Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varji and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 78 - 94, 2004.

CD Grammar Systems as Models of Distributed Problem
Solving, Revisited

Henning Bordihn

Institut fiir Informatik, Universitat Potsdam,
August-Bebel-Strafle 89, D-14482 Potsdam, Germany
henning@cs.uni-potsdam.de

Markus Holzer

Institut fiir Informatik, Technische Universitat Miinchen,
Boltzmannstrafle 3, D-85748 Garching bei Miinchen, Germany
holzer@informatik.tu-muenchen.de

Abstract

Based on a derivation mode f for cooperating distributed (CD) grammar
systems, we introduce a new form of cooperation protocol, the so called “cut-
f-mode” of derivation. Intuitively, a cut-f-mode derivation, partitions (cuts)
a sentential form into several subwords, where some of these subwords are dis-
tributed to the components, which derive words according to the original f-
mode of derivation, and finally combines all these words together again. It is
argued that these derivation modes are much closer to the original Al moti-
vation of CD grammar systems. We investigate the cut-mode versions of the
classical derivation modes *, < k, = k, and > k, of the competence based modes ¢
and sf, as well as the cut-mode versions of the combined ¢-modes. It turns out
that in most cases, the cut-f-mode turns out to be as most as powerful than
the corresponding non-cut-mode, that is, the f-mode itself. Nevertheless, there
are also some cases, where the power is even reduced to that of context-free
grammars.

1 Introduction

The theory of cooperating distributed grammar systems—for an overview we refer
to [7]—has become a vivid field in formal language theory since its origin in [4], with
forerunner papers [10] and [1]. Cooperating distributed grammar systems have been
introduced for describing, in terms of formal grammars and languages, communities
of cooperating autonomous problem solving agents which use the blackboard model
of problem solving. Furthermore, grammar systems are motivated in connection
with the syntax of programming languages, since they can be seen as generalization
of two-level substitution grammars to a multi-level concept [10]. Finally, in recent
papers they have been considered as sequential counterparts of tabled Lindenmayer
systems [2].

78

CD grammar systems as models of distributed problem solving, revisited

A cooperating distributed (CD, for short) grammar system consists of a finite
set of (context-free) grammars, called components, performing derivation steps on a
common sentential form in turns, according to some cooperation protocol. In terms
of the blackboard model of problem solving, the components correspond to the in-
dependent problem solving agents, representing autonomous knowledge sources, the
sentential form to the current state of the problem solving (the blackboard), where
the knowledge sources can make changes, and the generated language represents
the set of problem solutions (cf. [5]). Simple cooperation protocols are the so-called
x-mode, < k-mode, = k-mode, or > k-mode, where a component, once started, has
to perform an arbitrary number, at most k, exactly k, or at least k derivation steps,
respectively. Moreover, there are two cooperation protocols which are based on the
feature of competence of the problem solving agents on the current state of the prob-
lem solving: (1) In the ¢-mode, a component can start and has to remain deriving
unless and until there is no nonterminal left in the sentential form to which one of
its productions is applicable (that is, the component is not able to contribute to
the problem solving any more), and (2) in the sf-mode, a component is allowed to
become and has to remain active unless and until there is some nonterminal present
in the sentential form which cannot be rewritten by this component (that is, the
component does not possess the full competence on the current state of the problem
solving).

We try to model the effect when agents contribute to the solution by solving sub-
tasks of the whole problem. From the AT motivation this approach seems to be more
adequate: In contrast to different rule-based architectures of problem solving sys-
tems, the blackboard model of problem solving emphasizes the highly opportunistic
way in which the knowledge sources are applied during the problem solving process,
cf. [11]. That is, there is no rigid prescription for the cooperation strategy of the
knowledge sources. In terms of CD grammar systems, solving sub-tasks corresponds
to working on a substring of the current sentential form. This led the authors to the
concept of CD grammar systems working in the cut-f-mode of derivation, where f
is one of the aforementioned cooperation protocols. In these cut-f-modes, in any
derivation step the sentential form is partitioned (cut) into several substrings which
can be associated to different components. In order to be as little rigid as possible,
this association is done via a partial mapping, such that both some substrings of the
sentential form and some components may be disregarded. Then, each component
to which a substring has been associated works in (one and the same) derivation
mode, more precisely, in the f-mode of derivation if the CD grammar system as a
whole is driven in the cut-f-mode.

The overall picture that emerges from our investigates on this newly defined
derivation mode is, that for some modes, the generative capacity is not affected at
all, but there are also some cases, where the power is reduced to that of context-free
grammars, if parts of the sentential forms can be distributed to several components
in one and the same derivation step. In particular, the former is true for derivations
like, e.g., *-, =1-, > 1-, or <1-mode, while the latter is true for instance, for the
t-mode of derivation, which describes the family of all ETOL languages in the non-
cut variant. Moreover, we also find situations, where the cut-mode derivation does
not become context-free. For instance, the sf-mode of derivation characterizes the

79

H. Bordihn, M. Holzer

family of programmed context-free languages, while its cut-mode version describes
an intermediate class between the families of recurrent programmed context-free and
programmed context-free languages. The former language family equals the biolog-
ically motivated family of languages generated by ETOL systems with random con-
text [15]. This is yet another result, where recurrent programmed languages appear
in relation with CD grammar systems and unconventional derivation modes—see,
e.g., [3].

The paper is organized as follows: The next section contains preliminaries, and
we provide the basic definition of cut-f-mode derivations. Then in Section 3 we
investigate the generative power of CD grammar systems working in these newly
defined derivations modes and finally, we summarize our results and highlight the
remaining open questions in Section 4.

2 Definitions

We assume the reader to be familiar with the basic notions of formal languages, as
contained in [6]. In general, we have the following conventions: C denotes inclusion,
while C denotes strict inclusion. The set of positive integers is denoted by IN and the
cardinality of a set M by |M|. Concerning our set notation, we abbreviately write
{X(k),Y (k) | P(k)} instead of { X (k) | P(k) } U{Y (k) | P(k)}, where X (k) and
Y (k) are objects with parameter k£ and P(k) is some predicate on k. This notation
is also extended to more than two kinds of objects having the same parameter. The
empty word is denoted by A. For x € V*, where V is some alphabet, and for W C V,
let |z| denote the number of occurrences of letters from W in z. If W is a singleton
set {a}, we simply write |z, instead of [z|;,. We consider two languages L; and Lo
to be equal if and only if Ly \ {A\} = Ly \ {A}, and we simply write L; = Lo in this
case.

The families of languages generated by regular, context-free, context-sensitive,
general type-0 Chomsky grammars, and ETOL systems are denoted by L(REG),
L(CF), L(CS), L(RE), and L(ETOL), respectively. We attach —\ in our notations
if erasing rules are not permitted. Details about these families can be found in [6].
The class of finite languages is denoted by L(FIN).

A programmed grammar (see, for instance, [6, 13]) is a septuple

G: (N7T’P7S7A707¢)7

where N, T, and S € N are the set of nonterminals, the set of terminals, and the
start symbol, respectively. Here P is the finite set of productions of the form a — £,
a,f € (NUT)*, |ajy >0, and A is a finite set of labels (for the productions in P),
such that A can be also interpreted as a function which outputs a production when
being given a label; ¢ and ¢ are functions from A into the set of subsets of A.
Usually, the productions are written in the form

(r:a—p,o(r), é(r),

where r is the label of & — . For (z,71) and (y,r2) in (N UT)* x A and A(ry) =
(a — B), we write (z,71) = (y,72) if and only if either z = z1az9, y = 21622 and

80

CD grammar systems as models of distributed problem solving, revisited

r9 € o(r1), or £ = y and rule @ — [is not applicable to z, and ry € ¢(r1). In the
latter case, the derivation step is done in appearance checking mode. The set o(rq)
is called success field and the set ¢(rq1) failure field of r1. As usual, the reflexive
transitive closure of = is denoted by =. The language generated by G is defined as

L(G)={weT*|(S,r) = (w,ry) for some r,m5 € A }.

The family of languages generated by programmed grammars containing only
context-free core rules is denoted by L(P, CF,ac). We replace CF by CF — X in that
notation if erasing rules are forbidden. When no appearance checking features are
involved, i.e., ¢(r) = () for each label r € A, we are led to the families £(P,CF) and
L(P,CF—\). A special variant of programmed grammars are recurrent programmed
grammars introduced in [15]. A programmed context-free grammar G is a recurrent
programmed context-free grammar if for every p € A of G, if ¢(p) = 0, then p € o(p),
and if ¢(p) # 0, then p € o(p) = ¢(p). The corresponding language families are
denoted by L(RP,CF,ac) and £L(RP,CF — XA ac). When no appearance checking
features are involved, i.e., ¢(r) = () for each label r € A, we omit ac in that notation,
again.

We use bracket notations like £L(P,CF[—)]) C L(P,CF[—-)],ac) in order to say
that the statement holds both in case of forbidding erasing productions and in the
case of admitting erasing productions (neglecting the bracket contents).

Moreover, we need some more notation on grammar, namely we have to define the
finite index restriction. Loosely speaking, the index of a grammar is the maximal
number of nonterminals simultaneously appearing in a sentential form during a
terminating derivation, considering the most economical derivation for each string.
The finite index property is defined as follows: Let G be an arbitrary grammar type
(e.g., context-free grammars, programmed grammars with or without appearance
checking, etc.), and let N, T, and S € N be its nonterminal alphabet, terminal
alphabet, and axiom, respectively. For a derivation

D:S=w=2>wy=- = w,=w
for w in G, with w € T%, we set
ind(D,G) = max{|w;|ny |1 <i<mn},
and, for w € T*, we define
ind(w,G) = min{ ind(D,G) | D is a derivation for w in G }.
The index of grammar G is defined as
ind(GQ) = sup{ind(w,G) | w € L(G) }.

For a language L in the family £(X) of languages generated by grammars of type X
we define

indx (L) = inf{ind(G) | L(G) = L and G is of type X }.

81

H. Bordihn, M. Holzer

For a family £(X), we set
Ly(X)={L|Le€LX)and indx(L) <n}

for n € IN, and ﬁfm(X) = Unzl»cn(X)-

A cooperating distributed (CD) grammar system of degree n, with n > 1, is an
(n + 3)-tuple G = (N, T, Py, Ps,...,P,,S), where N, T are disjoint alphabets of
nonterminals and terminals, respectively, S € N, and P, P, ..., P, are context-free
rule sets called components. For 1 <14 < n, let

dom(P;) = { A € N | there is a word v such that A v € P; }

denote the set of all nonterminals which can be rewritten by the component P;. For
z,y € (NUT)* and 1 < 1 < m, we write x =; y if and only if z = z1Azy and
y = x12x9 for some A — z € P;. Hence, subscript i refers to the component to
be used. By :>Z-§k, :>1-:k, :>Z-2k, =7, for k£ > 1, we denote a derivation consisting
of at most k steps, exactly k steps, at least k steps, an arbitrary number of steps,
respectively, executed by component P;. Furthermore, we write z =! y if and only
if z =7 y and there is no z such that y =; 2. Moreover, z :>ff y if and only
if z =% 2/, 2’ =, y, and P; is sf-competent on z' but is not sf-competent on y,
where a component P; is said to be sf-competent on a word z if and only if (1)
z = upArur Asus . . . um—1 AUy with m > 0, u; € T*, for 0 < j <m, and A; € N,
for 1 < j < 'm, and (2) for each j, for 1 < j < m, there is a production A; — w; in
P;. Note that the definition of the derivation relation implies that component P; is
sf-competent on z and on all intermediate sentential forms in the derivation z =} ',
too.

Combining the former three modes with the ¢-mode requirement we obtain the
modes (t A <k), (t AN=k), and (¢t A > k) which are defined as follows—see, e.g.,
[8, 9]: There exists a derivation which satisfies both properties in common, e.g.,
T :EMS k) y if and only if there exists an m-step derivation from z to y using P;
such that m < k and there is no 2z such that y =; 2.

Applying our idea on distributed problem solving to one of the aforementioned
modes

e {nt sy U{<k=k>k ke NYU{(tASK),(tA=EK),(tA2k) |k €N}

leads us to the cut-f-mode, f,-mode for short, which is defined as follows: z =/ y
if and only if

l. 2 =x0z1... 23 withm >0, z; € (NUT)*, for 0 < i < m,

2. there is a partial injective mapping p: {0,1,...m} — {1,2,...,n} such that
yi = x4, if 7 ¢ dom(p), and y; = 2, if z; :>£(1.) z;, and

3. Y =YoY1 - Ym-

Here dom(p) = {7 | p(4) is defined } denotes the set of indices in the decomposition
T = 29Z1 - ..Tm to which some component is associated by p. Let

D=1{stsf}U{<k,=k>k|ke NYU{(tA<k),(tA=k),(tA>EK)|keN}

82

CD grammar systems as models of distributed problem solving, revisited

and D, ={ f. | f € D}. The language generated by the CD grammar system
G = (NaTaplaPQa"'ap’naS)
in the non-cut f-mode with f € D is defined as

Li(G)={weT"| S:>Zf1 wy :>{2 ---:>zfm71 Wy—1 :>zfm Wy, = w with
m>1,1<i;<n,forl1<j<m}

whereas the the language generated in the cut- f-mode with f. € D, is defined as
Li(G)={weT"| S =te g =Te oo, 1 =T w,, = w with m > 1}

If f € DU D,, then the family of languages generated by [A-free] context-free CD
grammar systems working in f-mode, is denoted by £(CD, CF[-A], f).
In order to clarify our definitions, we give two examples.

Example 1. Let G be the CD grammar system G = (N, T, Py, Py, P3, S) with non-
terminals N = {S,S’, A, A", B, B'}, terminals T = {a,b,c}, and the production sets

P = {§— 58— AB}
P, = {A—aA'b,B— B'c}
Py = {A'— A B — B}
P, = {A—abB— c}.

It is easy to see that running G in the =2-mode results in the non-context-free
language Ly = { a™b"c™ | n > 1}, since the only way to start the derivation is to use
production set Py leading to the sentential form AB within two steps. Then, for all
natural numbers n > 0, we find

a Ab" Be® :>2:2 an+1Albn+1Blcn+1 :>3:2 an+1Abn+chn+1
or the terminating derivation
a" A" Bc" =72 a" T e

This shows the stated claim. QObserve, that except for the aziom and the terminal
word, all intermediate sentential forms contain exactly two nonterminals. When
considering the (= 2).-mode a similar reasoning applies, since no production set is
successfully applicable to a sentential form containing one nonterminal only, except
from the application of Py to the axiom S. Thus, a production set P; with 2 <1 <4
will be successful only, if two appropriate nonterminals in the sentential form are
present. Therefore, the only possible derivations in (= 2).-mode are the derivations
shown above.

When comparing the t-mode and its cut-version we find that in the first mode the
CD grammar system G generates the language {a™b"c™ | n > 1} while in t.-mode
only the context-free language {a™b"c™ | n,m > 1} will be obtained. The latter
fact is obvious, since due to the cutting of the sentential form when running G in
the t.-mode the derivation of the two nonterminals will be decoupled. Therefore, the
number of a’s and b’s are independently from the number of c’s in the sentential
form. Thus, we obtain the context-free language mentioned above.

83

H. Bordihn, M. Holzer

Let us come to our second example.

Example 2. The language L1 = {a"b"c" | n > 1} is also generated by the CD
grammar system G = ({S, A, A", B,B'},{a,b,c}, P, Py, P3, Py, S) with the produc-
tion sets

P = {S— AB}

P, = {A—aA'bA' - A B— B'c}
Py = {A'—- A B - B,B— B}

P, = {A—ab,B—c},

if it is driven in either sf- or sf.-mode. For the sf-mode, this is seen as fol-
lows. FEvery derivation starts with Py yielding AB. Starting with a sentential form
a"Ab"Bc", n > 0, the derivation can terminate to a™t 0"t with the help of Py
or Py can be applied. Then, we have to distinguish two cases: (1) a™ Ab™Bc"™ :>;f
a" AL B!t by replacing A first and (2) a™ Ab" Bc" :>;f a"Ab"B'c" ! by ap-
plying B — B'c, first and only. In the second case, the derivation is blocked, since
no of the components is competent on the obtained sentential form. In the first case,
Pj is the only applicable component. If A’ is replaced by A first, then the derivation
is blocking again, since no component is competent both on A and on B’. Hence,
first B and then A" must be rewritten, yielding a™t'Ab"T'Bc™ 1. In conclusion,
Ly (G) = L.

The fact Ly (G) = L1 can similarly be seen if one takes into consideration the
following observations:

1. Py cannot work on a string containing an A but no B since it would not
terminate.

2. If Py deals with a string containing a B and no A, then the B’ contained in
the resulting string cannot be replaced, since P3 can only terminate if it starts
off with a string containing an A’, but this A’ cannot be produced by Py after
B has been replaced before (see item 1.).

3. Analogously, P3 can successfully work neither on a string containing a B’ but
no A’ nor on a string containing an A’ but no B'.

3 The Power of Cut-Derivations in CD Grammar Sys-
tems

In this section we focus on the power of the newly defined CD grammar systems
variants with the well known “classical” language families as introduced in the pre-
ceding section. First, we recall some known facts about the generative capacity of
CD grammar systems working in the non-cut modes, see, for example, [7]. For f €
{x}u{=1,>1}U{ <k | k > 2}, CD grammar systems with context-free components
characterize exactly the context-free languages, that is, L(CF) = L(CD, CF[-}], f),
while those CD grammar systems working in f-mode with f € {=k, >k |k > 2}

84

CD grammar systems as models of distributed problem solving, revisited

induce a proper superset of the family of context-free languages which is con-
tained in the family of all context-free programmed languages without appear-
ance checking. In other words, £L(CF) C L(CD,CF[-}],f) C L(P,CF[-1}]), if
fe{=k>k | k> 2} Itis unknown whether the second inclusion is strict.
The next theorem shows that for the aforementioned derivation modes, there is no
difference to its cut version.

Theorem 3. Let f € {x} U{<k,=k,>k| k€ IN}. Then

Proof. Let G = (N, T, Py, Py,...,P,,S) be a CD grammar system. We show that
L;(G) = Ly, (G). For the inclusion from left to right it is sufficient to argue that
any f-mode derivation x = y can be simulated by =fe 4 choosing z = z¢ and p :
{0} — {1,2,...,n} to be the constant function p(0) = i. Conversely we argue that a
f~derivation step can be sequentialized. This is seen as follows: Let 2 =/ y with (1)
T = ToZ1...Tm, (2) the injective partial mapping p: {0,1,...,m} — {1,2,...,n},
and (3) ¥y = yoy1 . . - ym fulfilling y; = z;, if i ¢ dom(p), and y; = z;, if z; :>£(1.) zi. To
simplify presentation, let dom(p) = {i1,42,...,4,} with 0 < i3 <ip < ... < i, <m.
Observe, that y; = z; if i € {0,1,...,m} \ dom(p). Then we find an f-mode
derivation

T =YYl Yi;—1Ti1Yi1+1 -+ + - Yis—1TisYis+1 - - - Ym
:>£(i1) YoY1 « - - Yir—1Yi1Yiz 41 - - Yin—1Ti5Yis+1 - - - Ym
:>£(1'2) YoY1 - - - Yis—1Yis Yis+1 -+ - Ym

f
:>P(i3)

:>£(“) Yoyi---Ym = Y,

which simulates the original f.-mode derivation. This proves L;(G) = Ly, (G). O
An immediate consequence of the above given theorem is the following corollary.
Corollary 4. 1. If f e {x}U{=1,>1}U{<k |k > 2}, then

L(CF) = L(CD, CF[-A], fc).

2. Iffe{=k>k|k>2}, then
£(CF) C £(CD. CF[-Al, o) € L(P, CF[-X]).

Next we turn our attention to the t-mode. For CD grammar systems working in the
t-mode it was shown (see [5]) that

L£(CD, CF[-)], t) = L(ETOL)

and thus they build a strict superset of the family of context-free languages. In
contrast to this ETOL characterization, we show that CD grammar systems running
in the cut-t-mode, characterize only the family of context-free languages.

85

H. Bordihn, M. Holzer

Theorem 5. L£(CF) = L(CD, CF[-A], t.).

Proof. The inclusion from left to right holds since any context-free grammar can
be interpreted as a CD grammar system with one component, generating the same
language in t.-mode. For the converse inclusion, let a CD grammar system G =
(N,T,P,,P,,...,P,,5) be given. For 1 <i < n,set N ={A® | A € dom(P})}
and let g; : NUT — N UT U N® be the morphism defined by ¢;(X) = X if
X € dom(F;) and g¢;(X) = X otherwise. Consider the CD grammar system

G' = (N',T,P.,P,,...P.S),
where N’ = NUJ!_, N and, for 1 <i < n,
Pl-':{A—>gi(v),A(i) —gi(v) | A—=vePR}.

Observe that the axiom of G’ is contained in N and that, for any string z € (N')*
and each 1 < i < n, if z =! y according to G', then y € (N UT)*. Therefore, we
find LtC(GI) = Ltc (G)

Now, it is sufficient to prove that the context-free grammar

G¢"=(N.T.|JP,8)
=1

generates the language L(G"). This is seen as follows. The inclusion L(G') C L(G")
trivially holds, since one can mimic any derivation of G’ by the context-free grammar
G". For L(G") C L(G") observe the following fact: consider an arbitrary derivation
step £ = y according G”, where © = 21 Az, y = 21v29, for some 21,29 € (N UT)*,
A€ N, and A — v is originally in P/. Note that = does not contain any symbol
of the form B, 1 < i < n. If y is a string over N U T, as well, then z = y
according to G’ using the decomposition x = zox129 With zg = 21, 71 = A, 79 = 29,
and the association p of components p(1) = i, keeping p(0) and p(2) undefined. If
ly| vy > 0, then G” has to continue the derivation earlier or later by replacing all
the symbols from N by some productions which originally come from P!, too.
Since G" is a context-free grammar, we can assume without loss of generality that
(1) these replacements are performed immediately by G”, (2) those replacements
are continued until a string ¢’ is obtained with |y/|yi) = 0, and (3) no symbols
B ¢ N (1) are replaced during this derivation y = 1y’. Then z :>fc y' holds by
the same arguments as given above. Now, one easily proofs by induction that any
derivation of G” can be simulated by G’ in the t.-mode, and since G” and G’ have
the same axiom, we have L(G") C L(G’). O

It is known that the other competence based derivation protocol, namely the sf-
mode, is more powerful than the ¢-mode. In [10] the equalities

L(P,CF[—]],ac) = L(CD, CF[—A], sf).
have been shown. Moreover, it is known that L£(P,CF,ac) = L(RE) and that
L(ETOL) C L(P,CF — X ac) C L(CS), see, e.g., [6].
Concerning the cut-sf-mode, it is already seen from Example 2 that it is more

powerful than the cut-{-mode, as well, since also non-context-free languages can be
described. In fact, we even obtain the following result.

86

CD grammar systems as models of distributed problem solving, revisited

Lemma 6. £L(RP,CF[-)],ac) C L(CD, CF[-A], sf.).

Proof. First, let A-productions be permitted. Let G = (N, T, P, S, A, 0, ¢) be some
recurrent programmed grammar with context-free core rules. From G we construct
an CD grammar system G' = (N',T, P, P,,...,P,,S") such that Ly (G') = L(G)
as follows. If p € A is a label to which A — v is associated in G, then let
Ny ={p.p',p", Ap, Ry} be a set of new symbols and set N’ = {S", RFUNUU,cp Np,
where R and S’ are new symbols, again. Any derivation of G’ is initiated by appli-
cation of the component

Pt = {S' —pSR[peA}.
With each production in P,
(p: A= v, {s1,89,....8c}, {r1,72, ..., ™m}),
we associate the four new components

Py = {A—=A,p—>p.p—=ptUu{B—-B|BeN}

Py = {Ay—»v}u{p —si|1<i<k}U{B—B|BeN}

P,s = {R—Ry,R,—> Ry,,p—p"}U{B—B|BeN\{A}}

Bpa {R, » R}U{p" = ri,ri i |1<i<m}U{B— B|BeN\{A4}}

Finally, there is a terminating component
Pirmm = {R= A U{p—=X|peA}

The only component applicable to the axiom S’ is Pj,;. Now, in every non-
terminal sentential form, either R or R, appears as right marker and one label
symbol p € A or its primed or double primed version appears as left marker. Given
a sentential form paR, a € (N UT)*, the components P,; and Pp2 can be used
in order to simulate the successful application of the production with label p of G,
yielding a string s;6R, s; € o(p) and f € (N UT)*, and P, 3 and P, 4 can simulate
its application in appearance checking mode, yielding r;aR, r; € ¢(p). For this, the
complete sentential form is given to the components. When a string of the form
pwR with w € T* is obtained, the component Py, can be applied yielding w. This
proves L(G) C Ly (G').

For the converse inclusion observe the following. A terminal word can only be
obtained by applying Pierm to a sentential form in AT*{R}. Starting off with a
sentential form a = pfR, p € A and f € (N UT)*, neither the components P, 2 nor
P, 4, g € A, are applicable to any substring of «, since the presence of some symbol
g or R, is needed, respectively, in order to stop deriving. Therefore, we have to
distinguish the following two cases:

1. Some P, 3 becomes active first. If a component P, 3 is applied to a substring o/
of a, this component can become inactive only after the production ¢ — ¢” has
been used. Therefore, ¢ = p has to hold. Since p” can be rewritten only with
the help of P, 4 and P, 4 can stop deriving only by application of R, — R, the

87

H. Bordihn, M. Holzer

symbol R, must have been introduced when P, 3 was active. Thus, o/ = « has
to hold. In conclusion, |a|4 = 0 since P, 3 is not s f-competent on « otherwise.
Furthermore, p” must be replaced together with R, during one and the same
application of P, 4. Therefore,

a=pBR :>;f§ p"BR, :>;ﬁ iR,

r; € ¢(p), is the only successful continuation of such derivation, simulating
the application of the production with label p in appearance checking mode.
Note that some P,; may not be applied to some substring of p” R, since it
would introduce a symbol A, such that P, 4 cannot become active until A, is
rewritten again, but rewriting A, can only be done with the help of P, 2 which
needs the presence of ¢’ in order to finish its work in sf-mode of derivation.

2. Some P, ; becomes active first. Consider a derivation

o :>2{’C1 %1 :>3£f1 s ... :>fo1 oy

for some £ > 1. Then we have |ozg|Aql_ >0forall 1 < i < ¥4 Let ay =
qgu(]AqilulA%uQ...Aqilue, where u; € (NUT)* for 1 < j < ¢. The only
possibility to get rid of a symbol Ay, is the application of P, » which can
stop deriving on a sentential form only if ¢/ is present. Therefore and since
the application of some P, 3 or P, 4 must kept excluded from such derivations
(see the arguments given for the first case), a string in A(N UT)*{R} can be
obtained only if the following derivation is possible (due to the order of the
symbols in ay):

sfe sfe sfe sfe
qiq)2 N :>qi272 V2 :>qi3’2 e :>Qi[’2 e,

Qyp =
where ¢;; = g; and ¢;;,, € o(g;;), for 1 < j < £, hold. This simulates the
successful applications of the corresponding productions of G.

Except from the fact that the two phases can be merged when components P, ; and
when components P, > are applied, no further terminating derivations are possible.
Hence, Lys,(G') C L(G), and the proof is finished for the case that A-productions
are allowed.

Let us remark that, even if the CD grammar system were forced, by some appro-
priate colouring of the symbols, to apply the component P, 5 immediately after P, ;
has been used, one would not be able to control how many symbols A are marked
as Ap and then replaced with v. Therefore, the feature p € o(p) for all p € A is an
evident constraint, here.

For the A-free case we argue as follows: By standard arguments the family
L(CD,CF — A, sf,) is closed under union and embraces the finite languages. Let
L CT* be in L(RP,CF — A, ac), then

L= (a-0p(L)-b) U(LNT?)U(LNT)U(LN{A}),
a,beT

88

CD grammar systems as models of distributed problem solving, revisited

where 4 4(L) = {w € T" | awb € L}. Since L is in L(RP, CF —)\, ac), the language
dap(L) is in L(RP, CF — A, ac) due to closure properties of that family under left and
right derivatives. The closure under derivatives is obvious, since L(RP, CF[—]], ac)
is a [full] AFL as shown in [8]. Thus, for the proof of the present assertion, it is
sufficient to show that d,4 (L) - abe is in L(CD, CF — A, sf), provided that ¢, (L)
is in L(RP,CF — A, ac).

To this end, it is sufficient to exchange the terminating component Py, in the
above construction with

Qterm = {R—>b}U{p—>a|p€A}
and the rest of the proof is given by the same arguments as in the first case. O

Any CD grammar system working in the sf -mode can be simulated by some Turing
machine and, if A-rules are forbidden, by some linear bounded automaton. Thus,
together with the known facts about context-free CD grammar system working in
the sf-mode, the following corollary is obtained.

Corollary 7. 1. L(RP,CF,ac) C L(CD,CF, sf.) C L(P,CF,ac) = L(RE)
2. L(RP,CF — X ac) C L(CD,CF — A, sf,) C L(CS)

It is left open which of the inclusions in this corollary are strict. Finally we turn
our attention to the combined modes. First let us summarize what is known for CD
grammar systems working in non-cut modes. In case of the (¢ A > k)-mode it was
shown in [8] that

L(CD,CF[-)], (tA>1)) = L(ETOL)
and

L(CD,CF[-)], (tA>k)) = L(RP,CF[-),ac) ifk>2,
and in [9] it was shown that

for each f € {(t A =k),(t AN <k) | k > 1}, where Ly;,(P,CF[—)\]) denotes the
family of languages of finite index generated by programmed context-free grammars
without appearance checking. Loosely speaking, a grammar has finite index if the
number of nonterminals in a derivation is bounded by a constant. For the definition
of the finite index property see, e.g., [6].

Theorem 8. If f € {(t AN<Ek),(tAN=k),(tAN>k)|k>1}, then
L(CF) C L(CD, CF[=A], fe).

Proof. Let G = (N, T, P, S) be a context-free grammar. In the remainder we restrict
ourselves to the case £k = 1. The result generalizes to arbitrary k, by using the
prolongation technique, as elaborated in [8].

We construct a CD grammar system G’ with nonterminals

N' =NU{A'|Ae N},

89

H. Bordihn, M. Holzer

where the unions are disjoint, with terminals 7" and axiom S. Define the homomor-
phism A : (NUT)* — (N'UT)* as follows: Let h(A) = A’ for A € N and h(a) =a
otherwise. Then we construct two production sets

Pi={A—>hw)|(A—>w)eP} and Po={A - A|AecN).

This completes the description of the CD grammar system G’. It is easy to see that
L (G') = L(G), for f € {(tA<1),(tA=1),(t A>1)}. This proves the claim. [

Corollary 9. If fe {(t A=k),(t AN>k) |k > 2}, then
L(CF) C £(CD, CE[-Al, f.).

Proof. The inclusion follows from Theorem 8. The strictness follows from the CD
grammar system specified in Example 1 when running in cut-(¢A=2) or cut-(tA> k),
for k > 2, since the non-context-free language { a™b"c" | n > 1} is generated. In case
of the cut-(t A= k)-mode, for £ > 2, the rules in the grammar of the above mentioned
example have to be adapted accordingly with the prolongation technique in order
to ensure that both nonterminals have to be presented during a (¢ A = k)-derivation
step.]

Since the (¢ A > 1)-mode trivially coincides with the ¢-mode, we obtain the following
corollary because of Theorem 5.

Corollary 10. £(CF) = £(CD, CF[-Al, (t A > 1),).

For the cut-(¢ A > k)- and cut-(f A =k)-mode in general we find the following situ-
ation. The below given theorem shows that with some cut-modes one can do even
programmed context-free language of finite index.

Theorem 11. If f € {(t A=k),(t AN>k) |k > 2}, then
£ in(P,CF[-X]) C £(CD, CF[-X], £,).

Proof. We first show the inclusion. By a standard argument the involved CD gram-
mar systems language family is closed under union and embraces the finite languages.
Let L C T* be a language in L (P, CF[=]]), then

L=J(a-6,(L)NL)U(LNT)U(LN{A}).
a€T

Since L is in L, (P,CF[—-)]), language 6,(L) = {w € TT | aw € L} is in
L in (P, CF[=A]) due to the closure properties of that family under derivatives. Thus,
it is sufficient for the proof of the present assertion to show that {a} - d,(L) is in
L(CD,CF[-A], fe), for f € {(tA=Ek),(t A>k) | k > 2}, provided that d,(L) is
a programmed context-free language of finite index. In the remainder we restrict
ourselves to the case £ = 2. The result generalizes to arbitrary k, by using the
prolongation technique, as elaborated

90

CD grammar systems as models of distributed problem solving, revisited

Let G = (N, T, P, S, A\, o0,$) be a programmed grammar of finite index generating
dq(L). Without loss of generality we assume that N N A = (), that for every rule
A(p) = (A — w, 0,0) nonterminal A does not appear in w, and p & o(p). Moreover,
due to the finite index restriction we may assume that every nonterminal appears
at most once in any derivable sentential form.

We construct a CD grammar system G’ with nonterminals

N'=NuU{p,p' |peA}u{s’Ss"},

where the unions are disjoint, with terminals 7" and axiom S’. To start the derivation,
we use S’ as axiom and the component

P = {S’ — S”} U{S” — pS |p € A}
Then for each rule A(p) = (A — w, 0,0) we construct the component

Py={p—qlqgea(p)}U{A— w}

Note that the (¢ A =2)-mode enforces the application of at exactly two rules, which
must be the rule for the label p and the rule for the nonterminal A, because of the
requirement that every nonterminal appears at most once in any derivable sentential
form. Therefore the (¢ A=2).-derivation cuts the sentential form in such a way that
only one production set will be applicable.

Finally, to terminate the derivation, process the component

Pterm:{p—>p',p'—>a|p€A}

is used. Observe, that after an application of Py, no other component, and in
particular no component FP,, is successfully applicable to the sentential form be-
cause of the requirement on the appearance of nonterminals in any derivation. This
completes the description of the CD grammar system G’.

Obviously, the constructed grammar system G’ simulates the programmed con-
text-free grammar G of finite index correctly and generates the language {a}-0,(L).
Moreover, note that the CD grammar system has A-productions only if the pro-
grammed grammar has A-productions.

The strictness immediately follows from Theorem 8 and the fact that the Dyck
language (even over one pair of parentheses) cannot be generated by programmed
context-free grammar of finite index as shown in [14]. O

Finally, we consider the cut-(t A =1)- and cut-(¢ A <k)-mode, for £ > 1. For all
these modes we obtain a characterization of the context-free languages.

Theorem 12. If fe {(t A<Ek)|k>1}U{(tA=1)}, then
£(CF) = £(CD, CF[-1], /).

Proof. The inclusion from left to right was already shown in Theorem 8. Thus, it
remains to consider the converse inclusion. Thus, let G = (N, T, Py, Ps, ..., P,,S)
be a CD grammar system working in f.-mode, for the aforementioned f. First we

91

H. Bordihn, M. Holzer

concentrate on f equals the (¢A=1)-mode. First, observe, that a cut-mode derivation
can be sequentialized, such that only one production set is applicable to a sub-
sentential form, i.e., the mapping p has domain size one. Now consider a derivation
step: Let z = zoz122 be a sentential form with z; € (N UT)*, for 0 < i < 2, and
let p(1) = 4, for some 1 < i < n. Since a successful (¢ A =1)-derivation on the
sentential form z; has to apply exactly one rule of P; and afterwards no rule of P; is
applicable anymore, we can assume that z1 is an element of NV, without changing the
original successful derivation. This allows us to simulate the cut-(¢ A = 1)-derivation
by a context-free derivation, choosing the appropriate rule of P;. Thus, define the
following context-free grammar G = (N, T, P, S) with production set P containing
the rules
P:{A—>a|A:>Z(-t/\:1)af0rs0melgign}.

By our previous investigation it is easy to see that the language generated by G
is equivalent to the language generated by the CD grammar system working in
cut-(t A =1)-mode.

A similar reasoning applies for the cut-(f A <k)-mode, since a (t A <k)-mode
derivation on a sentential form can be split or cut into several (¢ A < £)-mode deriva-
tions, for 1 < £ < k, on nonterminals only. Thus, the production set of the context-
free grammar has to be modified in the following way: Define

P:{A—>a|A:>Z(-t/\§e)aforsomelgégkandlgign}.

Then the constructed context-free grammar is equivalent to the original CD grammar
system working in cut-(¢ A < k)-mode. This proves the stated claim. O

4 Conclusions

We examined the generative power of CD grammar systems when working in a new
form of the derivation mode, the so called cut-mode. We summarize our results, com-
paring the classes £(CD, CF[-)], f.) with £(CD,CF[-}], f), in Table 1. In most
cases, the cut- f-mode turned out to be as most as powerful than the corresponding
non-cut-mode, that is, the f-mode itself. For some modes, the generative capacity
is not affected at all, but there are also some cases, where the power is reduced to
that of context-free grammars, if parts of the sentential forms can be distributed to
several components in one and the same derivation step. In particular, this is true
for the #-mode of derivation, which describes the family of all ETOL languages in
the non-cut variant. But exactly for this --mode, the results are rather contesting
the motivation of CD grammar systems from the AT point of view: Although CD
grammar systems are a very natural and handy tool for describing non-context-free
languages with context-free productions and they serve as sequential counterparts of
tabled Lindenmayer systems, the re-interpretation of their properties in the frame-
work of distributed problem solving is fairly problematic. In our approach, the
cut-t-mode turns out to be useless, since it does not add to the power of context-free
grammars. On the other hand, there seems to be something said for the > k- and
= k-modes, k > 2, the generative capacity of which remains the same when they are
driven in the cut variant. Also the sf- and some of the combined ¢-modes seem to

92

CD grammar systems as models of distributed problem solving, revisited

| Derivation Mode f [| £(CD,CF[-)], f) | L(CD, CF[-)], f.) \
x, =1, >1, <k,
for k> 1 L(CF) L(CF)
=k, >k,
for k> 2 L(CF) C - C L(P,CF[-A])
i L(ETOL) L(CF)
sf L(P,CF[-\],ac) | L(RP,CF[-A],ac) C - C L(P,CF[-)], ac)
GAST £(ETOL) £(CT)
GAS), Z(CF)
fork>2 | CRPCFI-ALa) Lin(P,CF[-A]) C -
R Gl AL X Y c(cr)
TA=h), L(CT)
for k> 2 Lyin(P, CF[=A) £ pin(P, CF[-)]) C -

Table 1: Generative capacity of CD grammars systems working in non-cut- and
cut-mode derivations compared.

be of interest in that respect. Besides the combined derivation modes considered in
this paper, there is another, external variant of hybrid CD grammar systems, e.g.,
see [12]. Those systems can also be considered in our setting. This is left for future
research work.

References

[1] A. Atanasiu and V. Mitrana. The modular grammars. International Journal
of Computer Mathematics, 30:101-122, 1989.

[2] H. Bordihn, E. Csuhaj-Varji, and J. Dassow. CD grammar systems versus L
systems. In Gh. Paun and A. Salomaa, editors, Grammatical Models of Multi
Agent Systems, pages 18-32. Gordon and Breach, 1999.

[3] H. Bordihn and M. Holzer. Grammar systems with negated conditions in their
cooperation protocols. Journal of Universal Computer Science 6 (2000), 1165—
1184.

[4] E. Csuhaj-Varji and J. Dassow. On cooperating/distributed grammar sys-
tems. J. Inf. Process. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.),
26(1/2):49-63, 1990.

[6] E. Csuhaj-Varji, J. Dassow, J. Kelemen, and Gh. Paun. Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach,
1994.

[6] J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory,
volume 18 of FATCS Monographs in Theoretical Computer Science. Berlin:
Springer, 1989.

93

H. Bordihn, M. Holzer

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Dassow, Gh. Paun, and G. Rozenberg. Grammar systems. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 2, pages 155—
213. Springer, 1997.

H. Fernau, R. Freund, and M. Holzer. Hybrid modes in cooperating distributed
grammar systems: internal versus external hybridization. Theoretical Computer
Science, 259(1-2):405-426.

H. Fernau, M. Holzer, and R. Freund. Bounding resources in cooperating dis-
tributed grammar systems. In S. Bozapalidis, editor, Proc. of the 3rd Int.
Conf. Developments in Language Theory, pages 261-272. Aristotle University
of Thessaloniki, 1997.

R. Meersman and G. Rozenberg. Cooperating grammar systems. In Proceed-
ings of Mathematical Foundations of Computer Science MFCS’78, volume 64
of LNCS, pages 364-374. Springer, 1978.

P. H. Nii. Blackboard systems. In The Handbook of Artificial Intelligence,
volume 4, pages 1-82, Addison-Wesley, 1989.

V. Mitrana. Hybrid cooperating/distributed grammar systems. Computers and
Artificial Intelligence, 12(1):83-88, 1993.

D. J. Rosenkrantz. Programmed grammars and classes of formal languages.
Journal of the ACM, 16(1):107-131, 1969.

B. Rozoy. The Dyck language D" is not generated by any matrix grammar of
finite index. Information and Computation (formerly Information and Control),

74:64-89, 1987.

S. H. von Solms. Some notes on ETO0L-languages. International Journal of
Computer Mathematics, 5(A):285-296, 1976.

94

