Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varji and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 66 - 77, 2004.

Population P Systems and Grammar Systems

Francesco Bernardini, Marian Gheorghe

Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
{f .bernardini,m.gheorghe}@dcs.shef.ac.uk

Abstract

The paper introduces two preliminary variants of population P systems with
string-objects. The former one is inspired by CD grammar systems regarded
as a population of interacting/cooperating cells that use rewriting rules to ma-
nipulate set of strings placed inside them. In this case, cells are restricted
to communicate only by means of the environment and no direct communica-
tion among the cells can take place in the system. The second variant instead
uses the notion of communication mediated by query symbols considered for
PC grammar systems in order to define the features of bond making rules in
context of population P systems with string-objects. Some preliminary results
concerning the computational power of these population P systems are reported
and some directions for future research are briefly discussed.

1 Introduction

Membrane computing represents a new and rapidly growing research area which is
part of the natural computing paradigm. Already a monograph has been dedicated
to this subject [10] and some fairly recent results can be found in [12], [8]. Membrane
computing has been introduced with the aim of defining computing devices, called P
systems, which abstract from the structure and the functioning of living cells [9]. A
new variant of P systems, called population P systems, has been recently introduced
in [1] that extends the existing notions of P systems in the following senses:

e the structure of the system is defined as an arbitrary graph rather than as a
tree; each node in the graph corresponds in an one-to-one manner to a cell in
the system; cells are the basic functional units of a population P systems and
they are allowed to communicate alongside the edges of the graph;

e the graph defining the structure of the system can change during a compu-
tation; these changes involve both the set of nodes and the set of edges in
the graph; new cells can therefore be introduced in the system and new links
can be formed among these cells by altering in this way their communication
capabilities.

From a biological point of view, population P systems can be considered as an
abstraction for populations of of bio-units aggregated in more complex bio-entities.

66

Population P systems and grammar systems

Cells represent individuals in the population that are allowed to interact/cooperate
according to a specific communication model. Links between the cells model the fact
that, in order to communicate, these individuals need to “get in touch” somehow.
Furthermore, the operations of cell differentiation, cell division and cell death are
considered for population P systems as generic mechanisms to alter the nature and
the number of individuals in the system [1].

Grammar systems is another active area of theoretical computer science that
advocates the use of a grammatical approach to model distribution and coopera-
tion in a computing system [3]. Grammar systems, in their basic variant called
CD grammar systems, consist of a number of distinct grammars cooperating each
other according to a given protocol in order to rewrite a common string shared
by all the grammars in the system. The initial motivation for CD grammar sys-
tems were related to two-level grammars and to artificial intelligence issues. In this
respect, CD grammar system can be seen as a model for describing autonomous
agents cooperating each other in order to solve a common problem in such a ways
that resembles the blackboard paradigm used in artificial intelligence [3]. Further
variants of grammar system have been then proposed that introduce in the model
extra features from other areas of parallel/distributed computing and/or with some
biological inspiration [3], [4].

There are evident similarities between the P system model and the grammar sys-
tem model: both of them define devices where computing resources are distributed
among different individual components and interaction/cooperation between these
components is fundamental to achieve successful and meaningful computations. In
particular it is natural to think of a grammar systems as a population of interact-
ing/cooperating grammars that work in a common shared environment. This is the
approach we adopt in this paper where we investigate population P systems that use
rewriting as the basic operation to manipulate sets of strings placed inside the cells
in the system. All over the paper, the reader is supposed to be familiar with the
basic notions of formal language theory, the notation commonly used in membrane
computing and in grammar systems as well. We refer to [13], [6], [10], [3] for further
details.

2 Modelling CD Grammar Systems

A CD grammar system [3] is a construct I' = (N, T, P, P, ..., P,,S) where: N is
a finite set of non-terminal symbols, T is a finite set of terminal symbols, P;, for
each 1 <14 < n, is a finite set of context-free rules of the form X — w, with X € N,
w € (NUT)* and S € N is the initial symbol of the system. Notice that, without
loss of generality, CD grammar systems are presented here in the form that imposes
the restriction of not rewriting the terminals of a component in the other ones. In
the case of context-free rules, this restriction in fact does not alter the generative
capacity of CD grammar systems (see Theorem 6.1 in [3]).

Each component in a CD grammar system I' always operates according to a
specific derivation mode § € {k, < k,> k,*,t|k > 1} adopted by the system I" (see
[3] for a formal definition of these derivation modes). Specifically, given two strings

67

F. Bernardini, M. Gheorghe

z,y € (NUT)* we write =% y if and only if = :>‘5P1_ y, for some 1 < i < n.
Thus, the language Ls(I') generated by the grammar system I' using the derivation
mode 0, is the language that contains all the strings y € T* such that there exists
a derivation in I' of the form S :>1‘i 21 :>i{ :>i{ zp :>i{ y, with h > 0,
zj € (NUT)™.

In this framework, a population P system model for systems of cooperating gram-
mars can be defined in a straightforward manner by considering systems consisiting
of a number cells with some finite sets of context-free rule and sharing a common en-
vironment; this environment is used to move the strings to be rewritten from one cell
to another one and to collect the result of a computation. More precisely, an unstruc-
tured population P system is defined as a construct P = (V, T, E,Cy,Cs,...,Cyp)
where: V' a is finite set of symbols, T' C V is a finite set of terminal symbols,
E C V* is a finite language assigned to the environment and, for each 1 < ¢ < m,
C; = (R;, F;) with R; a finite set of context-free rules of the form a — (v, out), for
a €V, ,veV* and F; a finite set of filters of the form (a,in), for a € V.

A computation in an unstructured population P system is performed by dis-
tributing to the cells, according to their respective sets of filters, the strings in the
environment, where they are rewritten by means of some rules and immediately re-
turned to the environment so that the process can be iterated. A filter (a,in) € Fj,
with a € V, specifies that a string in the environment can enter cell ¢ if and only
if the symbol «a is present inside that string; a rule a — (v,out) in R; specifies that
a string can be rewritten inside cell 4 by replacing the symbol a with the string v
and, after that, the string has to exit cell 4 and be associated with the environment.
The language generated by an unstructured population P system P is the language
L(P) that consists of all the strings in 7* that are produced inside the environment
and that cannot enter the cells anymore.

Thus, by having this notion of population P systems, it is easy to verify that the
following proposition holds.

Proposition 2.1. Let I' be a CD grammar systems with n > 1 components. It
15 always possible to construct an unstructured population P system P such that
L(P) = Ly (T).

On the other hand, it is not so immediate to simulate in the context of (popula-
tion) P systems derivation modes other than the 1-mode. This might require the
introduction of specific operations to manipulate the cells in the system or the in-
troduction of specific control mechanisms to regulate the communication of strings
from one place to another one. However, as we will see in the next section, popula-
tion P systems are in general more powerful than CD grammar systems in terms of
generative capacity.

3 Unstructured Population P Systems

In this section we introduce a more general notion of unstructured population P
systems and we report some results concerning their computational power.

68

Population P systems and grammar systems

Definition 3.1. An unstructured population P system with string-objects is a con-
struct

where:

1.

2.

P = (V,T,L,E, 015023' "aC’naR)a

V is a finite alphabet;

T CV is a finite set of terminal symbols;

. L is a finite set of labels that defines a set of possible types for the cells in the

system;

.G =

. E CV* is a finite language initially assigned to the environment;

(M;,t;), for each 1 < i < n, with M; C V* a finite language defining the

initial content of cell 4, and ¢; € L the initial type of cell i;

(a)

(b)

. R is a finite set of rules of the forms:

(a—=y), foraeV,veV* t €L (transformation rules that allow a cell
of type t to rewrite one of its internal strings by replacing the symbols a
with the string v),

(a)y = v(), for a € V, v € V¥, t € L (output rules that allow a
cell of type t to rewrite one of its internal strings and move it into the
environment),

a(); = (v), fora € V, v € V*, t € L (input rules that allow a cell of

type t to rewrite a string in the environment and add it to the content of
the cell),

(a); = (v)p, for a € V, v € V* t,p € L(cell differentiation rules that
allow a cell of type ¢ to rewrite one of its internal strings and change its
type from ¢ to p)

(a) = (v)i(z), fora € V, v,z € V* t € L (cell division rules that
allow cell of type t to rewrite one of its internal strings in order to produce
two cells of type ¢, containing the same set of string as the originating
one except for the string to be rewritten where the symbol a is replaced
by the string v in one cell and by the string z in the other one).

This definition is obtained as a straightforward adaption to the case of string-objects
of the definition given in [1] for population P systems with active cells in the case of
symbols objects. In particular, communication of strings through the environment is
achieved by means of a finite set of output and input rules: these rules allow a string
to be rewritten inside a cell and then moved out from that cell or, alternatively, to
be rewritten inside the environment and moved into a cell.

As usual, a computation in an unstructured population P system P is obtained by
applying in a non-deterministic maximal parallel manner the rules in R to the strings
in the system by starting from the initial configuration, with the further specification
that each string is rewritten in a sequential way and that at most one rule of the

69

F. Bernardini, M. Gheorghe

form (d), or (e) per each cell can be used at a time. The output of a computation is
given by the set of strings in 7™ that are produced inside the environment and that
cannot enter the cells anymore; as usual in P systems with string-objects, we do not
work with halting computations but we accept all the strings of the aforementioned
form produced by any computation in P. The language generated by P in this way
is then denoted by L(P). Then, we introduce the families of languages of the form
ELPP, (op), with n,k > 1, and op C {a,b,c,d, e} that represent the families of
languages generated by (unstructured) population P systems where: the number of
cells in a step of computation is always less than or equal to n, the cardinality of
the set of possible types for the cells is at most k, and rules of the forms specified
in op.

As well as this, we consider the families of languages of the form FELP, (tar)
as the families of languages generated by standard rewriting P systems with at
most n membranes where: the structure of the system is defined as a hierarchical
arrangement of membranes represented as a tree, and communication of strings from
one cell to another one is performed by using the target here, inj;, out. We refer
to [10] for a formal definition of the basic model of rewriting P systems. Finally,
we denote by M AT the family of languages generated by matrix grammars without
appearance checking [6].

The first result we present here shows that unstructured population P systems
without cell differentiation rules and cell division rules are no more than rewriting
P systems.

Lemma 3.1. ELPP, ,({a,b,c}) C ELP,(tar), for each n > 1.

Proof. The proof is based on the observation that an unstructured population P
system with n > 1 cells can be interpreted as being a rewriting P system with
n > 1 elementary membranes embedded in a unique main membrane, which is the
skin membrane of the P system and play the same role as the environment in the
population P system. More precisely, given a population P system P with n > 1
cells C,...,C, as specified in Definition 3.1, we construct a rewriting P system II
with n + 1 membranes labeled by 0, ..., n where:

e (0 is the label of the skin membrane;

e 4, for each 1 < < n, is the label of an elementary membrane that is contained
inside membrane 0;

e for each transformation rule (¢ — y); in R, with 1 < 7 < n, there exists a
corresponding rule a — (v, here) in R;;

e for each output rule (a); — v (); in R, with 1 < i < n, there exists a corre-
sponding rule a — (v, out) in R;;

e for each input rule a(); — (v); in R, with 1 < 4 < n, there exists a rule
a — (v,in;) in Ro;

Notice that, without loss of generality, we are assuming L = {1,...,n} and each
cell C; to be of type i, for each 1 <4 < n. Moreover, in order to correctly simulate

70

Population P systems and grammar systems

the behaviour of P, we add to Ry a rule a — (a,out), for each symbol a in the
system (i.e., at any moment a string produced inside the skin membrane can be sent
out of the system), and we consider for the P system II the set of terminal symbols
T ={ala €T, Aa(); = (a); € R}, for T the set of terminal symbols of P (i.e.,
we accept only strings in the environment that are terminal and that cannot enter
anymore the cells in the system). This means the language L(II) containing all the
the strings in T"* sent out of the system during all the possible computations in TI
is exactly the language L(P). O

Then, as a direct consequence of the equivalence ELPs(tar) = M AT established in
the existing literature [7], [10] and the previous result, we obtain immediately the
following result.

Corollary 3.1. ELPP; .({a,b,c}) C ELPs(tar) = MAT.

As well as this, we can prove the opposite inclusion: rewriting P systems can be
simulated by unstructured population P systems without using cell differentiation
and cell division.

Lemma 3.2. ELP,(tar) C ELPP, ,({a,b,c}), for each n > 1.

Proof. Let II be a rewriting P system with n > 1 membranes labeled in an one-to-
one manner by 1,...,n where 1 is the label of the skin membrane. We construct a
population P system P with n cells where:

e L={1,...,n};

e for each rule a — (v, here) in R;, with 1 <7 < n, there exists a corresponding
output rule (a); = v8pepe; ()i in R;

e for each rule a — (v,out) in R;, with 1 < 7 < n, there exists a corresponding
output rule (a); = v3us, ()i in R;

e for each rule a — (v,out) in Ry, there exists a corresponding output rule
(a)1 —>1)()1 n R;

e for each rule a = (v,in;) in R;, with 1 < ¢ < n, there exists a corresponding
output rule (a); = v8;,; (); in R;

e there exists an input rule $pepe, ()i = (A); in R, for each 1 <4 < n;

e there exists an input rule $;,, (); = (A); in R, for each 1 <14 < n;

there exists an input rule 85y, ()i — (A); in R, for each 1 <4 # j < n, with
membrane ¢ the membrane that contains membrane j.

The simulation of the P system Il by means of the population P system II is done in
the following way. We rewrite all the strings inside the cells in P in the same way as
in IT by inserting in each of them a special symbol $; carrying the target information ¢
needed to move the strings in the right places. These strings are immediately moved
out from the cells into the environment and, in the next step, they will be distributed

71

F. Bernardini, M. Gheorghe

to the cells according to their respective target indications by using the input rules
in R so that the process can be iterated. Moreover, the strings that are sent out of
the skin membrane are moved into the environment without any special symbol $;,
which means these strings will never be able to enter again the cells in the system.
Therefore, the language L(P) is exactly the language of terminal strings that are
sent out of the system during all the possible computations in P. O

Thus, by combining the previous result with Corollary 3.1, we obtain the following
characterisation of the languages generated by unstructured population P systems
without cell division rules and cell differentiation rules.

Corollary 3.2. ELLP, .({a,b,c}) = ELLP33({a,b,c}) = M AT.

Finally, the case of population P systems with cell division rules and/or cell differ-
entiation rules remains to be considered. In this respect, the sole operation of cell
division is expected not to increase the power of population P systems, whereas pop-
ulation P systems with cell differentiation rules are expected to be computationally
complete.

Conjecture 3.1. ELLP, ,({a,b,c,d}) = RE.

In fact, it should be easy to prove that population P systems with cell differentiation
rules are able to simulate matrix grammars with appearance checking. This result, if
proved, would be coherent with what was achieved in [1] where a similar universality
result based on the operation of cell differentiation is provided for population P
systems with symbol-objects.

4 Using Bond Making Rules

Direct communication among the cells (or membranes) in the system is one of the
defining features of the membrane computing paradigm. Cells work in parallel on
different sets (or multisets) of objects, which can then be moved from one cell to
another one by means of some dedicated mechanisms typically expressed as a fi-
nite set of communication rules [10], [12], [8]. Moreover, population P systems
[1] introduces the possibility of altering communication capabilities of the cells by
modifying the set of links existing between the cells. This is done by considering a
finite set of bond making rules which are used after each application of transforma-
tion/communication rules to the objects contained in the cells; this makes possible
to modify the set of edges in the graph defining the structure of the system. Notice
that a communication rule inside a cell can be used if and only if the cell is linked
to some other cells by means of some edges in the underlying graph.

In grammar systems, these features of parallelism and communication among the
components were firstly considered by introducing the notion of parallel communi-
cating grammar systems (PC grammar systems, for short): a model for networks of
Chomsky grammars communicating strings by emerging requests [3]. More precisely,
in each step, each grammar in the system rewrites its string and communication is
done by requests through so-called query symbols, each one of them referring to a

72

Population P systems and grammar systems

specific grammar in the system. When a query symbol appears in the string of a
grammar, the rewriting process stops and one or more communication steps are per-
formed by replacing all occurrences of the query symbols with the current string of
the queried grammars providing that this string does not contain any query symbol.
When no more query symbols are present in the system the rewriting process can
start again.

From a P system point of view, this communication by request can be considered
as a mechanism to open communication channels between the cells in the system.
Specifically, here we want to use query symbols for defining bond making rules that
make possible to link two cells provided that these cells contain a pair of correspond-
ing query symbols. Then, once a link has been established, communication between
the two cells can take place by rewriting their respective query symbols by means
of some particular communication rules associated with the cells.

Definition 4.1. A population P system with bond making rules is a construct
P=V,T,Q,aC,Cy...,Cp)
where:
1. V is a finite alphabet;
2. T CV is a finite set of terminal symbols;
3. @ is a finite of set of query symbols;

4. o is a finite set of bond making rules of the form (i, ¢1; g2, 7), with1 <i# 5 <mn
and q1, g2 € Q;

5. C; = (M;, R;, S;), for each 1 < i < n, with:

(a) M; CV* a finite language defining the initial content of cell i;

(b) R; a finite set of transformation rules of the forms a — v, a — wvg,
a — (v,out), fora € V, v € V* and q € Q;

(c) S; is a finite set of communication rules of the forms ¢ — v, ¢ = v ¢/, for
q,q € Q,and v € V*.

Here, with respect to Definition 3.1, we are considering population P systems without
cell differentiation and cell division where the number and the type of cells in the
system cannot vary during a computation. As well as this, we do not need a notion
of environment as cells are allowed to communicate directly by using their respective
sets of communication rules in combination with the set of bond making rules. In
this respect, the structure of a population P system with bond making rules P is
given by the the set of communication links existing among the cells in the system
that are created time by time by applying the bond making rules in «.

Each cell C;, with 1 <7 < n, gets assigned a finite language M; that defines its
initial content. Each string contained in cell ¢ is rewritten by using the transfor-
mation rules in R;. A rule a — v € R, specifies that a string containing a symbol
a can be rewritten inside cell ¢ by replacing the symbol a with the string v. In a

73

F. Bernardini, M. Gheorghe

similar way, a rule a — (v, out) € R; allows cell 7 to rewrite one of its internal strings
but, after that, the string has to exit the cell without any chance to enter again any
cell of the system. Finally, a rule a — vq € R; makes possible to rewrite a string
inside cell ¢ and introduce in this string the query symbol g. After the application
of one of these rules, the rewriting of the string containing the query symbol ¢ in-
side cell 7 stops and it will restart only when the symbol ¢ has been satisfied and
removed from the string. However, this does not stop the rewriting of the other
strings contained in cell ¢. In order to satisfy a query symbol, the system operates
as follows. Consider a bond making rule (i.q1; g2,), with ¢1,q2 € Q, 1 <i # j < n,
and suppose that, after one application of the respective transformation rules in R;
and in R;, a string ¢y is produced inside cell i and a string u g z is produced
inside cell j, with z,y,u, z € V*. This means a bond between cell 7 and cell j can be
created by connecting the string x g; y with the string u g3 z, and the query symbol
q1 can be satisfied by using the communication rules in S; whereas the symbol g2
can be satisfied by using the rules in S;. Notice that, for each 1 < k < n, the set S
contains both rules of the form ¢ — v that remove the query symbol from the string,
and rules of the form ¢ — v ¢’ that introduce a new query symbol, which makes the
string to walit for another communication to take place.

As usual, we assume a non-deterministic maximal parallel strategy for the ap-
plication of the rules:

e in each step, in each cell 7, with 1 < 4 < n, each string that can be rewritten by
some rules in R; must be rewritten by using one rule in R; non-deterministically
chosen (i.e., each string inside cell 7 is rewritten in a sequential manner); at the
same time, each query symbol in each cell j linked to cell 7 that can be satisfied
must be satisfied by using one communication rule in S; non-deterministically
chosen;

e after each application of the transformation/communication rules, for each
bond making rule (i.q1;¢2,7), with ¢1,q2 € @Q, 1 < i # j < n, we establish
a link between cell 7 and cell j for each pair of strings x ¢y, ugs z, with
the former one contained in cell 7 and the latter one contained in cell j, for
z,1y,u,z € V*; the restriction here is that the same string containing a query
symbol can be used by only one bond making rule non-deterministically chosen.

Therefore, a step of computation in a population P system with bond making rules
is done in two separate stages: a stage where transformation/communication rules
are applied to the strings contained inside the cells and a stage where bond making
rules are used in order to create links between the cells in the system. Notice that
the query symbols introduced by the application of the transformation rules can be
satisfied only in the next step of computation after having used the bond making
rules. Furthermore, these bond making rules make possible to create multi-links
between the cells that are represented by sets of pairs of corresponding strings.
The language generated by a population P system with bond making rules P is
the language L(P) containing all the strings sent out of the cells during all the possi-
ble computations in P. The family of languages generated by population P systems
with bond making rules and with at most n > 1 cells is denoted by ELP P, (query).

74

Population P systems and grammar systems

Next, we prove that these population P systems are quite powerful from a compu-
tational point of view: systems with only two membranes can generate the whole
family of languages in M AT.

Lemma 4.1. M AT C ELPPs(query).

Proof. Consider, without loss of generality, a matrix grammar without appearance
checking G in binary normal form. This is because it is known from [6] that, for each
matrix grammar generating a language L, there always exists an equivalent matrix
grammar in binary normal formal generating the same language L. Moreover, we
assume all the matrices in G but the initial matrix (S — X A) to be labeled in an
one-to-one manner by values in {1,2,...,m}. We construct a population P system
P with 2 cells where:

e (1 = (Ml,Rl,Sl) with

— M, ={X}, for (S — X A) the initial matrix of G;
- Rlz{X%X”XENl,lS’LSn},

- S ={4i—-v|i: (X >Y A—v)isamatrixin G,1 <i<n}
U{A —ofli: (X —=XA—=wv)isamatrixin G,1 <i<mn};

L] CQ = (MQ,RQ,SQ) with

— My = {A}, for (S — X A) the initial matrix of G;
— RQZ{A—>AZ'|A€N2,1 S?:Sn}U{f—)(f,Out)};

- S ={X;=>Y|i: (X >Y A—>wv)isamatrixin G,1 <i<n}
U{X; = A|i: (X >\ A—v)isamatrixin G,1 <i<n};

for @ ={X;,A4;|X € N;,A € No,1 <i <n}. Now, by having this construction,
it is easy to see that the population P system P correctly simulates the matrix
grammar G and therefore we have L(P) = L(G). O

At the moment, we are not able to provide an upper bound for the generative
capacity of population P systems with bond making rules and answer the question
whether they are more than usual rewriting P systems or not.

5 Final Remarks

Membrane computing and grammar systems are two active areas of theoretical com-
puter science, with different starting points, but with several similarities (both areas
deal with distributed computing devices, where such notions as parallelism, cooper-
ation, decentralisation are crucial). Nevertheless, as we have seen, important differ-
ences between the two models emerge from a deeper investigation especially in terms
of computational power. Population P systems even of a very basic form are able to
characterise the whole family of languages generated by matrix grammars without
appearance checking (see Corollary 3.2). A similar result was already established
for the basic model of rewriting P systems as reported in Corollary 3.1. The power

75

F. Bernardini, M. Gheorghe

of (population) P systems is in fact determined by the underlying communication
structure that allows the cells to exchange strings in a controlled way. In this sense,
P systems with string-objects appears to be more similar to the already existing
notions of networks of evolutionary processors [5], [2].

On the other hand, a general claim in the area of P systems with string-objects
is that rewriting is not enough to achieve the computational completeness but it is
necessary to introduce in rewriting P systems some extra features such as priority,
replicated rewriting or conditional communication [10]. In the case of unstructured
population P systems, we expect the universality to be obtained by including the
operation of cell differentiation, which makes possible to change the types of the
cells in the system (see Conjecture 3.1). Furthermore, the claim “rewriting is not
enough” might represent a motivation for introducing grammar system features in
(population) P systems. In this respect, Section 4 introduces a variant of population
P systems where the notion of query symbols considered for PC grammar systems
is used to define bond making rules and the related communication model. Notice
that, according to Definition 4.1, communication in a population P system with
bond making rules consists in just rewriting a query symbol in a cell by means of
some rules associated with another cell without an effective movement of the strings
from a cell to another one. In other words, a string containing a query symbol is
temporarily given access to the rules in a cell different from the one where the string
is placed. Nevertheless, we could easily define a variant of this model where strings
are moved from a cell to another one by replacing a query symbol in a cell with all
the strings contained in the queried cell and producing all the resulting strings inside
the querying cell. As well as this, we might consider multisets of strings instead of
sets of strings as, for instance, proposed in [11] where PC grammar systems with
multisets of strings are investigated in relationship with P systems.

Finally, further investigations of population P systems with string-objects might
be directed to clarify the role of the environment in achieving successful and mean-
ingful computation; this might be done by pointing out analogies with the existing
models of eco-grammar systems [4].

Acknowledgements

This research was supported by the Molecular Computing Network (MolCoNet),
European Union Contract IST-2001-32008 and by the Engineering and Physical
Science Research Council (EPSRC) of United Kingdom, Grant GR/R84221/01.

References

[1] Bernardini, F., Gheorghe, M., (2004). Population P systems. Journal of Uni-
versal Computer Science, 10, 509-539.

[2] Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J., M., (2003). Net-
works of Evolutionary Processors. Acta Informatica, 39, 517-529.

76

Population P systems and grammar systems

3]

[5]

[13]

Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh., (1994). Grammar Sys-
tems. A Grammatical Approach to Distribution and Cooperation. Gordon and
Breach, London.

Csuhaj-Varji, E., Kelemen, J., Kelemenova, A., Paun, Gh., (1997). Eco-
Grammar Systems: A Grammatical Framework for Studying Life-Like Inter-
actions. Artificial Life, 3, 1-28.

Csuhaj-Varji, E., Salomaa, A., (1997). Networks of Parallel Languages Pro-
cessors. In New Trends in Formal Languages (P, Gh., Salomaa, A., eds.),

Lecture Notes in Computer Science, 1218, Springer, Berlin, Heidelberg, New
York, 299-318.

Dassow, J., Paun, Gh., (1989). Regulated Rewriting in Formal Language Theory.
EATCS Monograph in Theoretical Computer Science, Springer-Verlag, Berlin,
Heidelberg, New York.

Madhu, M., (2003). Studies of P Systems as a Model of Cellular Computing,
PhD Thesis, Indian Institute of Technology, Madras, India.

Martin-Vide, C., Mauri, G., Paun, Gh., Rozenberg, G., Salomaa, A., eds.,
(2004). Membrane computing. International workshop, WMC 2003, Tarragona,
Spain, July 2003. Revised papers. Lecture Notes in Computer Science, 2933,
Springer, Berlin, Heidelberg, New York.

Paun, Gh., (2000). Computing with Membranes. Journal of Computer and Sys-
tem Sciences, 61, 108-143.

Paun, Gh. (2002). Membrane Computing. An Introduction. Natural Computing
Series, Springer, Berlin, Heidelberg, New York.

Paun, Gh., (2004). Grammar Systems vs. Membrane Computing: A Prelimi-
nary Approach. In Pre-Proceedings of Grammar Systems Week 2004, Budapest,
Hungary, July 5-9, 2004 (Csuhaj-Varju, E., Vaszil, G., eds.), MTA SZTAKI,
Budapest, 225-244.

Paun, Gh., Rozenberg, G., Salomaa, A., Zandron, C., eds., (2003). Membrane
Computing. International Workshop, WMC-CdeA 02, Curtea de Arges, Roma-
nia, August 19-23, 2002. Revised papers. Lecture Notes in Computer Science,
2597, Springer, Berlin, Heidelberg, New York.

Rozenberg, G., Salomaa, A., eds., (1997). Handbook of Formal Languages. 3
volumes, Springer, Berlin, Heidelberg, New York.

7

