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Abstract

In this paper, we consider the number of (statically measured) active sym-
bols for Lindenmayer systems without interaction and some variants thereof as
well as for pure CD grammar systems, where no distinction between terminal
and nonterminal symbols is made. This measure of descriptional complexity
gives rise to infinite hierarchies in all cases considered here. Moreover, all the
devices under consideration are compared with respect to their generative power
when the number of active symbols is bounded. Finally, some closure and non-
closure properties of the corresponding language families with a fixed number
of active symbols are proved.

1 Introduction

In the last years the concept of active symbols was studied in several papers [5, 8,
10, 14, 15] within the framework of extended tabled Lindenmayer systems without
interaction (ETOL systems). A symbols is said to be active if and only if it can be
non-identically rewritten. ;From the biological point of view active symbols can be
interpreted as the maximum number of cells which are simultaneously contributing
to the growing of the organism.

The authors in [2] investigate the concept of active symbols for deterministic
ETOL systems (EDTOL systems) as well as for cooperating distributed grammar
systems (CD grammar systems for short) working in the ¢-mode of derivation. Fur-
thermore, they introduce the notion of dynamically active symbols.

In this paper we will only consider the statically measured active symbols which
we will refer to as active symbols throughout the paper.

CD grammar systems have been introduced in [3] and have further been inves-
tigated in [4] as models of distributed problem solving. CD grammar system with
context-free productions can be viewed as a generalization of context-free grammars
in which the set of rules is divided into parts which are called components of the
system. These components work on a common sentential form in turns according to
some cooperation protocol, which determines when a component is allowed to start
and to stop rewriting the sentential form. For example, in the so-called ¢-mode of
derivation a component, once started, has to remain active as long as possible, that
is, until none of its productions can be applied to the current sentential form. In
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what follows, we always consider context-free CD grammar systems in the t-mode
of derivation without further mentioning.

Context-free CD grammar system working in the ¢-mode of derivation can be
considered as the sequential counterparts of ETOL systems, just having components
instead of tables. Analogously, pure CD (pCD) grammar systems, where no distinc-
tion between terminal and nonterminal symbols is made, may be viewed as sequential
counterparts of TOL systems. For a more detailed discussion see [1].

In this paper we investigate the number of active symbols in pure grammar
formalisms, that is, we will study TOL systems and languages as well as their se-
quential counterparts, namely the pCD grammar systems and languages, within the
framework of active symbols.

One reason why such pure grammars and systems are of interest is that there
is no distinction between a sentential form and a word in the language generated.
Thus, all information about the derivation process is stored in the language. This
may be useful for purposes of syntax analysis. Moreover it may help to improve the
understanding of the relationship between parallel and sequential rewriting mecha-
nisms.

The paper is organized as follows. Section 2 provides the necessary definitions
of the language generating devices under consideration. In section 3 we will define
the notion of active symbols and show that various kinds of Lindenmayer systems
without interaction as well as pCD grammar systems lead to infinite hierarchies
induced by the measure of active symbols. In section 4 we will reprove and partly
extend known hierarchies of some basic families of languages defined by Lindenmayer
systems and show that these families of languages build the same kind of hierarchies
when the number of active symbols is regarded and disregarded. Some closure
and non-closure properties for the respective language families are investigated in
section 5. In the conclusions we will summarize our results and state some unsolved
problems.

2 Definitions and Preliminaries

We assume the reader to be familiar with basic notions in the theory of formal lan-
guages. With our notation we mainly follow [6]. In general, we have the following
conventions: C denotes set inclusion, while C denotes strict set inclusion. Set dif-
ference will be denoted by \. The set of positive integers is denoted by IN and the
cardinality of a set M is denoted by #M. Let V' be some alphabet, that is, a finite
and non-empty set; by VT we denote the set of all nonempty words over V; if the
empty word A is included, then we use the notation V*. For a word z € V*, its
length is denoted by |z|. For any set W C V, |z|y is the number of occurrences of
letters of W in the word z. Frequently, for singletons {a} we simply write a. We
consider two families £1 and Lo of languages to be equal if they distinguish from
each other at most by the empty set, that is, if £; \ {0} = Lo\ {0}. The fami-
lies of regular, context-free and context-sensitive languages are denoted by L(REG),
L(CF) and L(CS), respectively.

A pure CD grammar system (pCD grammar system for short) of degree n is an
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(n + 2)-tuple G = (V, Py, Py, ..., P,,S), where V is some alphabet, w € V' is the
axiom and, for 1 <147 < n, P; CV xV* is a finite set of pure context-free productions,
which are called the components of G. A production sets P; is called A-free, if there
are no productions of the form A — X in P;.

The t-derivation step according to component P; is defined as follows: for x,y €

V*, we write x :t> y if and only if one of the following conditions hold:
)

(i) there exist strings xo, 21, ..., 2k, k > 0, such that zo = z, 2 =y, z; :Z> Tji1,
0 < j <k—1, and there is no z such that y = z, or
K

(i) y = z.
Here z; = z;41 denotes a direct derivation step in which the component P; is
1
applied, that is, z; = z1a22, Tj41 = 21v22, for some a — v € P; and 21,20 € V*.

The set SF(z :t> y) of the sentential forms of the ¢-derivation step according to
7

P; is (i) the set SF(z :t> y) = {zo,x1,...,2} or (ii) the set SF(z :t> y) = {z},
respectively. Note thatzthe second case (ii) in this definition is not jilst a special
case of (i) with k& = 0, since there may be derivations z = 3, y # z, but all these
derivations will not terminate. Z

A t-derivation in a pCD grammar system is a sequence of ¢-derivations according
to arbitrary components of the system: for x,y € V*, we write = LN y if and only
if there are strings zg, z1,...,2%, k > 0, such that o = z, 2 = y, and z; % Tjit,

J

for 1 <i; <n,0<j<k—1. The set SF(z LN y) of its sentential forms is defined
to be the union of the sets SF(z; :t> zj+1). The language L(G) generated by a pCD
i

J
grammar system G is the set of all sentential forms in a ¢-derivation in G starting
with the axiom w:

L(G):{wEV*|w€SF(wé>y) for some y € V* }.

Note that the language consists of all words generated by iterated ¢-derivation steps
and all the intermediate words appearing along these derivations. Sentential forms
of derivations where the active component will not terminate remain excluded.
The family of languages generated by pCD grammar systems in the ¢-mode of
derivation is denoted by L(pCD).
In order to clarify this definition, we repeat an example given in [1], characterizing
all pCD languages over a one-letter alphabet.

Example 2.1 (see [1, Example 2.2]) Every language over a one-letter alphabet in
L(pCD) is either of the form Lo_, = {a™,a" ', a" 2,...,a,\} or it contains ezvactly
one nonempty word.

A TFOL system is a triple G = (X, H,2), where ¥ is the alphabet, H is a finite set
of finite substitutions from ¥ into ¥*, and  is a finite, non-empty subset of T,
called the set of azioms of G. A substitution h in H is called a table of G. If H
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only contains homomorphisms or non-erasing substitutions, the TFOL system is said
to be deterministic or propagating and is referred to as DTFOL or PTFOL system,
respectively. If for some TFOL system #H = 1, then the TFOL system is called an
FOL system and if for some TFOL system #£2 = 1, then the TFOL system is called
a TOL system.

If v € h(a), a € X, the we say that a — v is a production in the table h. For
z and y in X*, we write z :h> y for some h € H if and only if y € h(z). Hence,

subscript h refers to the table which is used. Let x ::> y denote the reflexive and
transitive closure of the relation x :h> 1.

The language generated by G is defined as

L(G):{WGZ*|HWGQ,w?wlh:>---:>wm:wf0rsome
i i

i9 hlm

m >0 and h;; € H with 1 <j <m}.

Any combination of the denotations D, P, T and F leads to various classes of lan-
guages. In what follows, we will consider all the families of languages £(X) with
X € {P,D,PD,AH{T, A} {F,A}{OL}. The set {P,D,PD, A}{T, A\}{F, A}{OL} will be
denoted by M for better readability.

Figure 1 and Figure 2 show some known hierarchies of these language families
(for proofs see [7, 9, 11, 12, 13]). In these figures we write X instead of £(X) in
order to obtain a better appearance of the figures; moreover an arrow denotes strict
inclusion of the lower language family in the upper one, and if two families are not
connected, then they are incomparable.

In [1], the language family £(pCD) is located in a part of this hierarchy, proving
the strict inclusion £(pCD) C L(CS) and showing the incomparability of £(pCD)
with £L(CF) as well as with each £(X), X € {P,D,PD,A}{T,A}{0L}.

Moreover, by definition and [9, 12] the hierarchy in Figure 2 holds.

3 Active Symbols as Connected Measure of Syntactical
Complexity

First, we provide the formal definition of the number of active symbols for TFOL
systems and languages.

Definition 3.1 Let G = (X, H,w) be a TFOL system. We define the number of
active symbols in a table h € H by
as(h) =#{a|a— w e h witha # w }.
For G we set
as(G) = max{as(h) | h € H},
and for a language L in L(TFOL), we define

asTor (L) = min{ as(G) | G is a TFOL system and L = L(G) }.
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For X € M the notion asx (L) for a language L in £(X) is defined analogously to
Definition 3.1.
In the case of pCD grammar system or CD grammar system, where components
are used instead of tables, the number of the active symbols is defined analogously.
For n > 0 and X € M U {pCD}, let

L(X,n) = {L € L(X) | asx(L) <n}

be the family of languages which can be generated by some X system with at most
n active symbols. By definition, £(X,n) C L(X,n + 1) holds.
Moreover, the following lemmata hold by definition.

Lemma 3.1 (i) Let X € {P.D,PDA}{T,A\}{0L} U {pCD}. For any language L,
L € L(X), we have

asx (L) =0 iff #(L) < 1.
(ii) Let X € {P.D.PD AT, \}{FOL}. For any language L, L € L(X) we have

asx (L) = 0 iff L is finite (or empty).

Lemma 3.2 Let L be a language over a single-letter alphabet. If L € L(X) with
X € M, then L € L(X,1).

Next, we are going to show that the number of active symbols is a connected measure
of syntactical complexity with respect to all systems under consideration, that is,
this measure induces infinite hierarchies of language families for all the system types
considered here. More precisely, the following two theorems hold.

Theorem 3.3 Let X € M. For every n > 0, there exists a language L in L(X)
such that asx (L) = n.

Proof. The statement has been proved for n = 0 by Lemma 3.1. Let n > 1 and set
Yn ={ai,a9,...,a,}.
The language

Ln:{alia%i...afj |9 >0}

is generated by the PDOL system with n active symbols

Gn=Cn{a;—a|1<i<n},aas...a,).

Hence, asx(Ly) < n, for all X € M.

Let us assume that there is an TFOL system G, = (Xy, h1, ha, . .., bk, wp) with
L(G!) = Ly and as(G},) < n. Then for each i, 1 < i < k, there is at least one symbol
aj € ¥, such that h;(aj) = {a;}. Due to the structure of the words in L,, any

2l 2l 2!

derivation step according to Gj, is of the form v = v, for some u = aj a3 ...a; ,

i

v =a?"ad" ...aZ". Since a; is inactive in h;, m = | has to hold. Therefore,
L(G)) = {wn}, and this contradicts L(G)) = Ly,
In conclusion, asy (L) = n, for all X € M. O
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Theorem 3.4 For every n > 0, there exists a language L in L(pCD) such that
aspcp(L) = n.

Proof. For n = 0 the statement has been proved by Lemma 3.1. Consider the pCD
grammar system of degree 2,

Gn = (ZnUAy, Py, Pr2,wy), where

— _ — 3,3 3
Yn =Aa,a9,...,an}, Ay = {b1,be,..., by}, wp =aja3...a;, and

Poi={a;—>b|1<i<n},
Pn’QZ{bi%ai|1§’L'§n}.
Starting off with a word a?ia%i e a?;, i > 1, only P, is applicable, yielding the
word b:fprl b%”l . b?:“ in the t-mode of derivation.

Since the a;’s are sequentially replaced in arbitrary order, all the sentential forms
in K, ; = {uiua...u, | u; € {ay, b?}y} can be obtained during all possible ¢-mode
derivation steps starting off with a3 a3 .. ._afll. _ _

Next, only P,2 can be applied to b:leb%1+1 ...b?:“, where the intermediate
sentential forms of all possible t-mode derivation steps build the set

i+1
Mn,i:{vlvg...vn |1)j € {aj,bj }3 }
Hence, L, = Li(Gy) = U (Kn;i U My;).
i>0

Since Gy, has n active symbols, we have aspcn(Ly) < n.

Let G, = (S,UAp, Py 1, Poo, - ..y Py g, wl,) be a pCD grammar system generating
L,, in t-mode of derivation with as(G},) < n. Since for any two words w and w’ of
L with |w| # |w'|, we have ||lw| — |0'|| > 2, G’ is A-free.

Thus, the shortest word in L is the axiom, that is, ], = afa3...a3. Let P, be
a component which can successfully be applied to the axiom, that is, there is some

. t . . .
u, u # w),, such that a derivation w}, = uis possible according to GJ,.
n

If a; = y € Py, for some 1 <i <nandy € (X,UA,)* then this production
can be applied to each occurrence of a; in w],. Therefore, y € {a;,b3} has to hold.
Analogously, if b; — y € P, then y € {a;,b;} has to hold. Since as(P,;) < n,
there is at least one j, 1 < j < m, such that a; is not active, i.e., there is no

production replacing a; in P, ;. Note that w), :tl> u is a t-mode derivation step,
n,

where the presence of the production a; — a; would be blocking this derivation. In
conclusion, u = ujus ... u, with u; = {a;,b?}3, for 1 <4 < n, where u; = ag? holds.
Therefore, the word & = a2b3a3b3 . ..a2b} does not appear as intermediate sen-

tential form during w!, S

On the other hand, because of u # w),, there is at least one j, 1 < j < n, such
that u; = b9.

Therefore the word z cannot be obtained during further derivations, since G, is
A-free.

Hence, x ¢ Li(G),), contradicting L;(G),) = Ly. 0
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Figure 3: Hierarchy of language families with bounded number of active symbols (1)

4 Hierarchies Induced by a Bounded Number of Active
Symbols

In this section we will extend the known hierarchies presented in section 2 involving
the family £(pCD). We compare the generative power of the mechanisms when the
number of active symbols is taken into consideration. We are going to prove that the
same hierarchical relationships are obtained both when regarding and disregarding
this syntactical measure. More precisely Theorems 4.1 and 4.2 hold.

In Figure 3 and Figure 4 which are given below we write X, n instead of £(X,n),
for X € MU {pCD} (or we write REG, CF, CS instead of L(REG), L(CF), L(CS),
respectively) in order to obtain a better appearance of the figures; moreover an
arrow denotes strict inclusion of the lower language family in the upper one, and if
two families are not connected, then they are incomparable.

Theorem 4.1 For any integer n > 1, the hierarchy presented in Figure 3 holds.

Proof. Let n > 1. The strict inclusion £(pCD,n) C L(CS) follows from the fact
L(pCD) C L(ETOL) which has been shown in [1, Theorem 3.6]. The reader may
readily verify that it is sufficient to show the following 10 facts.

i) Since every finite language is in £(DFOL, 0), the language

Ly = {d?, ab, ba, b?, ab?, b%a, b}

is contained in L(DFOL,n), but L; is not a TOL language (see [1, Theorem 3.5]).
Hence, L; € L(DFOL,n) \ £(TOL,7n) holds.
i1) Consider the POL language

Ly ={a}"
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which can be generated by a POL system with one active symbol, but Lo is not a
DTFOL language (see [12]). Hence, Ly € L(POL,n) \ L(DTFOL, n) holds.
ii1) The PDTOL language

Ly = { $wlwSw | w € {a,b}" }
can be generated by the PDTOL system with one active symbol
G = ({a,b,%},{{$ — $a,a — a,b — b}, {$ — $b,a — a,b — b}}, $3%),

but L3 is not an EOL language (see [13, Exercise IV.1.2]). Since every FOL language
is an EOL language [7], Ls € L(PDTOL,n) \ £(FOL,n) holds.
iv) The DOL language

Ly = {a,ab}

can be generated by the DOL system ({a,b},{a — a,b — A},ab) having only one
active symbol, but Ly is not a PTOL language. Assume the contrary, that is, there
exists a PTOL system generating L4. Since the shortest word in Ly is the axiom,
w = a has to hold. Then there exists at least one table h with a — ab € h and a
derivation a = ab = abp , where 8 # A. Therefore |abf| > 3 has to hold, and

abf ¢ L4. Hence, Ly € L(DOL,n) \ L(PTOL,n) holds.
v) The PDOL language

Ls={d® |i>0}

can be generated by a PDOL grammar system with one active symbol, but L5 is not
a pCD language due to Example 2.1. Hence, Ls € £L(PDOL,n) \ £L(pCD, n) holds.
vi) Conversely, consider the pCD grammar with one active symbol

G = ({a,b,c,d},{a — b}, {a = b*},{a — a,c — dc,c — d},da’c).

Since the components {a — b} and {a — b?} are applicable to the axiom da’c, the
words b? and b* are obtained by the respective t-mode derivations, such that the
set { cxd | x € {a?, ab,ba,b?, ab?, b%a,b*}} is a subset of the language Lg = L(G). A
derivation using the component {a — a,c¢ — dc,c¢ — d} can not terminate if an a
occurs in the sentential form; thus it is applicable only to b? and b*. Therefore, G
generates the language

Lg = {da’c,dabe,dbac,db’c, dab’c, db*ac, db*c}
U {db’d'c, db'd'c, db*d’, db*d’ | i > 1}
Hence, Lg € L(pCD, 1), but Lg is not a TFOL language.

Suppose there exists a TFOL system G = ({a,b,c,d}, H, ) generating Lg. For
all h € H, the following properties hold.

(1) If d — & in h, then |d|f4p, = 0 since h can be applied to db*d* and no
words in Lg contain more than two a, more than two ¢, or more than four b.

Furthermore, since all words in Lg have a prefix da or db, |§| = |6|4 < 1, hence
d € {\,d} has to hold.
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(2) If b — B is a rule in h, then ||, ) = 0, since zB% € h(db*c) for some z,y €
{a,b,c,d}*, but there are no words in Lg containing at least four occurrences
of a or four occurrences of c¢. Analogously, |3|, < 1 has to hold. If |3], =1
and |B|q > 0, then 23%y € h(db*c) contains more than one subwords db, hence
it is not in L7. Thus, B € {b} U{d' | i > 0} has to hold. By item (1),
h(d) € {\ d}. Hence, if f € d*, then a word with prefix d* is contained
in h(db*d), a contradiction to the structure of the words in Lg. Therefore,

B € {\,b}.

(3) Because of items (1) and (2) we can argue as follows: since §3%6 € h(db%d),
neither 5 nor ¢ can be the empty word. Hence, b — b and d — d are the only
rules for b and d, respectively.

(4) Let a — a be arule in h, then dab? is prefix of all words in h(dab?c). Therefore,
a € {)\, a,b?} has to hold. Since h is applicable to dbc, h(c) must be taken
from d*c or from d*. Thus, o = X implies h(da’c) C {c,d} T, a contradiction.
On the other hand, o = b% implies |z|, = 3 for all z € h(dabc), which is a
contradiction, too. Hence, a = a.

(5) According to the above arguments, all words h(da®c) have the prefix da?.
Hence, ¢ — ¢ is the only rule for ¢ in h.

In conclusion, each table h in H is the identity, and L(G) is finite. This contradicts
the assumption L(G) = Lg.

In conclusion, Lg € L(pCD,n) \ L(TFOL, n) holds.
vii) The regular language

Ly={ab|i>1}uU{ab’ |i>1}

is not a TFOL language (see [12, Lemma 5]). Hence, L7 € L(REG) \ L(TFO0L,n)
holds.

viii) The regular language Lg = {a,a?} is no pCD language due to Example 2.1,
hence Lg € L(REG) \ L(pCD, n).

iz) The language Ls = {a? | i > 0} € L(PDOL,1) is not a CF language. Hence
L; € L(PDOL,n) \ L(CF) holds.

z) The language L{(G1) of the proof of Theorem 3.4 is contained in L(pCD,1).
Assume that it is context-free. Then, its intersection with the regular set {a}™"

is context-free as well, but {a3i | + > 0} is not context-free, a contradiction. In
conclusion, L;(G1) € L(pCD, 1)\ L(CF). O

Theorem 4.2 For any integer n > 3, the hierarchy presented in Figure 4 holds.

Proof. The statement follows from Theorem 4.1 and the following facts. Let n > 3.
i) Consider the DFOL language

Lo = {bc(ab®)? |i>0}
which can be generated by the DFOL system with 3 active symbols
G = ({a,b,c}, {a = ab*ab®,b — \, ¢ — bc}, beab?)
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PDFOL, n

Figure 4: Hierarchy of language families with bounded number of active symbols (2)

but Lg is not a PTFOL language (see [9, Theorem 12.1]).
Hence, Ly € L(DFOL, n) \ L(PTFOL, n) holds.
i) The language Lo = {a}™ € L(PFOL,1) is not a DTFOL language (see [12]).
Hence, Ly € L(PFOL,n) \ L(DTFOL, n) holds.
iii) The language L3 = {$wSww | w € {a,b}* } € L(PDTFOL,1) is not an FOL
language (see [13, Exercise IV.1.2]). Hence, Ly € L(PDTFOL, n) \ L(FOL, n) holds.
a

5 Closure Properties

In this section, we investigate whether or not certain operations on languages lead
out of the families of languages generated by some pure system with a bounded
number of active symbols. For the definitions of the considered operations we refer
to any standard text book on formal languages or to [6].

Due to Lemma 3.1, we immediately obtain the following result.

Theorem 5.1 (i) For X € {P,D,PD AT, }{OL}U{pCD}, each of the families
of languages L(X,0) is closed with respect to product, intersection, homomor-
phism, and intersection with a regular set, but it is not closed with respect to
union, complement, Kleene star, Kleene plus, and inverse homomorphism.

(ii) For X € {P,.D,PDAH{T,AH{FOL}, each of the families of languages L(X,0)
is closed with respect to union, intersection, product, homomorphism, and in-
tersection with a regular set, but it is not closed with respect to complement,
Kleene star, Kleene plus, inverse homomorphism.

Apart from this, we obtain only non-closure properties.

60



Active symbols in pure systems

Theorem 5.2 For any integer n > 1, the family of languages L(pCD,n) is not
closed with respect to union, intersection, complement, product, Kleene star, Kleene
plus, intersection with a reqular set, homomorphism, inverse homomorphism.

Proof. Let n > 1.

Union.
Consider the languages {a} and {a®} which are both in £(pCD,n), but their union
{a,a?} is not in L(pCD), thus it is not in L(pCD,n).

Complement. The language {a}*\ {a} is not contained in £L(pCD), hence not in
L(pCD,n).

Kleene star and Kleene plus.
The languages {a}* and {a}" are not contained in £(pCD,n).

Intersection with a reqular set.
The pCD grammar system G = ({a,b},{a — a?,a — b}, a) generates the language
{a,b}*. The intersection {a,b}" N{a}* = {a}" is not in L(pCD, n).

Intersection.
The languages {a,c}™ and {a,b}" are both in £(pCD,1), but their intersection
{a,c}t N {a,b}t = {a}" is not contained in L(pCD, n).

Product.
Consider the languages {)\,a} and {a?} which are both in £(pCD,1) (see Exam-
ple 2.1). Their product {) a}{a?} = {a? a®} is not in L£(pCD), hence not in
L(pCD,n).

Homomorphism.
The pCD grammar system G = ({a,b}, {a — b}, a), generates the language {a, b},
hence it is contained in £(pCD, 1).

Let ¢ : {a,b}* — {a,b}* be a homomorphism such that ¢(a) = a and ¢(b) = a?,
then ¢{a,b} = {a,a®}, which is not contained in £(pCD,n) (see Example 2.1).

Inverse homomorphism.
Consider the language {\,a} € L(pCD, 1) and let ¢ : {a}* — {a}* a homomorphism
such that ¢(a) = A\. Then h=Y(L) = {a}* which is not in £L(pCD,n). O

Theorem 5.3 (i) For any integer n > 1, the following statements hold.

(a) Each of the families L(X,n) with X € M is not closed with respect
to union, complement, product, homomorphism, and intersection with a
regular set.

(b) Each of the families L(X,n) with X € M \ {PDOL,DOL} is not closed

with respect to intersection.

(c) Each of the families L(X,n) with X € M is not closed with respect to
Kleene star and Kleene plus.

(d) Each of the families of languages L(X,n) with X € M\
{PFOL, FOL, PTFOL, TFOL} is not closed with respect to inverse homo-
morphisms.

(13) For any integer n > 2, the following statements hold.
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(a) The families L(DOL) and L(PDOL) are not closed with respect to inter-
section.

(b) Each of the families L(X,n) with X € {PAHT,AHFAHOL} is not closed
with respect to Kleene star and Kleene plus.

(¢) Each of the families L(X,n) with X € {PFOL, FOL, PTFOL, TFOL} is not
closed with respect to inverse homomorphisms.

Proof.
(i) Let n > 1.

Union. .

Consider the languages {a®} and {a* |4 > 1} which are both in £(PDOL,n), but
their union {a®} U {a® |i > 1} is not in £(TFOL) (see [12, Theorem 2]), thus it is
not in L(TFOL, n).

Complement. 4
The language {a? | i > 1} is in £L(PDOL,n), but {a}*\ {a® |4 > 1} is not in
L(TFOL) (see [12, Theorem 2]) and therefore not contained in £L(TFOL,n).

Intersection.

Consider the POL systems G; = ({a,b,c},{a — a,b — b,c — acb,c — ab},c) and
G = ({a,b,d},{a — a,b — b,d — adb,d — ab},d).

Then, L(G1) N L(Gs) = {a’b' | i>1}.

Assume that this language is generated by some TFOL system G. If a — « is a
rule in some table of G, then a € a* has to hold, and for any rule b — 3, 8 € b*
has to hold. If there are two productions of these forms in one table with |«| # |5|,
then a string of the form a/b* with j # k can be obtained from ab. In conclusion,
G is deterministic. Since L(G) is infinite, || = |f] > 0 in each table of G. But
this leads to an exponential progression, a contradiction to our assumption. Hence,
{a'’'|i>1} ¢ L(TFOL). This shows the non-closure for all propagating classes.

Clearly, L(G;) and L(G2) are in £L(DTOL, 1), as well (just divide the productions
appropriately into two tables). Thus, the non-closure for all tabled classes is proved.

Intersection with a reqular set.

Use the language L(G1) of the proof for the non-closure under intersection (see #ii)),
and the regular set a*b*. This proves the non-closure for all propagating or tabled
classes. _

In order to complete the argument, consider the language {a® | i > 0} €
L(PDOL, 1), again. Tts intersection with the regular set {a?, a*} is no TOL language,
see [11, Theorem 2].

Product. _ _

Consider the languages {a} and {a® | i > 0}. Their product {a}{a® |i >0} is
not in £(TFOL) (see [12, Theorem 2]) and hence not in £(TFOL,n).

Kleene star and Kleene plus.

The claim is shown using {a} and the fact that neither {a}* nor {a}* is a DTFOL
language [12].

Homomorphism.

First, consider the PDOL language {a?, b} which is generated by the PDOL system
G = ({a,b},{a — b* b — b},a?). Hence, the language {a?, b*} is in L(PDOL,1).
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Let ¢ : {a,b}* — {a,b}* be a homomorphism such that ¢(a) = ¢(b) = a,
then ¢({a?,b'}) = {a?,a*} which is not a TOL language (see [11, Theorem 2]) and
therefore also not in £(TOL, n).

Now, consider the PDFOL system G = ({a,b}{a — a?,b — b}, {a,b?}) that is
generating the language {63} U{a® |i > 1} which is therefore in L(PDFOL,n). Let
¢:{a,b}* — {a,b}* be a homomorphism such that ¢(a) = ¢(b) = a, then

(0P yu{a® |i>1}) ={a’}U{a® [i>1},

which is not a TFOL language (see [12, Theorem 2]) and therefore also not contained
in L(TFOL,n).

Inverse homomorphism.
At first, {a?, b3} = ¢71({c®}), if ¢ is the homomorphism ¢ : {a,b}* — {c}* with
#(a) = ¢® and ¢(b) = . On the other hand, it is proved in [11, Theorem 2] that
{a?, b3} is no TOL language.

Furthermore, {a}* = h=({a, \}), if h is the homomorphism defined by h(a) = A,
but {a}* ¢ L(DTFOL).

(ii) Now, let n > 2.

Intersection. The DOL systems G1 = ({a,b,c},{a — a’b,b — ab},a) and
Go = ({a,b},{a — A\, b — a},a’b) generate the languages {a} U { (a?b)*" | i >
0} and {),a,a’b}, respectively, each with two active symbols. The intersection
L(G1) N L(G9) = {a,a®b} is known to be no DOL language (see [11, Theorem 2]).

The PDOL systems G1 = ({a,b,c},{a — ab,b — ¢,¢ — ¢},a) and G2 =
({a,b,d},{a — ab,b — d,d — d},a) generate the languages {a,abc” | n > 0}
and { a,abd” | n > 0}, respectively. The intersection L(G1) N L(G2) = {a, ab} is no
PTOL language (see iv) in the proof of Theorem 4.1).

Kleene star and Kleene plus. o
The language {a?b* | i > 0} is in £L(PDOL,n), but {a*¥* | i > 0}* is not
in L(TFOL) (see [12, Theorem 2]) and hence not in £(TFOL,n). The non-closure
under Kleene plus is shown analogously.

Inverse homomorphism. Consider the PFOL system

G = ({a,b,c,d}, {a — a,b — b,c = ac,c = b,d — bd,d — a},{ac,ad}).

Let ¢ : {a,b,c,d}* — {a,b,c,d}* be the homomorphism defined by ¢(a) = a,
¢(b) = b, ¢(c) = ¢(d) = c¢d. Then, we have

¢ NL(G) ={a'b|i>1}U{ab |i>1},

which is no TFOL language [12, Lemma 5]. O

6 Concluding Remarks

The number of (statically measured) active symbols, which has extensively been
investigated for ETOL , EDTOL , and CD grammar systems, is considered in the
present paper for the pure versions of these systems and several variants thereof. It
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is shown that this measure of syntactical complexity is connected for all cases under
consideration. Next, the known hierarchies of the underlying families of languages
are proved to be valid also if one bounds the number of active symbols by any
constant n > 1 (or n > 3 in a few cases). One should remark that the condition
n > 3 is needed only in one of the numerous constructions (which is only used for
proving certain incomparability results, not affecting the strictness of any inclusion).
Therefore, in principle a better result than that stated in Theorem 4.2 has been
shown. Finally, some closure and, mainly, non-closure properties of the considered
families of languages with bounded number of active symbols are proved, where
except from a few marginal cases, optimal results could be achieved.
The problems which have been left open are:

1. Is there a language in £(DFOL, 1) \ £(PTFOL, 2)?
2. Which of £(DOL, 1) and £(PDOL, 1) is closed under intersection?

3. Is £L(X,1) for nondeterministic types X of systems closed under Kleene star
or plus?

4. Is L(X,1) with X € {PFOL, FOL, PTFOL, TFOL} closed under inverse homo-
morphism?

In [1] also deterministic pCD grammar systems and languages have been considered.
Due to the proof of Theorem 3.4 the number of active symbols induces an infinite
hierarchy also in this deterministic case, more precisely

For every n > 0, there exists a language L generated by a deterministic
pCD grammar system such that aspcp(L) = n.

Unfortunately, some constructions used in the subsequent proofs make use of non-
deterministic pCD grammar systems. This leads to a lot of open problems.

Moreover, the computability of the number of active symbols for given pure
languages is of interest. Finally, also the dynamic interpretation of the number of
active symbols could be treated in the framework of pure systems.
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