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Abstract

Metalinear CD grammar systems are defined to be context-free CD gram-
mar systems where each component consists of metalinear productions. The
maximal number of nonterminals in a starting production is the width of a
CD grammar system. It will be shown that the width of metalinear CD gram-
mar systems induces an infinite hierarchy of language classes. In addition it
is established that metalinear CD grammar systems of a certain width gener-
ate language classes that do not contain all context-free languages but contain
some context-sensitive languages. The resulting language classes are closed
under union, intersection with regular languages, homomorphism and inverse
homomorphism. They are not closed under concatenation, Kleene closure, in-
tersection and complement.

1 Introduction

There are many ways to combine the classical formal language theory with the con-
cept of distribution. Grammar systems are a combination of formal grammars and
distribution. A grammar systems consist of several components where each compo-
nent is a grammar. Cooperating distributed (CD) grammar systems are a sequential
model where at one point of time only one component (the active component) con-
tributes to the derivation. A good overview of the topic can be found in [2] or in [4]
and also a connection to artificial intelligence is given in [2].

From the language theoretic point of view it is desirable to find grammar models
that combine the simplicity of context-free rules with the power of generating some
context-sensitive languages. Context-free CD grammar systems consist of several
context-free grammars and can be seen as a generalization of context-free grammars.
The derivation mode defines how long productions of one component can be used
and when the next component becomes active. Apart from the ¢-mode where each
component contributes to the derivation as long as possible, we will consider the
(= k)- and (> k)-mode where each component performs exactly k or > k steps,
respectively. In case of the t-mode the class of ETO0L languages is generated and
using the (= k) and(> k)-mode we obtain a subclass of the language class generated
by matrix grammars [2]. Thus, the concept of distribution adds generative power to
context-free productions.
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However, context-free CD grammar systems are not as easy to handle as context-
free grammars. For instance, it is not known whether a tool like a pumping lemma
exists. Hence, it is difficult to exclude a certain language from a certain language
class generated by CD grammar systems. It is therefore natural to find subclasses
which are easier to use but still contain interesting non context-free languages. When
considering context-free languages, the most simple form of a production is a linear
production. But we will show that CD grammar systems with linear productions
only generate linear context-free languages. Metalinear context-free grammars are
only allowed to have more than one nonterminal in a starting production. In this
way the derivation trees stay nearly as simple as linear derivation trees.

We define metalinear CD grammar systems to be CD grammar systems with met-
alinear context-free grammars as components and prove a pumping lemma similar
to that for metalinear context-free languages. Then it is established that the width,
which is the maximal number of nonterminals in a starting production, induces an
infinite hierarchy of language classes. Also some interesting context-sensitive lan-
guages that can be generated by metalinear CD grammar systems are presented.
However, it is not possible to generate all context-free languages. Furthermore,
some nice closure properties are proven such as closure under homomorphism, in-
verse homomorphism, union and intersection with regular sets. The resulting lan-
guage classes are not closed under under concatenation, Kleene closure intersection
and complement.

2 Definitions

The basics of formal language theory can be found in [5]. Let A be a finite alphabet.
We denote the empty string by ¢ and the Kleene closure of A by A*. Let B be a finite
set. With |B| we refer to the cardinality of B and with B’ we refer to {d’ | a € B}.

A context-free grammar G = (N, T, P, S) is linear, if each rule is of the form
A — uBv or A — u where A,B € N and u,v € T*. A language L is said to be
linear if there exists a linear grammar G such that L(G) = L.

A context-free grammar G = (N, T, P, S) is m-linear, if each rule is of the form
S— Ai...Any, A — uBvor A — uwhere A, Aq,..., Apy, B € (N\{S}), mg<m
and u,v € T*. A language L is m-linear, if there is an m-linear grammar G such
that L(G) = L. If a grammar or language is m-linear for some m > 2, it is also
called metalinear.

We denote the class of regular languages by REG, the class of context-free
languages by CF and the class of linear languages by LIN. For the class of m-linear
languages we will write mLIN and METALIN:= |J;~, iLIN.

Definition 2.1. A CD grammar system is a k+ 3 tuple I' = (N, T, Py, ..., P, S),
where N is a finite set of nonterminals, T is a finite set of terminals, P;, 1 <i < k
is a finite set of rules and S € N is the axiom.

In the following, we will write 51 X2 =p, fiafs if X — « is in P; and 1, B2 are
in (NUT)*. We say that the production X — « is applied to the derivation string
p1XP2. We denote reflexive and transitive closure of =p, by =} and we write
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« :>l;%- B, if a derives 3 in exactly k steps. We define the domain of a component as
Dom(P;):={A| A — a € P}

Definition 2.2. Let I' be a CD grammar system.

1. For each i, 1 <14 < n, a terminating derivation in the i-th component is
x :>§31_ y iff z =% y and there is no z € (N UT)* with y =p, 2.

2. For each i, 1 <1 < n, a k-steps derivation in the i-th component is
x :>1:3ik y iff there are z1,...,z541 € (N UT)* such that z = z1,y = x4, and
zj =>p Tj41,1 < j < k.

3. For each i, 1 < i < m, an at most k-steps derivation in the i-th component is
x :>1§ik y iff z :>1:31_kl y for some k' < k.

4. For each i, 1 <1 < n, an at least k-steps derivation in the i-th component is
x :>1231_k y iff z :>1:31_kl y for some k' > k.

Now we define metalinear CD grammar systems as CD grammar systems that consist
of context-free metalinear grammars as components.

Definition 2.3. A CD grammar system is called m-linear for a fixed m > 2, if
each production is formed as follows: S — A;...A4,,,, A = uBv, A — u with
A/ B Ay, ..., Amy € (N\{S}), mg > m and u,v € T*. If a CD grammar system is
m-linear for some m > 2, it is also called metalinear. We refer to m as the width of
an m-linear CD grammar system.

We denote the class of m-linear CD grammar systems with [ components by CD;-
mLIN and the class of metalinear CD grammar systems with [ components by C'D;-
METALIN. For the class of languages which are generated by grammars in CD;-
mLIN or CD;-METALIN in derivation mode f € {x,t,= k,> k, < k | k > 1} we
write L¢(C'D;-mLIN) or L§(CD;-METALIN), respectively. We omit the number of
components, if no restrictions are made.

Definition 2.4. An ETOL system is a (n+3)-tuple G = (V, T, P,..., P,,w) where
V is the total alphabet, 7' C V is the terminal alphabet, P;,1 < i < n are the tables
consisting of context-free rules, w € V* is the start string.

Each table is complete, that is for all symbols a € V it contains at least one rule
of the form a — z. In the following rules of the form ¢ — a are not explicitly
written. A symbol a in an ET0L system is called active if there is a table in G with
a production a — = where a # z. The number of active symbols in the string o € V
is denoted by # 4(q) ().

Definition 2.5. An ETO0L system G = (V, T, Py,.. ., P,,S) is called m-linear if and
only if it has the following properties. S € V' \ T does not appear at the right hand
side of any production. If S = « then # A(G)(a) < k Every production whose
left-hand side is not S is linear. An ETOL system is called metalinear if and only if
it is m-linear for some m.
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Metalinear ET0OL systems are investigated in [6]. We will denote the class of m-
linear ETOL systems with ET0L,,;;n, the class of metalinear ETOL systems with
ETOLypranin and the corresponding language classes with L(ETOL,,;;n) and

L(ETOLNMETALIN)-

Definition 2.6. A context-free matrix grammar is a 4-Tuple G = (N, T, M, S)
where N is a set of nonterminals, T is a set of terminals, M a finite set of sequences
s: (1,12, .1, ),ns > 1 withr; € N x (TUN)* and S is the axiom.

A derivation step of a matrix grammar consists of the sequential application of the
rules r1,...,7,,, to the derivation string.

Definition 2.7. A matrix grammar G = (N,T, M, S) is called m-linear if and only
if each production is formed as follows: S — A;...A4,,,, A = uBv, A — u with
A, B Ay, ..., Apmy € (N\{S}), mp > m and u,v € T*. An matrix grammar is called
metalinear if and only if it is m-linear for some m.

Definition 2.8. Let I' be a CD grammar system. A tree is a derivation tree of I'
iff the following holds. Every vertex has a label which is a symbol of N UT U {¢}.
The label of the root is S. If a vertex is interior and has label A, then A must be
in N. If n has label A and vertices nq,no,...,n; are sons of vertex n, in order from
the left, with labels Xy, Xo,... X, respectively, then A — X X5... X} must occur
in one of the components of I'. If vertex n has label ¢, then 7 is a leaf and is the
only son of its father.

The labels of the leaves of a derivation tree read from left to right are called the yield
of the tree. A subtree of a derivation tree is a particular vertex together with all
its descendants. It should be noted that each derivation of a CD grammar system
corresponds to a derivation tree, but there are also derivation trees which do not
correspond to a derivation of the underlying CD grammar system. We call derivation
trees which correspond to a derivation of I" valid. If a valid derivation tree has a
yield w € T™ we call it a valid complete derivation tree.

3 Examples

In this section we will show, that there are interesting non context-free languages
which can be generated by m-linear CD grammar systems. Furthermore there are m-
linear context-free languages which can be generated by (m — 1)-linear CD grammar
systems.

Example 3.1. Consider the language L; = {a}a3bb5'cich | I,m,n > 1}. The
following 2-linear grammar system will generate L; using the t-mode. L; is known
to be 3-linear context-free.

I = {{S7A7 C’ 31732’31735}7{0‘7 ba C}aplaPQaP3aP4’S}7

P = {S— B1By,B — Bllbl,BQ — bgBé},

P, = {B| — By,B, — By},

Py = {B; — Abi, By — boC},

Py = {A—a1day,C — c1Cc2, A — ajaz,C — ciea}.
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With the component P; the two nonterminals By and By are inserted. After that,
the numbers of b;s and bes will be increased with the components P; and P,. The
derivation of bs is finished with component P;. Component P, inserts as and cs like
a context-free grammar and completes the derivation.
S =p, BibibaBY =p, BibibaBy =p, ... =p, Bib" 00 1By =p, AVPOTC =p,
aalbmb el ¢t

10207705 C1Cy.

Example 3.2. The language Ly = {ww | w € {a,b}} is generated by the following
grammar system using the (= 2)-mode:

ry, = {{S, S',A,B,A',B'},{a,b},Pl,Pz,Pg,S},

P = {§—5,8 - AB,A— aA',B—aB',A— a,B — a},
P, = {A—bA',B—bB' A— b B — b},

Py = {A'"—> A B'— B}.

The following derivation shows how I'y works.
S =p, AB =p, aA'aB' =p, aAaB = p, abA'abB' = p, abAabB = p, abaaba

Example 3.3. The language L3 = {a"b"a"b"a"b™ | n > 0} is generated by the
following grammar system using the (= 2)-mode

F3 — {{S’ A,B, C, A,, BI, CI,B”,BI”,B”II}, {a’ b}

5P15P25P35P47P57P67P77‘S}
P = {S— 5.5 — ABC},

P, = {A—aA'b,B— aB'b},
Py = {B' — B",C — aC'b},
P, = {A - A B"— B"},
P; = {B" > B,C'>C},

Ps = {A— ¢ B— B"},

P, = {B" —¢,C— el

The derivations of I's are formed as follows:

S =p, ABC =p, aA'baB'bC = p, aA'baB"baC'b = p,
aAbaB"baC'b = p, aAbaBbaCb(=p, ... =p, ... =p, ... =p,)" !
a" Ab"a" Bb"a"Cb" = p, a"b"a"B"'b"a"CH" = p, a"b"a"b"a"b"

4 Generative Capacity

4.1 Pumping Lemma

Considering the generative capacity of languages we need the possibility to decide,
if certain languages are included in a language class. For metalinear CD grammar
systems it will be possible to obtain a pumping lemma. This will help us to establish
a hierarchy of language classes consisting of languages generated by metalinear CD
grammar systems.
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Lemma 4.1. Let f € {t,= k,> k | k> 2} and L € L;(CD;-mLIN) be an infinite
language. Then there is a h € N and for all w with |w| > h such that w =c1...¢cp
and

1. e ¢ =muyvizi, 1 <1< m,
® UIVIULVY - . . U Uy F E,

o foralliy, 1 <ig < m with |c;y| > h/m it is uiyvi, # € and |Ti wi,vig2ziy| <

h/m,

e forallj,j >0 xlu{ylv{zwguéyw%zg e T Ui Ym Vi Zm € L.

2. for all i, 1 < dg < m with |c;y| > h/m + s and each substring c; with
|ci,| > h/m + s there is a vy with

° c;-Ofy s a substring of c;,,

. cgofy = zuyvz and zu is a substring of the first h/m + s terminals of C;o
and |u| >0,

e forall j,j >0 ¢xu/yviz¢’ € L.
or

;. . ‘
e ¢ is a subsiring of ciy,

e ¢, = zuyvz and vz is a substring of the last h/m + s terminals of ¢

and |u| > 0,
o forall j,j >0 ¢rulyviz¢’ € L.

Proof. We will first prove the claim for the {-mode of derivation.

1. Let L € L;(CD;-mLIN) an infinite language and G € CD;-mLIN be a grammar
system that generates L using the {-mode. Furthermore let s be the maximum
number of terminals in one Production of G, p the maximum number of productions
with terminals in one component and r the number of nonterminals in G. Now,
consider a word w € L consisting of n terminals. Then there were at least n/s
productions used in a derivation and the corresponding derivation tree of this word.
Let h=s-(r-1-p+1)-m? and w € L with |w| > h. Then w is divided in m parts
wW=c¢y...c;p, With S = Ay1... A, and 4; = ¢; and 1 < i < m. There is at least one
¢y, > s-(r-1-p+1). Now, consider the subtree with root A4;, that yields ¢;,. Note
that only linear productions are used in this subtree. We analyze the first [-r-p+1
productions with terminals.

Case 1: When deriving c¢;, one of the components uses more than p productions that
contain terminals. Then there are two vertices vt; and vis satisfying the following
conditions.

e Both vertices have the same label and the same productions applied to them.
e Vertex vit; is closer to the root than vertex wvts.

e The potion of the path from vt; to vt is of length at most p
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In this case we have zp, up,vp, 2, =€, 1 <h <m, h # j and

w = Yi...T5jU;YV525...Ym

= T1U1Y1V121 .. -TjU;Y;VjZ5 . . - TmUmYmUmZm-

When the productions on the path from vt; to vis are applied ¢ times, we obtain
the word

W= Y1 TUGYUGZ - Ym

= zutyvtz ... gcjué-ij;zj R T
Furthermore 0 < |z,u,vj,2j,| <1-p+1< h/m.
Case 2: When deriving w none of the components uses more than p productions
that contain terminals. Therefore there have to be at least (r -1+ 1) - m changes of
components in the derivation.

Now, consider the leaves of the derivation tree of w when a component stops
working. The leaves are a sequence of at least m nodes each labelled with a terminal
or a nonterminal. Since terminals in the derivation tree can not be changed, they
are represented as X in the sequence. Hence, there are only (r + 1) - m different

sequences for nonterminals at the leaves of the derivation tree. One of the sequences
has therefore to occur twice while deriving w. Let

1 1
(><1,...,le,l,le,le+1,...,xjp,l,ij,xij,...,xm)
and
X X i B? x. X i B?  x. X
( Lyeeos 2= P55 2141l - 5 2 gp—1: Dy Dgptls-- s m)

be these sequences where each position stands for one of the m branches of the
derivation tree and X means that there is a terminal at the end of this branch. In
this case xp, up, vp,2zp =€, 1 <h <m, h# ji...j5,. We have

w = Y1..--Yju-1T5:U5H Y5 V5 251 Y541 - - - Yip—1L5, U5, Y5, V5, 25, Yjp+1 - - - Ym
= T1UWY1V121 - - - Ty —1UG 1Y 51 —1V51 =125, =153 Ujy Yjy Vjy 25y
Ljr+1Uj1+1Y51+1V51 412541 - - -
Ljp—1Ugp —1Y5p — 1V~ 12, — 1L, U, Y3, Vs Zjip

:vjp+1ujp+1yjp+1vjp+1sz+1 s I UmYmUmZm -

If the productions used to change the tree from configuration

1 1
(Xla' "axj1—laBj11 Xjp41ss ij—laija Xijp+ls - .,Xm)

to configuration

2 2
(xl,...,le,l,le, ><j1+1,...,><jp,1,ij, Xjytls ey Xm)
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are applied ¢ times one gets the following word
W= YL Y 1T Y5V Y - Y1 85,05, Y5, 2 YL - - Ym
= TIUTYIVIZL - - Ty —1Uj, 1Y —1VG, 111853 U, Y5 V], 2y

‘Tj1+1u;1+1yj1+11);1+12j1+1 cee

mjp_lu‘sz_1yjp_1/U;p_lsz_lmjpu;’pyjpv;psz

,’Ejp+1u‘sz+1yjp+1’v‘;p+lij+1 o B U Ym Vs Zm
with w’ € L. Furthermore 0 < |zj,uj,vj02j,| <1-p+1 < h/m.
2. As shown in 1. ¢;, is the yield of a linear subtree ¢ of the derivation tree of w.
When we complete c; with the appropriate v we obtain the yield of a subtree "
of t'. Since |c[ | > h/m, t" consists of at most h/m/s productions with terminals.
We will only consider the case yield(t") = c; v because the other one can be proven
analogously. We have shown in 1. that in a subtree consisting of h/m/s productions
either one component has applied more than p productions (case 1) or there have
been at least (r -1+ 1) - m changes of components (case 2). In both cases there is a
vertex vt; and a vertex vty of t” labelled with the same nonterminal. The path from
vty to vty is not longer than p or (r -1+ 1) - m, respectively. Hence cgo‘fy = Tuyvz.
When the productions from vt; to vie are applied j times we obtain zu/yv’z. Since
¢, > h/m + s we have zu is a substring of the first h/m + s terminals of ¢ and
|u| > 0. We have shown in 1. that it is possible to apply the productions from vt;
to vty j times (possibly together with productions in other subtrees) and obtain a
word in L. Therefore there are ¢ and ¢ and for all j,j > 0 ¢zulyviz¢' € L.

Now we consider the = k mode of derivation. Since only k productions are
applied in one component the proof of 1. and 2. is similar to case 2 of the proof of
Lemma 4.1. Case 1 is not applicable, because one component has to use exactly k
components and pumping within these components is not possible.

The proof for the > k£ mode is similar to the proof for the ¢ mode since here also
both cases of pumping can occur. ]

4.2 Generative Capacity Results

With the above pumping lemma we first show, that there are context-free languages
that can not be generated by metalinear CD grammar systems.

Theorem 4.1. CF ¢ L;(CD-mLIN) for allm > 2 and f € {t,=k,> k| k > 2}.

Proof. Consider the language L = {a"b" | n > 0}*. This language is context-free.
Now we assume that L is in L;(CD;-mLIN) for f € {t,= k,> k | k > 2} and
an arbitrary m > 2. Consider the word w = (ab")3™*! where h is the constant
from Lemma 4.1. Then w = ¢;...c¢y. It follows that there is a ¢;, with |¢;,| > 6h.
According to Lemma 4.1 we choose a substring ¢j = al/mtsphghph/m=+s of ¢; . Note
that this is possible because of the length of c¢;,. Then c;-O is divided as follows
Chy = TUYVZ.

Case 1: ¢} is continued to ¢ y. Then |zuvz| < h/m, |u| > 0 and therefore only
contains as from the first part of ¢} . It follows that y > 4h and thus contains b?" in

the first half of ¢j . The word w’ = ¢zu’/yv’z¢' contains at least one pair a? 5"
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where the number of as is not equal to the number of bs. The word w’ is not in L.
Case 2: ¢, is continued to ¢} . A word w' = ¢zu’yv’z¢' which contains at least

one pair a

2thh+m

where the number of as is not equal to the number of bs can be

constructed similar as in case 1. The word w’ is not in L.
It follows that L is not in L;(CDmLIN) for f € {t,= k,> k | k > 2} and an

arbitrary m > 2.

O]

Definition 4.1. For all n € N let L, = {(a’")" | i > 1}.

Theorem 4.2. Let f € {t,=k,> k| k > 2} and n > 2. The language Ly, is in
Ly (CD-nLIN) but not in L;(CD-(n — 1)LIN).

Proof. The following grammar system in CD-nLIN can generate L, in the t-mode:
Let G, = ({S, A, B},{a,b}, P, ... P5,S) and
(S — A},

{A — aBb},

{B — aAb},

{A — ab},

{B — ab}

P

P =
P =
P =

P.s

The components Py or P3 add an equal number of as and bs two the n substrings
derived from the n nonterminals A which are added with the starting production.
Component P, or P; terminate a derivation.
We will now give a grammar system in CD-nLIN that generates L, in the (= 2)- or

(> 2)-mode. Let G, = ({S, B, A1, A}, A, A}, A, ..

P...

P3n,2, S) and

P =
P =

{S—)BAQAH,B —>A1},
{Al — aA'lb, Ay — A’QI},
Py = {AIQ’ — aAIQb, Az — Ag},

{A'Ir:—2 - aA’n—Qba Ap-1 — A’ri—l}a
{AY | — aAl_b, A, — aAl b},
{A'In - ATL’ A,n—l — A,T:I—1 3
{A_o = Ay o, AT — Ap 1},
{All — Al,AIQH — AQ},

{A1 — ab, AQ — AIQ’”},

{AY" — ab, A3 — A"},

{AM | — ab, A, — ab}.
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The derivation begins with P;. After that P> to P, add one a and one b to the n
substrings derived from A; to A,,. Note that these components can only be applied in
the given order. The resulting derivation string contains only primed nonterminals.
Then the components P, 1 to Ps,—1 change the nonterminals in the derivation string
to unprimed nonterminals. These components can also only be applied in the given
order. The derivation is finished with the components Py, to Ps,—1 which can again
be only applied in the given order.

Now we assume that L, is in L;(CD-(n—1)LIN). Let h be the constant known from
the pumping lemma. We choose a word w in L,, with |w| > h. Then w = (a’b)".
But we know from Lemma 4.1 that

W = T1U1Y1V121T2UY2V222 . . . TnUnYnUnZn

and the following holds: At least one of the u; or v; is not the empty word. All
u; and v; only consist of as only consist of bs or else we can obtain a word not
in L,. There are at most 2(n — 1) u; and v;. But if at least one and at most
2(n — 1) of the substrings a™ or b" are pumped to a™ or b" there remain at least
two substrings a” or " and we also obtain a word that is not in L,. Therefore
Ly, & L;(CD-(n —1)LIN). O

Theorem 4.3. Let f € {,t,=k,> k, <k |k > 1} then L;(CD;-1LIN)=LIN.

Proof. Let L be a language in LIN then there is a linear CD grammar system I' with
one component that consists of the productions of the linear context-free grammar
G with L(G) = L and chain productions A — A for each nonterminal A in G. T
generates L using an arbitrary mode in f.

Now, let ' be a linear CD grammar system and L = L;(I'). If f € {,=1,> 1,<
k| k > 1} we can modify the proof in [2] for unrestricted CD grammar systems and
context-free grammars and obtain a linear context-free grammar that generates L.
Now, let f =t andlet I' = (N, T, Py,... P, S) be a linear CD grammar system that
generates L in t-mode. The following linear context-free grammar G generates L:
G=({N;|1<i<l}u{s},T.P,S) and P'={A; - aB;,f| A— aBf € P;,1 <
3 < l}U{Ai — Aj | A & Dom(P;), A € Dom(Pj)l <1,7 < l}U{S’ — S; | S e
P,1<i<lI}.

Next, let f=(=k)or f=(>k),k>2andet "= (N,T,Py,...P,S) be a linear
CD grammar system that generates L in = k-mode. The following linear context-
free grammar G generates L: G = {N;; | 1 < i < k,1 < j <I},T,P',S") and
P = {Ai,j — aBi—l—l,j,B | A — aBf € Pj,l <j<1<i<k- l}U{Ak,j1 — A17j2 |
A€ N,1<ji,jo <I}U{S" = S1;|1<j<l}. In asimilar way we can construct a
linear context free grammarif f = (> k): G={N,;; |1 <i<k,1<j<I},T,P' 5
and P' = {Ai,j — O[Bi+1’j6 | A= aBp € Pj,l <j<lL1<i<k- 1}U{Ai’j —
aB;jf| A= aBf € Pj,1<j<I,1<i<k}U{Ap;, = A1, | A€ N,1<ji,jo <
Bu{s =81, |1<j<I}. O

Theorem 4.4. Let f € {=Fk,> k| k > 2} then L;(CD-mLIN)C LIMAT,11N)

Proof. We consider the proof in the general case from [2] theorem 3.13 and 3.14.
When the construction is applied to a metalinear CD grammar system the structure
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of the productions is not changed and the resulting matrix grammar is metalinear
and of the same width. O

With a proof related to that for the 2-normal form [3] for matrix grammars it will
be possible to show that for all CD grammar systems of finite index or metalinear
CD grammar systems there exists an equivalent CD grammar system working in
(= 2)-mode that is of finite index or metalinear, respectively [1]. Hence it is likely
that there exists a pumping lemma for metalinear CD grammar systems working in
one of the k-modes that is easier than the one shown in this paper.

Theorem 4.5. For the t-mode the following holds:
1. L{(CD3-mLIN)= L{(CD-mLIN)
2. L(CD-mLIN)= L{(CD2-mLIN)

Proof. ;jFrom [4] Theorem 3.1 we have the proof for 1. and in [2] Theorem 3.10 is the
proof for 2. in the general case. When we apply the constructions to a metalinear CD
grammar system the structure of the productions is not changed. Thus the resulting
CD grammar system in 1. has only three components and is still metalinear and of
the same width. The resulting context-free grammar in 2. is m-linear. O

Since metalinear CD grammar systems working in the ¢-mode are equivalent to
metalinear ET0L systems the normal form and the pumping lemma from [6] also
holds for metalinear CD grammar systems working in ¢ mode.

Theorem 4.6. £t (CD—mLIN): ﬁ(ETOLmL]N)

Proof. In [2] theorem 3.10 it is shown that L(ETO0L) CL,(CDCF). When the con-
struction is applied to a metalinear CD grammar system the structure of the pro-
ductions is not changed and we obtain L(ETOL,,;1n) CLy(CD-mLIN).
Now we consider an m-linear CD grammar system G = (N, T, Py,...,P,,S). We
construct an m-linear ET0OL system G’ that generates £,(G). G' = ({A" |1 <1 <
n|Ae N}U{X}UT, T, {Q1,...,Qn} U{Qjr |1 <k #j<n},S). The tables are
defined as follows
Qi = {A'—>aB'B|A— aBB € P}U
{S— AL.. AL | S— Al...An, € P},
1<i1<n
Qjk = {A— A*| A ¢ Dom(P;)}U

{A7 — X | A€ Dom(P))},

I<k#j<n
Note that G’ is metalinear and of the same width as G. A derivation in G with
component P; is simulated in G’ by applying ); one ore more times. Note that
a change of superscript 4 of the nonterminals in G’ is only possible if there is no
nonterminal from Dom(P;) in the derivation string. In this way the stop conditions

of the t-mode derivations in G are correctly simulated in G’. In summary we have
L (CD-mLIN)C L(ETOL,,z1N) O
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5 Closure Properties

Since metalinear CD grammar systems that are working in ¢-mode are equivalent to
metalinear ET0L systems, the closure properties for this mode can be found in [6].
The following proofs hold for all the derivation modes considered in this paper.

Theorem 5.1. Let f € {t,= k,> k| k > 2}, then L;(CD-mLIN) is closed with
respect to

1. union
2. intersection with regular languages
3. homomorphism

4. inverse homomorphism.

P’I"OOf. 1. Let L1 and L2 be in Ef(CD—mLIN) and G1 = (Nl, Tl, Pl,la .. .,Pl’nl, Sl)
and Gy = (N9, Ts, Po,..., Pop,, S2) two m-linear CD grammar systems where
Lf(G1) = Ly and L§(G2) = Ly. W.lo.g. let Ny and Ny be disjoint.

Then let S be a new symbol where S ¢ (N; U Ny). Construct Pi”j from P ;
in the following way: For each production S; — « in P;; add a new production
S — a to P/;. The m-linear CD grammar system G = (N1) U (N2) U {S},T1 U
T, Pl 1, s Py Pyyseo s Py gy, S) generates Ly U Ly.

2. Let L be alanguage in Ly (CD-mLIN) and G = (N, T, Py,..., P,,S) be a grammar
system with L(G) = L. Furthermore, let R be a regular set which is accepted by
the deterministic finite automaton M = (2,Q,d,qo, F). Let S’ be a new symbol
with S’ ¢ N and define N' = {[q, A,p] | ¢,p € Q,A € N} U{S’}. For all i with
1 < i < n and each production p: A — Ay...A;j,A € N Ay,...,A, € NUT in
P; we define the productions p’ = {[g, A4,p] — [q, A1, q1]lq1, A2, q2] - . - [qi—1, A1, P] |
4 q1y---q-1,p € Q}. We construct p” from p' by replacing all symbols [g, a, p],
q¢,p € Q,a € T and §(¢q,a) = p with a. Furthermore, the productions containing
symbols [q,a,p] with ¢,p € Q,a € T and §(q,a) # p are deleted from p”. Let
P = Upe pp' for 1 < i < n. If P; contains a production with S on its left hand
side, then replace in P, the nonterminals [qo, S, f], f € F with S’. The m-linear CD
grammar system G' = (N, T, P|,..., P! S") generates L N R.

3. Let L be alanguage in L;(CD-mLIN) and G = (N, T, P,..., P,,S) be a grammar
system with L(G) = L. Furthermore, let h : T — T"* be a homomorphism that is
continued on T* as usual. We construct a production set P/ for 1 < ¢ < n by
replacing each production p : A — aBf with A,B € N and o, € T* in P; by
p' : A — h(a)Bh(B). The m-linear CD grammar system G' = (N, T',P{,..., P/ 5S)
generates h(L).

4. Let L be alanguage in L;(CD-mLIN) and G = (N, T, P1,..., P,,S) be a grammar
system with L(G) = L. Furthermore, let h : T" — T* be a homomorphism. W.l.o.g.
T NT' = 0. The language

K = {ye(TuT) |y=zz121...21712, T1 - .. 7, € L(G),
205,21 ET?UT U{e}}
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is generated by the m-linear CD grammar system G’ which is constructed from G
as follows. For each a € T we define the set L, = {zay | z,y € T' U{e}}. The sets
L, are finite. Now, if a production p: A = a;...a,, Bby... b, 71 > 0,72 >0 B €
Nu{e}, A€ N, ai,...,ap,,b1,...,by, € T occurs in a component, it is replaced by
the set of productions L, = {A — a}...a; Bb...b;, | aj € Lg,, b € Lp;, 1 <i <
r1, 1 <j <ro}.

We consider the set

M = {h(y1)y1h(y2)y2 - . . h(yn)yn | n > 1,9, € T'}.

It can be seen that M is regular. The intersection between K and M can be described
as follows:

KN M= {h(y)yih(y2)y2 .- h(yn)yn | h(y1) ... h(yn) € L(G)}.

Now we define the homomorphism j : (TUT') = T, j(a) = aifa € T' and j(a) = ¢
if a € T. It is easy to see that j(K N M) = h~'(L(G)). Since L;(CD-mLIN)
is closed under intersection with regular sets and homomorphism, it follows that
L (CD-mLIN) is closed under inverse homomorphism. O

Theorem 5.2. Let f € {t,=k,> k |k > 2}, then L;(CD-mLIN) is not closed with
respect to

1. concatenation,
2. Kleene-closure,
3. intersection,
4. complement.

Proof. 1. With [7] Theorem 4.1 we can show that L,, = {a"b" | n > 0}?™~!
is in L;(CD-mLIN) for f € {t,= k,> k | k > 2}. But L,,L,, contains words
w = (a"b")*™=2. With the technique from Lemma 4.1 it can be shown that L,,L,,
is not in L;(CD-mLIN).
2. follows from 1.
3. Consider the languages L; = {a*b*(a"b")™ | n > 1} and Lg = {(a"b™)"a*b* |
n > 1}. L can be generated by the grammar system

G1 = {{S, A, B, C}, {a, b}, Pl, PQ, Pg, P4, P5, S}

P = {S—CA¥}

P, = {C—aC,C—aB,B—bB,B — bA}

P; = {A—)aA'b}

P, = {A,—>A}

Py = {A—>ab}
using the t-mode. With similar methods as in [7] Theorem 4.1 an m-linear CD

grammar system that accepts Ly in the {= k, > k | k > 2}-modes can be constructed.
Now, we change S — CA* to S — A¥C and obtain an m-linear CD grammar system
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G that generates Lo. With similar methods as in [7] Theorem 4.1 an m-linear CD
grammar system that accepts Lo in the {= k,> k | k£ > 2}-modes can be constructed.
The intersection between the two languages is L1 N Ly = {(a™™)™*1}. We know
from Theorem 4.2 that this language is not in Ly (CD-mLIN).

4. With De Morgan’s Theorem and the fact that L;(CD-mLIN) is closed under
union but not closed under intersection we obtain that £y (CD-mLIN) is not closed
with respect to complement. ]

6 Conclusion

We have defined classes of metalinear CD grammar systems and intensely investi-
gated their generative capacity. To obtain the results a pumping lemma was shown.
The following holds

LIN = L;(CD-LIN) C £;(CD-2LIN) C ...
C L;{(CD-mLIN) C L;(CD-(m +1)LIN) C ....

Furthermore it is

Li(CDy-mLIN) = L{(CDy-mLIN) C
ﬁt(0D3-mLIN) = ﬁt(CD—mLIN) = ﬁ(ETOLmL]N)

and
LH(CD-mLIN) C L(MATnpin), f€{=k>k|k>2}

We have shown that there is a context-free language that can not be generated with
metalinear CD grammar systems although many context-sensitive languages can
be. At last we have investigated the closure properties of metalinear CD grammar
systems. The researched language classes are closed under union, intersection with
regular languages, homomorphism and inverse homomorphism. They are not closed
under concatenation, Kleene closure intersection and complement.

Metalinear CD grammar systems were defined to obtain grammars that are more
powerful than context free grammars but have the simplest possible derivation struc-
ture. We got a deep insight into how the width of a metalinear CD grammar system
influences its generative capacity. We have also obtained a pumping lemma which
allows us to decide for certain languages if they are not generated by metalinear
CD grammar systems. To complete the research of the generative power it would be
interesting to know how the number of components influence the generative capacity
of the metalinear CD grammar systems in (= k)-mode and (> k)-mode.
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