,[j | 1<y Sn}:W—)Rws)
(@,{G}U{Hj,[j | IS]STL}S—))\)

({H;},0: S = Rgw)! qumwﬁw@}l<<n
({Z;},0: S — Rsw)' {L},0: W — Wy) srsm

plus completing rules of the form a — a. Rules denoted by 1 can have assigned
weights described in the next section.
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e R; contains the following action rules:
({RBs},@ F - FDiDi[BS]) ({Rws},@ F— FDZD'L[WS])
({Rew},0: F — FD;Dypw)) ({Rww},0:F — FD;Dyww))
({Rsw},0: F — FD;Dysw)) ({Rsg},0:G — H;D;Djsp))

plus the set {({W},0:I; & #;) | 1<j<n, j#i}

Meaning of symbols in V;, 1 < ¢ < n, is the following:

S a robot is in the station;

B a robot is in a beam holding location;

W, W, arobot is in a beam welding location;

Py for Y € {S,B,W} : a robot is in space on the way to location Y;
b a robot transported a beam to a beam holding location;

S a robot returned to the station;

w a robot weld beams at a welding location;

3.1 An example of a simple task

As mentioned above, the rules in P; denoted by { can have assigned weights. These
rules determine the choice of current roles for robots. In our experiment the robots
have two different main roles: transport and hold a beam and (wait and) weld a
beam. For simplicity, we fix the distance between the space station and the truss
to d(S,B) = d(S,W) = 1 time step and the distance between welding and beam-
holding position within the truss to d(B, W) = d(W, W) = 0.

Example 3.1 Consider n = 3, let two robots Ay, Ay transport and hold beams an
let the third one A3z weld beams. The weights will be set as follows:

Ay Ay Az
S — Rgp 09 09 0.1
S — Rsw 01 0.1 09
B — Rps 09 09 0.1

B — Rpw 01 01 09
W, — wRws 09 09 0.1
W, - wRww | 0.1 0.1 0.9

The sequence of configurations of the whole community follows, beginning in an
initial configuration with all the beams and robots located in the station.

Step Environment wg Ay Ay Az
0. F3G? S S S

1. F3G? Rsp Rsp Rsw
2. F°D3Dsgw)H1D1DysgH2D2Dosp) Pp Pg Py
3. F3DsH{D{HyD, Pg Py Py
4. F®H.H, Pp Pp Pw
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5. F3H,H, bB bB W
6. F3L I, bB bB W,
7. F3L I, bB bB W

Now robots 1 and 2 are holding beams and robot 3 is ready to weld. After welding
the robot 1’s beam, robot 3 continues to another welding position, while robot 1
returns to the station. Then the same is done with the robot 2.

8. F341, bB bB W

9. F34I, bRps  bB wRww
10 FFDlDl[BS]FD3D3[WW]#IQ bPS bB wPW

12. F3#1I, bP; bB wW

13. F3#4#3 bsS bB wWy

14. F3## bs bRps wwRww
23. F344 bs bs wws

In the final configuration all the beams are weld, all the robots are back at the
station, state of each robot contains the history of its actions.

4 The Learning Algorithms

The task of coordination of multiple robots to fit into a given time limit is gener-
ally NP-complete. It is a case of so-called Precedence Constrained Multiprocessor
Scheduling [12]. Hence, in larger robot communities, the problem of central con-
trol strategy is computationally unfeasible. The character of the task suggests as a
solution the Profit Sharing (PS) reinforcement collective learning.

4.1 PS reinforcement learning

In the learning process the rules with assigned weights are selected by a roulette
selection. After each task completion, positive or negative rewards are distributed
to robots due to the result. Through the rewards distribution robots modify their
own roles by changing the weight values of their individual rules. In accordance
with [17], we modify the distribution of rewards to a decreasing (instead of original
increasing) geometrical progression.

Positive rewards are distributed according to the formula:

W(r) :==W(r;) +RT-(1/2) L, i=1,..,p. (1)
Negative reward is distributed just to the last selected rule:
W (r;) := W(r;) — R™, where i =p. (2)

In the above formulas W (r;) represent the weight of the rule r;, R* and R~ are
nonnegative reward values, p is the length of the current role-selection sequence of
the robot. As an assumption, the weights of rules are set to the same value at the
beginning of training.
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4.2 Advanced reward assignment

As one can observe in Section 5, the robot community using the PS learning was
able to learn the task successfully. If the ratio of beams/robots was high, however,
the experimental results were worse than the estimated optimum. Furthermore,
a large number of training cycles was necessary and a robustness of training was
rather weak. For instance, in the case of 3 robots and 24 beams only one of 200.000
training cycles leaded to performing the task successfully.

We deduce that the PS learning algorithm did not motivate robots to effectivity,
it just leaded to any non-deadlock solution. A improvement can be gained by scaling
the positive reward value in dependence on the number of steps needed to complete
the task:

W(ry) == W(r) + (¢/k)*-RT-(1/2)"L, i=1,..,p, (3)

where £ is the estimated optimal length of the task, k& is the number of steps in the
success case and « is a positive integer. With growing value of « the reinforcement
of weight values depends stronger on number of steps k. Moreover, unlike the previ-
ous section, the robots were trained to solve the task with subsequently increasing
number of beams.

5 Simulation Results

We compare the number of steps needed for completing a given task in three ex-
periments. In the first experiment used as a benchmark we perform the truss con-
struction task described in section 3 with pre-set values of weights. This experiment
called Central Control. In the second experiment named PS Learning we used the
modified PS reinforcement learning from Section 4.1. In the third experiment de-
noted by Advanced Learning we applied the learning strategy from Section 4.2.
We performed all the experiments for the case of 13 and 24 beams. Figures 3
and 4 allows one to compare the results. When considering experimental results, we
must remember that there is also certain number of “delay” steps due to the transfer
of information in eco-grammar system between environment and the robots. An
original Lisp implementation of eco-grammar system was used for the experiments.

5.1 Experiment with central control

In this experiment we set the weight values and hence divided the roles manually.
Two main roles are denoted as follows:

— HB for transport and hold beam;
— WRB for weld beam.

As the problem is NP-complete, we did not calculate an exact analytical minimum
Smin(m,n) of steps depending on 7 (the number of robots) and m (the number of
beams), for a given distances d(X,Y), X,Y € {B,S,W}. We can nevertheless give
a certain upper and lower bound of this minimum.

For a lower bound, consider the case when the welding procedure and the distance
d(W, W) is very short, majority of the robots bring and hold beams and only a small
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fraction of robots weld beams. Then clearly at least |m/n| beam-holding cycles are
necessary and hence

{%J -c1 + ¢3 < 8min(m,n) (4)

for some constants ¢; > 1, and ¢y > 0 depending on d(X,Y).

For an upper bound, assume on the contrary that the welding procedure and/or
the transfer between welding locations takes more time than the beam bringing and
holding. If we divide the robots to two teams of roughly the same size, the first one
with the roles HB and the second one with the roles WB, we can certainly perform
the task in [m/(2n)] welding cycles, and hence

Semin(m, ) < [%1 P (5)

for positive constants c3 and c4. It follows from (4) and (5) that

smin(,m) = (). (6
n
In the experiment, robots performing HB had the weight values set as the robot A
in example 3.1. The WB-robots had the weight values as the robot A3. We studied
the cases from 3 to 15 robots and distributed the roles in a following way to estimate
the optimal solution:

Ay Ay A3 Ay As As A7 Ay A9 Ay A Ain Az Ay Ass
HB HB WB HB WB HB HB WB HB HB WB HB HB WB HB

5.2 Experiments with PS learning

The experiments with PS learning were performed for 3 to 15 robots. We used from
2,000 to 200,000 training cycles, reward values were Rt = 1 and R~ = 0.01. The
initial value of rule weights was set to 50. Since results of the experiments were
nondeterministic due to the probabilistic learning algorithm, we have chosen for
each value of n (the number of robots) the best result among 10 randomly chosen
experiments.

5.3 Experiment with advanced learning

The robots were trained by a learning procedure described in Section 4.2. Denoting
n the number of robots, we increased the number of beams by 2 * [n/2] in each
learning segment. This leaded to approx. ten times higher effectivity of learning —
no more than 20.000 training cycles were necessary. Similarly as in the experiment
with PS learning, the best result among 5 randomly chosen experiments was chosen.
Unlike PS learning, this time more than 50% of the experiments resulted in the same
value shown in the graph and only in a few cases the result was worse. Hence the
advanced learning algorithm is much more robust. Moreover, the results were better
for a higher ration m/n.
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Figure 3: The experimental results for 13 beams
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Figure 4: The experimental results for 24 beams

6 Discussion

We considered aspects of multi-agent and multi-robot modelling and discussed ad-
vantages of the grammatical approach. Clearly, this approach is appropriate in
situations when details of physical interactions of robots and their environment are
involved (e.g. robot vision, image recognition, control of drives etc.). But it provides
a favorable tool on a certain level of abstraction when the environment, perception
and actions of robots can be described by discrete means. We argue that substantial
aspects of emergence of rational behavior and social intelligence could (and should)
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be studied on such a level.

As an example we presented an eco-grammar model of and adaptive robot com-
munity in space. We tested in this framework two algorithms of distributed rein-
forcement learning: a modified PS learning and our advanced learning algorithm.
The community of robots was able to perform the given task of the truss construc-
tion with both algorithms. Our advanced learning turned out to be more robust
and also about ten times more effective. Rather surprisingly, the learning model has
reached in many cases the estimated optimal solution.

Further theoretical and experimental study is necessary to exploit potential of
grammatical models of robotic systems. Among many open problems we select a
few:

— to study systematically models in which an analytical prediction of (un)desired
configurations as a deadlock or cycles is possible;

— to accommodate the model with two- or three-dimensional environment, for the
cases when the studied experiment would require to involve spatial interactions
and topology;

— to study and model possible emergence of rational behavior in collectives of
nanomechanisms as molecular motors, bio-arrays etc.
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