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Preface

Preface

This volume contains the papers presented at the 13th International Conference
on Membrane Computing, CMC13, (http://www.sztaki.hu/tcs/cmc13/) which
took place in Budapest, Hungary, in the period of August 28–31, 2012.

The CMC series was initiated by Gheorghe Păun as the Workshop on Multi-
set Processing in the year 2000. Then two workshops on Membrane Computing
were organized in Curtea de Argeş, Romania, in 2001 and 2002. A selection of
papers of these three meetings were published as volume 2235 of the Lecture
Notes in Computer Science series, as a special issue of Fundamenta Informat-
icae (volume 49, numbers 1–3, 2002), and as volume 2597 of Lecture Notes in
Computer Science, respectively. The next six workshops were organized in Tar-
ragona, Spain (in July 2003), Milan, Italy (in June 2004), Vienna, Austria (in
July 2005), Leiden, The Netherlands (in July 2006), Thessaloniki, Greece (in
June 2007), and Edinburgh, UK (in July 2008), with the proceedings published
in Lecture Notes in Computer Science as volumes 2933, 3365, 3850, 4361, 4860,
and 5391, respectively. The 10th workshop returned to Curtea de Argeşs in
August 2009 (LNCS volume 5957).

From the year 2010, the series of meetings on membrane computing contin-
ued as the Conference on Membrane Computing with the 2010 and 2011 edi-
tions held in Jena, Germany (LNCS volume 6501) and in Fontainebleau, France
(LNCS volume 7184). Nowadays a Steering Committee takes care of the contin-
uation of the CMC series which is organized under the auspices of the European
Molecular Computing Consortium (EMCC). In 2012, also a regional version of
CMC, the Asian Conference on Membrane Computing, ACMC, takes place in
Wuhan, China.

The Steering Committee of the CMC series consists of Gabriel Ciobanu (Iaşi,
Romania), Erzsébet Csuhaj-Varjú (Budapest, Hungary), Rudolf Freund (Vi-
enna, Austria), Pierluigi Frisco (Edinburgh, UK), Marian Gheorghe (Sheffield,
UK) - chair, Oscar H. Ibarra (Santa Barbara, USA), Vincenzo Manca (Verona,
Italy), Maurice Margenstern (Metz, France), Giancarlo Mauri (Milan, Italy),
Gheorghe Păun (Bucharest, Romania/Seville, Spain), and Mario J. Pérez-Jiménez
(Seville, Spain).

The CMC13 conference was organized by MTA SZTAKI, the Computer and
Automation Research Institute of the Hungarian Academy of Sciences in coop-
eration with the PhD School of Computer Science of the Faculty of Informatics
at the Eötvös Loránd University in Budapest, the Department of Algorithms
and Their Applications of the Faculty of Informatics at the Eötvös Loránd Uni-
versity, and the Department of Computer Science of the Faculty of Informatics
at the University of Debrecen.

The Program Committee invited lectures from Rudolf Freund (Vienna, Aus-
tria), Vincenzo Manca (Verona, Italy), Solomon Marcus (Bucharest, Romania),
and Yurii Rogozhin (Chişinău, Moldova). In addition to the regular program,
a special session was devoted to “Process calculi, Petri nets, and their relation-
ships with membrane computing” chaired by Gabriel Ciobanu (Iaşi, Romania).
As part of the celebrations of the Turing Centenary, a special session was also
dedicated to “Turing computability and membrane computing as an unconven-
tional computing paradigm” with invited speakers Jozef Kelemen (Bratislava,
Slovakia / Opava, Czech Republic), and Mike Stannett (Sheffield, UK).
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Preface

In addition to the texts or the abstracts of the invited talks, this volume
contains 24 full papers, and an extended abstract, each of which was subject to
at least two referee reports. The Program Committee of CMC13 consisted of Ar-
tiom Alhazov (Chişinău, Moldova and Milan, Italy), Gabriel Ciobanu (Iaşi, Ro-
mania), Erzsébet Csuhaj-Varjú (Budapest, Hungary) co-chair, Giuditta Franco
(Verona, Italy), Rudolf Freund (Vienna, Austria), Pierluigi Frisco (Edinburgh,
UK), Marian Gheorghe (Sheffield, UK) co-chair, Oscar H. Ibarra (Santa Barbara,
USA), Florentin Ipate (Iaşi, Romania), Shankara Narayanan Krishna (Mumbai,
India), Alberto Leporati (Milan, Italy), Vincenzo Manca (Verona, Italy), Mau-
rice Margenstern (Metz, France), Giancarlo Mauri (Milan, Italy), Linqiang Pan
(Wuhan, China), Andrei Păun (Ruston, USA and Bucharest, Romania), Ghe-
orghe Păun (Bucharest, Romania and Seville, Spain), Mario J. Pérez-Jiménez
(Seville, Spain), Francisco J. Romero-Campero (Seville, Spain), Dragoş Sburlan
(Constanţa, Romania), György Vaszil (Debrecen, Hungary) co-chair, Sergey Ver-
lan (Paris, France), and Claudio Zandron (Milan, Italy).

The Organizing Committee consisted of Erzsébet Csuhaj-Varjú (Eötvös Lo-
ránd University), Anikó Győri (Kult-Turist-ITH), Zsolt Németh (Computer and
Automation Research Institute), and György Vaszil (University of Debrecen).

The editors warmly thank the Program Committee, the invited speakers, the
authors of the papers, the reviewers, and all the participants, as well as all who
contributed to the success of CMC13.

Budapest, July 2012 Erzsébet Csuhaj-Varjú
Marian Gheorghe

György Vaszil
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Miquel Rius-Font, Luis Valencia-Cabrera: The efficiency of tissue
P systems with cell separation relies on the environment . . . . . 277

7



Contents
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(Tissue) P Sytems with Decaying Objects

Rudolf Freund

Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

Email: rudi@emcc.at

Abstract. Objects generated in P systems usually are assumed to sur-
vive as long as the computation goes on. In this paper, decaying ob-
jects are considered, i.e., objects only surviving a bounded number of
computation steps. Variants of (tissue) P systems with decaying objects
working in transition modes where the number of rules applied in each
computation step is bounded, are shown to be very restricted in their
generative power, i.e., if the results are collected in a specified output
cell/membrane, then only finite sets of multisets can be generated, and
if the results are specified by the objects sent out into the environment,
we obtain the regular sets. Only if the decaying objects are regener-
ated within a certain period of computation steps, i.e., if we allow an
unbounded number of rules to be applied, then computational complete-
ness can be obtained, yet eventually more ingredients are needed for the
rules than in the case of non-decaying objects, e.g., permitting and/or
forbidding contexts. As special variants of P systems, catalytic P sys-
tems, P systems using cooperative rules, and spiking neural P systems
are investigated.

1 Introduction

Cells in a living creature usually are not surviving the whole life time of this
creature, e.g., the erythrocytes in the blood of humans have a life cycle of around
four months. Hence, objects in systems modelling the functioning of structures
of living cells – as for example, P systems – may be considered to have bounded
time to survive, too. Formally, these objects will be called decaying objects, as
their remaining time to survive without being involved in a rule is decreasing
with each computation step.

In the area of P systems, decaying objects have already been considered in
the case of spiking neural P systems: in [8] it was shown that with spiking neural
P systems with decaying objects, which in this case are just the spikes stored in
the neurons, only finite sets can be obtained, if the result is taken as the number
of spikes contained in the output cell at the end of a computation; if the result
is defined as the distance of the first two spikes sent to the environment from
the output cell, then the linear sets of natural numbers can be characterized.

The idea of decaying objects also appears in the area of reaction systems,
there being called the assumption of no permanency : an entity from a current

13th International Conference on Membrane Computing, CMC13,

Budapest, Hungary, August 28 - 31, 2012. Proceedings, pages 11 - 35.
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configuration vanishes unless it is (re)produced by the application of a rule (see
[3]). In contrast to P systems, reaction systems work with sets of objects, i.e.,
multiplicities of objects are not taken into account, all ingredients are assumed
to be available in a sufficient amount.

In the area of splicing systems, the effect of killing all strings not undergoing
a splicing operation, turned out to be a powerful tool to control the evolution of
splicing systems, in the end allowing for an optimal computational completeness
result (see [14]) for time-varying distributed H systems using only one test tube
(cell), to be compared with using splicing rules in P systems with only one
membrane.

In this paper, the idea of decaying objects is extended to many other variants
of (tissue) P systems. The combination of decaying objects and bounding the
number of rules applicable in each computation step, drastically restricts the
generative power of such systems usually known to be computationally complete
with non-decaying objects: as in the case of spiking neural P systems, only finite
sets can be generated if the output is taken as the number of (terminal) objects
in an output cell/membrane, whereas a characterization of the regular sets is
obtained if the output is defined as the collection or sequence of objects sent out
to the environment. For catalytic P systems and for P systems using cooperative
rules, computational completeness can be shown for several combinations of
maximally parallel transition modes and halting conditions, yet in contrast to the
computational completeness results for non-decaying objects, now for catalytic
P systems permitting and forbidden context conditions are needed for the rules.

The rest of this paper is organized as follows: In the second section, we recall
well-known definitions and notions. Then we define a general class of multiset
rewriting systems containing, in particular, many variants of P systems and tis-
sue P systems as well as even (extended) spiking neural P systems without delays,
and formalize the idea of decaying objects in these systems. Moreover, we give for-
mal definitions of the most important well-known transition modes (maximally
parallel, minimally parallel, asynchronous, sequential) as well as the k-restricted
minimally/maximally parallel transition modes and the parallel transition mode
using the maximal number of objects; finally, we define variants of halting : the
normal halting condition when no rules are applicable anymore (total halting),
partial halting, adult halting, and halting with final states. In the third section,
we first give some examples for P systems with decaying objects and discuss the
restriction of the generative power of such systems in combination with transi-
tion modes only allowing for a bounded number of rules to be applied in parallel
in each derivation step in the general case. As a specific variant, first systems
working in the sequential mode are considered; then, we investigate the effect
of decaying objects in P systems working in the 1-restricted minimally parallel
transition mode, i.e., spiking neural P systems without delays (in every neuron
where a rule is applicable exactly one rule has to be applied) and purely catalytic
P systems; finally, we investigate the k-restricted maximally parallel transition
mode. In the fourth section, computational completeness results are established,
especially for variants of catalytic P systems and of P systems using cooperative

R. Freund
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rules. An outlook to future research topics for (tissue) P systems with decaying
objects concludes the paper.

2 Definitions

In this section, we recall some notions used in this paper and then define the
basic model of networks of cells we use for describing different variants of (tissue)
P Sytems.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N. The
interval {n ∈ N | k ≤ n ≤ m} is abbreviated by [k..m]. An alphabet V is a finite
non-empty set of abstract symbols. Given V , the free monoid generated by V
under the operation of concatenation is denoted by V ∗; the elements of V ∗ are
called strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by
V +. Let {a1, · · · , an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in a string x is denoted by |x|ai ; the Parikh vector associated with x

with respect to a1, · · · , an is
(
|x|a1 , · · · , |x|an

)
. The Parikh image of a language

L over {a1, · · · , an} is the set of all Parikh vectors of strings in L, and we denote
it by Ps (L). For a family of languages FL, the family of Parikh images of
languages in FL is denoted by PsFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(
|x|a1 , · · · , |x|an

)
= (m1, · · · ,mn). Fixing the sequence

of symbols a1, · · · , an in the alphabet V in advance, the representation of the
multiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1 · · · amn
n is unique. The set of all

finite multisets over an alphabet V is denoted by V ◦. For two multisets f1 and
f2 from V ◦ we write f1 v f2 if and only if f1 (ai) ≤ f2 (ai) for all 1 ≤ i ≤ n, and
we say that f1 is a submultiset of f2.

A context-free string grammar is a construct G = (N,T, P, S) where N is the
alphabet of nonterminal symbols, T is the alphabet of terminal symbols, P is a
set of context-free rules of the form A→ w with A ∈ N , w ∈ (N ∪ T )

∗
, and S is

the start symbol. If all rules in P are of the forms A → bC with A,C ∈ N and
b ∈ T ∗ or A→ λ with A ∈ N , thenG is called regular. A string v is derivable from
a string u, u, v ∈ (N ∪ T )

∗
, if u = xAy and v = xwy for some x, y ∈ (N ∪ T )

∗
and

there exists a rule A→ w in P ; we write u =⇒G v. The reflexive and transitive
closure of the derivation relation =⇒G is denoted by =⇒∗G. The string language
generated by G is denoted by L (G) and defined as the set of terminal strings
derivable from the start symbol, i.e., L (G) = {w | w ∈ T ∗ and S =⇒∗G w}.

The family of regular, context-free, and recursively enumerable string lan-
guages is denoted by REG, CF , and RE, respectively. The family of finite lan-
guages is denoted by FIN , its complement, i.e., the family of co-finite languages,

(Tissue) P systems with decaying objects
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by co-FIN . Two languages of strings or multisets L and L′ are considered to be
equal if and only if L \ {λ} = L′ \ {λ}.

For more details of formal language theory the reader is referred to the mono-
graphs and handbooks in this area such as [5] and [19]. Basic results in multiset
rewriting can be found in [13]. Moreover, we assume the reader to be familiar
with the main topics of membrane computing as described in the books [17] and
[18]. For the actual state of the art in membrane computing, we refer the reader
to the P Systems Webpage [20].

2.2 Register Machines

For our main results establishing computational completeness for specific vari-
ants of (tissue) P systems working in different transition modes, we will need to
simulate register machines. A register machine is a tuple M = (m,B, l0, lh, P ),
where m is the number of registers, P is the set of instructions bijectively labeled
by elements of B, l0 ∈ B is the initial label, and lh ∈ B is the final label. The
instructions of M can be of the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to
instruction l2 or l3. This instruction is usually called increment.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of
this instruction are usually called zero-test and decrement, respectively.

– lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the program counter, which indicates the next in-
struction to be executed. Computations start by executing the first instruction of
P (labeled with l0), and terminate with reaching a HALT -instruction. Without
loss of generality, we assume the HALT -instruction the only instruction where
the register machine may halt.

Register machines provide a simple universal computational model [15]. In
the generative case as we need it later, we start with empty registers, use the
first two registers for the necessary computations and take as results the contents
of the m − 2 registers 3 to m in all possible halting computations; during a
computation of M , only the registers 1 and 2 can be decremented, and when M
halts in lh, these two registers are empty. In the following, we shall call a specific
model of P systems computationally complete if and only if for any such register
machine M we can effectively construct an equivalent P system Π of that type
simulating each step of M in a bounded number of steps and yielding the same
results.

R. Freund
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2.3 Networks of Cells

In [10], a formal framework for (tissue) P systems capturing the formal features
of various transition modes was developed, based on a general model of mem-
brane systems as a collection of interacting cells containing multisets of objects,
which can be compared with the models of networks of cells as discussed in [2]
and networks of language processors as considered in [4]. Continuing the formal
approach started in [10], k-restricted variants of the minimally and the max-
imally parallel transition modes were considered in [11], i.e., we considered a
partitioning of the whole set of rules and allowed only multisets of rules to be
applied in parallel which could not be extended by adding a rule from a parti-
tion from which no rule had already been taken into this multiset of rules, but
only at most k rules could be taken from each partition. Most of the following
definitions are taken from [7] and [11].

Definition 1. A network of cells with checking sets of degree n ≥ 1 is a construct

Π = (n, V, T, w,R, i0)

where

1. n is the number of cells;
2. V is a finite alphabet ;
3. T ⊆ V is the terminal alphabet ;
4. w = (w1, . . . , wn) where wi ∈ 〈V,N〉, for each i with 1 ≤ i ≤ n, is the multiset

initially associated to cell i;
5. R is a finite set of rules of the form

(E : X → Y )

where E is a recursive condition for configurations of Π (see definition
below), while X = (x1, . . . , xn), Y = (y1, . . . , yn), with xi, yi ∈ 〈V,N〉,
1 ≤ i ≤ n, are vectors of multisets over V . We will also use the notation

(E : (x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n))

for a rule (E : X → Y ); moreover, the multisets xi and yi may be split into
several parts or be omitted in case they equal the empty multiset;

6. i0 is the output cell.

A network of cells (in the following also simply called P system) consists
of n cells, numbered from 1 to n and containing multisets of objects over V ;
initially cell i contains wi. A configuration C of Π is an n-tuple of multisets
over V (u1, . . . , un); the initial configuration of Π, C0, is described by w, i.e.,
C0 = w = (w1, . . . , wn). Cells can interact with each other by means of the rules
in R. A rule

(E : (x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n))

(Tissue) P systems with decaying objects
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is applicable to a configuration C with C = (w1, 1) . . . (wn, n) if and only if C
fulfills condition E and xi v wi, 1 ≤ i ≤ n; its application means rewriting
objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n. In this paper, only
regular conditions are considered, i.e., E = (E1, . . . , En), where the Ei, 1 ≤ i ≤
n, are regular sets; if (w1, 1) . . . (wn, n) describes the current configuration C,
then C fulfills condition E if and only if wi ∈ Ei, 1 ≤ i ≤ n.

As specific conditions we will use random contexts, specified as sets of n-
tuples of pairs ((P1, Q1) , . . . , (Pn, Qn)) where the Pi are the permitting and the
Qi are the forbidden contexts and are finite sets of multisets over V . An n-tuple
((P1, Q1) , . . . , (Pn, Qn)) allows for the application of the rule (x1, 1) . . . (xn, n)→
(y1, 1) . . . (yn, n) to the configuration (w1, 1) . . . (wn, n) if, besides xi v wi, 1 ≤
i ≤ n, for all u ∈ Pi, u v wi and for no v ∈ Qi, v v wi.

The set of all multisets of rules applicable to C is denoted by Appl (Π,C); a
procedural algorithm how to obtain Appl (Π,C) was described in [10].

For the specific transition modes to be defined in the following, the selection
of multisets of rules applicable to a configuration C has to be a specific subset
of Appl (Π,C); for the transition mode ϑ, the selection of multisets of rules
applicable to a configuration C is denoted by Appl (Π,C, ϑ).

Definition 2. For the asynchronous transition mode (asyn),

Appl (Π,C, asyn) = Appl (Π,C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.

Definition 3. For the sequential transition mode (sequ),

Appl (Π,C, sequ) = {R′ | R′ ∈ Appl (Π,C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Appl (Π,C, sequ) has size 1.

The most important transition mode considered in the area of P systems is
the maximally parallel transition mode where we only select multisets of rules R′

that are not extensible, i.e., there is no other multiset of rules R′′ % R′ applicable
to C.

Definition 4. For the maximally parallel transition mode (max),

Appl (Π,C,max) = {R′ | R′ ∈ Appl (Π,C) and there is
no R′′ ∈ Appl (Π,C) with R′′ % R′} .

For the minimally parallel transition mode, we need an additional feature for
the set of rules R, i.e., we consider a partitioning Θ of R into disjoint subsets
R1 to Rp. Usually, this partition of R may coincide with a specific assignment
of the rules to the cells. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number
of sets of rules Rj , 1 ≤ j ≤ p, with Rj ∩R′ 6= ∅.

In an informal way, the minimally parallel transition mode can be described
as applying multisets such that from every set Rj , 1 ≤ j ≤ p, at least one rule
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– if possible – has to be used. For the basic variant as defined in the following,
in each transition step we choose a multiset of rules R′ from Appl (Π,C, asyn)
that cannot be extended to R′′ ∈ Appl (Π,C, asyn) with R′′ % R′ and such that
(R′′ −R′) ∩ Rj 6= ∅ and R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ p, i.e., extended by a
rule from a set of rules Rj from which no rule has been taken into R′.

Definition 5. For the minimally parallel transition mode with partitioning Θ
(min(Θ)),

Appl (Π,C,min(Θ)) = {R′ | R′ ∈ Appl (Π,C, asyn) and
there is no R′′ ∈ Appl (Π,C, asyn)
with R′′ % R′, (R′′ \R′) ∩Rj 6= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ p} .

In the k-restricted minimally parallel transition mode, a multiset of rules
from Appl (Π,C,min(Θ)) can only be applied if it contains at most k rules from
each partition Rj , 1 ≤ j ≤ p.

Definition 6. For the k-restricted minimally parallel transition mode with par-
titioning Θ (mink(Θ)),

Appl (Π,C,mink(Θ)) = {R′ | R′ ∈ Appl (Π,C,min(Θ)) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ p} .

Each multiset of rules obtained by min1 can be seen as a kind of basic
maximally parallel vector; this interpretation also allows for capturing the un-
derstanding of the minimally parallel transition mode as introduced by Gheorghe
Păun:

Definition 7. For the base vector minimally parallel transition mode with par-
titioning Θ (minGP (Θ)),

Appl (Π,C,minGP (Θ)) = {R′ | R′ ∈ Appl (Π,C,min(Θ)) and R′ ⊇ R′′
for some R′′ ∈ Appl (Π,C,min1(Θ))} .

In the k-restricted maximally parallel transition mode, a multiset of rules
can only be applied if it is maximal but only contains at most k rules from each
partition Rj , 1 ≤ j ≤ p.

Definition 8. For the k-restricted maximally parallel transition mode with par-
titioning Θ (maxk(Θ)),

Appl (Π,C,maxk(Θ)) = {R′ | R′ ∈ Appl (Π,C,max) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ p} .

Definition 9. For the the k-restricted maximally parallel transition mode with
only one partition, maxk({R}), we also use the notion k-restricted maximally
parallel transition mode (maxk), i.e., we get

Appl (Π,C,maxk) = {R′ | R′ ∈ Appl (Π,C,max) and |R′| ≤ k}.
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Example 1. Consider the P system

Π = (1, {a, b} , {b} , aa, {a→ b} , 1) .

Then the rule a→ b (this notation represents the rule (I : (a, 1)→ (b, 1)) where
I is the condition which is always fulfilled) must be applied twice in the maxi-
mally parallel transition mode, whereas in the minimally parallel mode it can be
applied twice or only once. In the transition mode min1({R}), the rule is applied
once, whereas in the mode max1 no multiset of rules is applicable, because in
the maximally parallel way the rule should be applied twice.

A variant of maximal parallelism requires the maximal number of objects to
be affected by the application of a multiset of rules:

Definition 10. For the transition mode requiring a maximal number of objects
to be affected (maxobj),

Appl (Π,C,maxobj) = {R′ | R′ ∈ Appl (Π,C, asyn) and
there is no R′′ ∈ Appl (Π,C, asyn)
with |Bound (R′′)| > |Bound (R′)|} ,

whereBound (R′) for anyR′ ∈ Appl (Π,C, asyn) denotes the multiset of symbols
from C affected by R′.

For all the transition modes defined above, we now can define how to obtain
a next configuration from a given one by applying an applicable multiset of rules
according to the constraints of the underlying transition mode:

Definition 11. Given a configuration C of Π and a transition mode ϑ, we may
choose a multiset of rules R′ ∈ Appl (Π,C, ϑ) in a non-deterministic way and
apply it to C. The result of this transition step (or computation step) from the
configuration C with applying R′ is the configuration Apply (Π,C,R′), and we
also write C =⇒(Π,ϑ) C

′. The reflexive and transitive closure of the transition
relation =⇒(Π,ϑ) is denoted by =⇒∗(Π,ϑ).

Definition 12. A computation in a P system Π, Π = (n, V, T, w,R, i0), starts
with the initial configuration C0 = w and continues with transition steps accord-
ing to the chosen transition mode ϑ; it is called successful if we reach a halting
configuration C with respect to the halting condition γ.

We now define several variants of halting conditions (e.g., see [7]): The usual
way of considering a computation in a P system to be successful is to require
that no rule can be applied anymore in the whole system, i.e., Appl (Π,C, ϑ) = ∅
(we shall also use the notion total halting in the following, abbreviated by H).
Taking a partitioning of the rule set (as for the minimally parallel mode), we
may require that there exists an applicable multiset of rules containing one rule
from each partition. A biological motivation for this variant of halting (partial
halting, abbreviated by h) comes from the idea that a system may only survive as
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long as there are enough resources to give all subsystems the chance to continue
their evolution. Computations also may be considered to be successful if at some
moment a specific pattern appears (halting with final states, abbreviated by F ). If
the computation enters an infinite loop with a specific sequence of configurations
appearing periodically, we speak of adult halting, abbreviated by A.

N(Π,ϑ, γ, ρ) denotes the set of natural numbers computed by halting (with
respect to the halting condition γ) computations of Π in the transition mode
ϑ, with the numbers extracted from the output cell i0 with respect to specific
constraints specified by ρ, i.e., we either take the whole contents or only take the
terminal symbols or else subtract a given constant l from the resulting numbers
of objects in i0. Moreover, we also consider an additional variant of obtaining
the results by allowing the rules to send out multisets of objects into the en-
vironment, where we assume them to be collected as non-decaying objects; the
environment is considered as an additional cell labelled by 0, the rules therefore
being of the form

(E : (x1, 1) . . . (xn, n)→ (y0, 0) (y1, 1) . . . (yn, n)) .

We use the notation

NOmCn (ϑ, γ, ρ) [parameters for rules]

to denote the family of sets of natural numbers generated by networks of cells
Π = (n, V, T, w,R, i0) with m = |V |; γ specifies the way of halting, i.e., γ ∈
{H,h,A, F}; ϑ indicates one of the transition modes asyn, sequ, max, and maxk
for k ∈ N as well as min(p), mink(p), and maxk(p) for k ∈ N with p denoting the
number of partitions in the partitioning Θ; ρ ∈ {E,N, T}∪{−l | l ∈ N} specifies
how the results are taken from the number of objects in the specified output
cell i0 (if we take the whole contents, we use N ; we take T if the results are
taken modulo the terminal alphabet or else −l when subtracting the constant l
from the resulting numbers of objects in i0) or else sent out to the environment
(specified by E); the parameters for rules describe the specific features of the
rules in R. If any of the parameters m and n is unbounded, we replace it by ∗. If
we are not only interested in the total number of objects obtained in the output
cell, but want to distinguish the different terminal symbols, in all the definitions
given above we replace the prefix N by Ps indicating that then we get sets of
vectors of natural numbers, corresponding with sets of Parikh vectors. In that
case, the parameter −l for ρ means that (at most) l nonterminal symbols may
appear in the output cell, whereas N indicates that the number of additional
nonterminal symbols is added to the first component of the result vector.

2.4 P Systems with Decaying Objects

In all the variants of P systems as defined above, we now may introduce the
concept of decaying objects, i.e., for each object in the initial configuration and
for each object generated by the application of a rule, we specify its decay d, i.e.,
the number of computation steps it may survive without having been affected
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by a rule. A decay of one means that the object b will die if it is not affected by
a rule, which in some sense could be interpreted as the additional application
of a rule b → λ. We use the notation b[k] to specify that this object b may still
survive k computation steps before having to be affected by the application of
a rule. Assigning an additional value to each symbol b here is used to specify
the remaining life time of this object in the system; another interpretation could
be the concept of assigning a specific amount of energy; in this respect, there
are similar approaches to be found in the literature, e.g., see the conformon P
systems as introduced by Pierluigi Frisco ([18], chapter 10).

The contents of each membrane/cell of a P system has to be described by
multisets of objects b[k], i.e., for each object b we also have to specify the re-
maining life time k. If b[k] occurring in a configuration C in cell j is not affected
by a rule in the multiset of rules R′ chosen from Appl (Π,C, ϑ), then this sym-
bol appears as b[k−1] in the next configuration C ′ derived from C by applying
R′, where formally we interpret b[0] as λ; in fact, applying R′ in total can be
interpreted as having applied a multiset of rules R′[d] obtained from R′ by

a) interpreting each object b on the left-hand side as an object b[k] for some k
with 1 ≤ k ≤ d and introducing each object c on the right-hand side as c[d];

b) adding a rule
(
b[k], j

)
→
(
b[k−1], j

)
for each object b[k] not affected by a rule

from R′ following the strategy in a).

In fact, in order to correctly specify these informal descriptions in the formal
framework, we have to extend the definition of how the P system Π works with
decaying objects of decay d as follows:

Definition 13. For any (finite) alphabet V and any d ∈ N,

V 〈d〉 =
{
b[k] | 1 ≤ k ≤ d

}
.

The projection hd :
(
V 〈d〉

)∗ → V ∗ is defined by hd
(
b[k]
)

= b for all b ∈ V and
1 ≤ k ≤ d. Given any additional finite set M , hd can be extended to a projection
hd,M :

(
V 〈d〉 ∪M

)∗ → (V ∪M)
∗

by hd,M
(
b[k]
)

= b for all b ∈ V and 1 ≤ k ≤ d
and hd,M (x) = x for all x ∈M . If M is obvious from the context, we may write
hd instead of hd,M for short.

Given a P system Π and a decay d, we now are able to define the associated
P system Π [d]:

Definition 14. For a P system Π = (n, V, T, w,R, i0) and a decay d, we define

Π [d] =
(
n, V 〈d〉, T 〈d〉, w[d], R[d] ∪R[d]

0 , i0

)

and the rules in R[d] are obtained from the rules in R as follows:
For each rule

r = (E : (x1, 1) . . . (xn, n)→ (y0, 1) (y1, 1) . . . (yn, n))
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from R we take every rule

(x′1, 1) . . . (x′n, n)→ (y0, 1)
(
y
[d]
1 , 1

)
. . .
(
y[d]n , n

)

with hd (x′i) = xi, 1 ≤ i ≤ n, into R[d], i.e., the right-hand sides are all equal,
whereas the left-hand sides could be interpreted as the elements of(
hd,{(,)}∪{,}∪[1..n]

)−1
((x1, 1) . . . (xn, n)), and we denote this set of rules obtained

from r by ĥd (r). Each newly generated object staying in the system gets the
initial decay d; in the case objects are sent out into the environment, these are
assumed to have no decay there, hence, we just take the original multiset y0
instead of y

[d]
0 . A multiset of rules R̂′ from R[d] is called an instance of the rule

set R′ from R if and only if there exists a bijection g : R′ → R̂′ such that
g (r) ∈ ĥd (r) for all r ∈ R′.

Finally, we define

R
[d]
0 =

{(
b[k], i

)
→
(
b[k−1], i

)
| b ∈ V, 1 ≤ k ≤ d, 1 ≤ i ≤ n

}
,

i.e., the set of rules needed for reducing the remaining life time of objects not
involved in a rule from R[d]; b[0] formerly is to be interpreted as λ.

The P system Π and the associated P system Π [d] have to be considered in
parallel to describe the computations in the P system Π with decaying objects
of decay d:

Definition 15. Given a P system Π = (n, V, T, w,R, i0) with decaying objects
of decay d and a configuration C of Π [d] together with a transition mode ϑ, we
may choose a multiset of rules R′ ∈ Appl (Π,hd (C) , ϑ) in a non-deterministic

way; then we have to find an instance R̂′ of R′ and a set R′′ ∈ R[d]
0 such that

R̂′ ∪ R′′ ∈ Appl
(
Π [d], C,maxobj

)
and apply R̂′ ∪ R′′ to C. The result of this

transition step (or computation step) from the configuration C with applying
R̂′ ∪R′′ is the configuration Apply[d] (Π,C,R′), and we also write C =⇒(Π[d],ϑ)
C ′. The reflexive and transitive closure of the transition relation =⇒(Π[d],ϑ) is

denoted by =⇒∗
(Π[d],ϑ)

.

A computation in Π starts with the initial configuration represented by w[d]

as a configuration in Π [d] and continues with transition steps according to the
chosen transition mode ϑ as described above; it is called successful if we reach
a configuration C such that hd (C) is a halting configuration of Π with respect
to the halting condition γ; the results of this successful computation are taken
from hd (C).

Whereas the choice of the rule set to be applied only depends on the con-
ditions given by the rules in R and the transition mode ϑ for Π (this justifies
to not take into account the conditions E of rules (E : X → Y ) from R in the
corresponding rules of R[d]), the total effect to the current configuration C repre-
sented as a configuration of Π [d] always affects all objects in C due to the mode
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maxobj used in Π [d]. Although in the associated system Π [d] we always use the
mode maxobj, no matter which transition mode is specified for Π itself, the
results we obtain mostly will depend on the original transition mode specified
for Π. Moreover, we emphasize that the condition of halting also only depends
on the halting condition given for Π.

It is easy to see that, due to the interpretations defined above, the use of
decaying objects causes side-effects; for example, in the sequential mode one in-
stance of a rule from R is applied, but in parallel all other remaining symbols
are affected, too, by the decaying rules

(
b[k], j

)
→
(
b[k−1], j

)
applied in the asso-

ciated system Π [d]. The main problem with the application of these additional
rules is that they allow symbols b to stay alive for a bounded period only without
having been consumed by the application of another rule than these decaying
rules.

Another side-effect is the increase of non-determinism, as in the rules
(E : X → Y ) we specify the life time (decay) of the objects we generate in Y ,
but we do not specify which remaining life time the objects we take in X still
should have; for example, the application of the rule a→ b to the configuration(
a[2]a[1], 1

)
, in the sequential mode, yields the result

(
b[2], 1

)
(assuming that a

newly generated object starts with decay 2) if we consume the object a[2] by the
application of the rule, whereas we obtain

(
a[1]b[2], 1

)
if we consume the object

a[1] instead.
N [d](Π,ϑ, γ, ρ) (Ps[d](Π,ϑ, γ, ρ)) denotes the set of (vectors of) natural num-

bers computed by halting (with respect to the halting condition γ) computations
of Π with decaying objects of decay d in the transition mode ϑ, with the numbers
extracted from the output cell i0 with respect to the specific constraints specified
by ρ. For the sets of (vectors of) natural numbers generated by P systems with
decaying objects of decay 1 ≤ k ≤ d we now use the notation

Y O[d]
m Cn (ϑ, γ, ρ) [parameters for rules]

with Y ∈ {N,Ps}, i.e., we add the superscript [d] to specify the maximal life
time of the objects.

3 P Systems with Decaying Objects and Transition
Modes Bounding the Number of Rules in Applicable
Multisets of Rules

In this section, we consider P systems having a constant K such that in each com-
putation step the number of rules in an applicable multiset of rules is bounded
by K.

3.1 Examples for P Systems with Decaying Objects

In this subsection, a few simple examples are exhibited to illustrate the effect
of decays. For P systems with only one membrane/cell, we omit the indication
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of the cell number, i.e., instead of writing (w, 1) we simply write w and instead
of writing (E : (x1, 1)→ (y1, 1)) we may write E : x1 → y1; moreover, if E is a
condition which is always fulfilled, we may only write x1 → y1.

Example 2. Consider the P systems

Π (d) = (1, {s, a} , {a} , s, {s→ as, s→ λ} , 1)

for d > 1. Then the only computations consist of applying n times the rule
s → as and finally ending up with applying the rule s → λ. For n = 0, we get
s[d] =⇒(Π(d)[d],ϑ) λ, for 1 ≤ n ≤ d, we obtain the sequence of configurations

s[d] =⇒n

(Π(d)[d],ϑ) a
[d−n+1] . . . a[d]s[d] =⇒(Π(d)[d],ϑ) a

[d−n] . . . a[d−1],

whereas for n > d we get

s[d] =⇒d+1

(Π(d)[d],ϑ)
a[1]a[2] . . . a[d]s[d]

=⇒∗
(Π(d)[d],ϑ)

a[1]a[2] . . . a[d]s[d] =⇒(Π(d)[d],ϑ) a
[1] . . . a[d−1].

Hence, in sum we obtain

N [d] (Π (d) , ϑ, γ, ρ) = {n | 0 ≤ n < d} ,

for ρ ∈ {N,T}∪{−l | l ∈ N} and any of the transition modes ϑ as defined in the
preceding section as well as with γ denoting total halting, partial halting (the
whole rule set forms the only partition), or halting with final states (defined by
the regular set of multisets {a}◦, which in fact means the same as taking ρ = T ).
Therefore, the family of P systems Π (d) with d ∈ N forms a very simple infinite
hierarchy with respect to the decay d in any of these cases.

Example 3. Let M be a finite subset of T ◦. Consider the P system

Π (M) = (1, {s} ∪ T, T, s, {s→ w | w ∈M} , 1) .

Obviously, Ps[d] (Π (M) , ϑ, γ, ρ) = M for ρ ∈ {N,T} ∪ {−l | l ∈ N} and any
of the transition modes ϑ as defined in the preceding section as well as with
γ ∈ {H,h, F}; hence, for all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ, γ, ρ) [ncoo] ⊇ PsFIN,

where ncoo indicates (the use of) noncooperative rules.

Example 4. Let G = (N,T, P, S) be a regular grammar (without loss of general-
ity, we assume G to be reduced, i.e., from every nonterminal symbol a terminal
string can be derived). Consider the P system

Π (G) = (1, N ∪ T, T, S,R, 1)
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with
R = {(I : (A, 1)→ (b, 0) (C, 1)) | A→ bC ∈ P}
∪ {(I : (A, 1)→ (λ, 1)) | A→ λ ∈ P} .

Obviously, Ps[d] (Π (M) , ϑ, γ, E) = Ps (L (G)) for any of the transition modes
ϑ as defined in the preceding section as well as with γ ∈ {H,h, F}; hence, for
all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ, γ,E) [ncoo] ⊇ PsREG.

In fact, the objects for the results of succesful computations are collected in the
environment, a computation halts with empty cell 1.

Using the P system with decaying objects

Π ′ (G) =
(

1, N ∪ T ∪ {F} , T, S[d], R′, 1
)

with

R′ = {(I : (A, 1)→ (b, 0) (C, 1)) | A→ bC ∈ P}
∪ {(I : (A, 1)→ (F, 1)) | A→ λ ∈ P} ∪ {(I : (F, 1)→ (F, 1))}

we obtain Ps[d] (Π ′ (M) , ϑ, A,E) = Ps (L (G)) for any of the transition modes
ϑ as defined in the preceding section; all successful computations end up in the
final configuration F ; hence, for all n, d ≥ 1,

PsO
[d]
∗ Cn (ϑ,A,E) [ncoo] ⊇ PsREG.

3.2 A General Lemma

The following result holds in general for all possible variants of rules as well as
with all transition modes and halting conditions defined in the preceding section:

Lemma 1. For all d ≥ 1 and each Y ∈ {N,Ps} as well as for ϑ being any tran-
sition mode guaranteeing that in each computation step only a bounded number
of rules can be applied, we have that

a) for any halting condition γ ∈ {H,h,A, F},

Y O
[d]
∗ C∗ (ϑ, γ,E) [parameters for rules] ⊆ Y REG

as well as,
b) for any halting condition γ ∈ {H,h, F} and for any ρ ∈ {N,T}∪{−l | l ∈ N},

Y O
[d]
∗ C∗ (ϑ, γ, ρ) [parameters for rules] ⊆ Y FIN.

Proof (sketch). Let Π be an arbitrary P system with decaying objects of decays
at most d, and let Z be the maximal number of objects generated by a rule from
Π. Moreover, let K be the maximal number of rules applicable in a computation
step in Π according to the transition mode ϑ. Then, no matter how many objects
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have been in the initial configuration, after d steps at most KdZ objects can be
distributed over the cells of Π, as all the initial objects have either be used
in the application of a rule or else have faded away due to their decay ≤ d.
Therefore, in any configuration computed in more than d steps, at most KdZ
objects can be distributed over the cells of Π. No matter how these objects are
distributed and how big is their actual decay, in sum only a finite number of
different configurations may evolve from the initial configuration. Hence, also
the number of results of successful computations in Π must be finite, which
proves b).

For proving a), we construct a regular grammar G = (N,T, P, S) as follows:
All the different configurations that eventually may be computed from the initial
configuration constitute the set of nonterminal symbols N ; as shown before, their
number is finite. The initial configuration is represented by the start symbol S.
For each transition step from a configuartion represented by the nonterminal
A to a configuartion represented by the nonterminal C thereby sending out
the multiset w to the environment, we take the rule A → wC into P . If A
represents a final configuration according to the halting condition γ, we take
the rule A → λ into P . According to this construction it is easy to see that
Ps (L (G)) = Ps[d] (Π,ϑ, γ,E), which observation completes the proof. �

In combination with the Examples 3 and 4 we immediately infer the following
characterizations of Y FIN and Y REG, Y ∈ {N,Ps}:
Theorem 1. For all d ≥ 1 and each Y ∈ {N,Ps} as well as for ϑ being any
of the derivation modes sequ, maxk for k ∈ N, mink(p), or maxk(p) for k ∈ N
(with p denoting the number of partitions in the partitioning Θ),

a) for any halting condition γ ∈ {H,h,A, F},

Y O
[d]
∗ C∗ (ϑ, γ,E) [ncoo] = Y REG

as well as,
b) for any halting condition γ ∈ {H,h, F} and for any ρ ∈ {N,T}∪{−l | l ∈ N},

Y O
[d]
∗ C∗ (ϑ, γ, ρ) [ncoo] = Y FIN.

Proof (sketch). We only have to show that the given transition modes fulfill the
condition needed for the application of Lemma 1. The maximal number K of
rules applicable in Π according to the transition modes ϑ can be given as follows:

– for ϑ = sequ, K = 1;
– for ϑ = maxk, k ∈ N, K = k;
– for mink(p) and maxk(p), k, p ∈ N, K = kp.

In all cases, the condition of Lemma 1 is fulfilled, which yields the inclusions
⊆; the opposite inclusions are shown by taking the P systems from Examples 3
and 4. �

In the remaining subsections of this section, we compare these results for
specific variants of P systems with decaying objects from Theorem 1 with the
computaional completeness results obtained in [11] for the corresponding vari-
ants of P systems with non-decaying symbols.
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3.3 Models for the 1-Restricted Minimally Parallel Transition
Mode

In this subsection, as already described in [11], we use the ability of the 1-
restricted minimally parallel transition mode to capture characteristic features
of well-known models of P systems to compare the generative power of extended
spiking neural P systems as well as of purely catalytic P systems with decaying
and with non-decaying objects.

Extended Spiking Neural P Systems We first consider extended spiking
neural P systems (without delays), see [1], where the rules are applied in a se-
quential way in each neuron, but on the level of the whole system, the maximally
parallel transition mode is applied – every neuron which may use a spiking rule
has to spike, i.e., to apply a rule (see the original paper [12]). When partitioning
the rule set according to the set of neurons, the application of the 1-restricted
minimally parallel transition mode exactly models the original transition mode
defined for spiking neural P systems.

An extended spiking neural P system (of degree m ≥ 1) (in the following we
shall simply speak of an ESNP system) is a construct

Π = (m,S,R, i0)

where

– m is the number of neurons; the neurons are uniquely identified by a number
between 1 and m;

– S describes the initial configuration by assigning an initial value (of spikes)
to each neuron;

– R is a finite set of rules of the form
(
i, E/ak → P

)
such that i ∈ [1..m]

(specifying that this rule is assigned to neuron i), E ⊆ REG ({a}) is the
checking set (the current number of spikes in the neuron has to be from E
if this rule shall be executed), k ∈ N is the “number of spikes” (the energy)
consumed by this rule, and P is a (possibly empty) set of productions of the
form (l, aw) where l ∈ [1..m] (thus specifying the target neuron), w ∈ N is
the weight of the energy sent along the axon from neuron i to neuron l.

– i0 is the output neuron.

A configuration of the ESNP system is described by specifying the actual
number of spikes in every neuron. A transition from one configuration to another
one is executed as follows: for each neuron i, we non-deterministically choose a
rule

(
i, E/ak → P

)
that can be applied, i.e., if the current value of spikes in

neuron i is in E, neuron i “spikes”, i.e., for every production (l, w) occurring
in the set P we send w spikes along the axon from neuron i to neuron l. A
computation is a sequence of configurations starting with the initial configuration
given by S. An ESNP system can be used to generate sets from NRE (we do
not distinguish between NRE and RE ({a})) as follows: a computation is called
successful if it halts, i.e., if for no neuron, a rule can be activated; we then
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consider the contents, i.e., the number of spikes, of the output neuron i0 in
halting computations.

We now consider the ESNP system Π = (m,S,R, i0) as a network of cells
Π ′ = (m, {a} , {a} , S,R′, i0) working in the 1-restricted minimally parallel tran-
sition mode, with

R′ =
{(
E :

(
ak, i

)
→ (aw1 , l1) . . . (awn , ln)

)
|(

i, E/ak → (l1, a
w1) . . . (ln, a

wn)
)
∈ R

}

and the partitioning R′i, 1 ≤ i ≤ m, of the rule set R′ according to the set of
neurons, i.e.,

R′i =
{(
E :

(
ak, i

)
→ (aw1 , l1) . . . (awn , ln)

)
|(

E :
(
ak, i

)
→ (aw1 , l1) . . . (awn , ln)

)
∈ R′

}
.

The 1-restricted minimally parallel transition mode chooses one rule – if possible
– from every set Ri and then applies such a multiset of rules in parallel, which
directly corresponds to applying one spiking rule in every neuron where a rule
can be applied. Hence, it is easy to see that Π ′ and Π generate the same set
from RE {a} if in both systems we take the same cell/neuron for extracting the
output. Due to the results valid for ESNP systems, see [1], we obtain

Theorem 2. For all n ≥ 3,

NRE = NO1Cn (min1 (n) , H,N) [ESNP] .

In [8] the following results are shown for ESNP systems with decaying objects:

Theorem 3. For all n ≥ 2 and d ≥ 1,

a) NFIN = NO
[d]
1 Cn (min1 (n) , H,N) [ESNP] and

b) NREG = NO
[d]
1 Cn (min1 (n) , H,E) [ESNP] .

Purely Catalytic P Systems Already in the original papers by Gheorghe
Păun (see [16] and also [6]), membrane systems with catalytic rules were de-
fined, but computational completeness was only shown with using a priority
relation on the rules. In [9] it was shown that only three catalysts are suffi-
cient in one membrane, using only catalytic rules with the maximally parallel
transition mode, in order to generate any recursively enumerable set of natural
numbers. Hence, by showing that P systems with purely catalytic rules working
in the maximally parallel transition mode can be considered as P systems work-
ing with the corresponding noncooperative rules in the 1-restricted minimally
parallel transition mode when partitioning the rule sets for each membrane with
respect to the catalysts, we obtain the astonishing result that in this case we
get a characterization of the recursively enumerable sets of natural numbers by
using only noncooperative rules.

A noncooperative rule is of the form (I : (a, i)→ (y1, 1) . . . (yn, n)) where a is
a single symbol and I denotes the condition that is always fulfilled. A catalytic
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rule is of the form (I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) where c is from a
distinguished subset C ⊂ V such that in all rules (noncooperative evolution rules,
catalytic rules) of the whole system the yi are from (V \ C)

∗
and the symbols a

are from (V \ C). Imposing the restriction that the noncooperative rules and the
catalytic rules in a network of cells allow for finding a hierarchical tree structure
of membranes such that symbols either stay in their membrane region or are sent
out to the surrounding membrane region or sent into an inner membrane, then
we get the classical catalytic P systems without priorities. Allowing regular sets
checking for the non-appearance of specific symbols instead of I, we even get
the original P systems with priorities. Catalytic P systems using only catalytic
rules are called purely catalytic P systems. As we know from [9], only two (three)
catalysts in one membrane are needed to obtain NRE with (purely) catalytic
P systems without priorities working in the maximally parallel transition mode,
i.e., we can write these results as follows (cat indicates that noncooperative and
catalytic rules are allowed, whereas pcat indicates that only catalytic rules are
allowed):

Theorem 4. ([9]) For all n ∈ N and k ≥ 2, as well as γ ∈ {H,h, F}

NRE = NO∗Cn (max, γ,−k) [catk] = NO∗Cn (max, γ,−(k + 1))
[
pcatk+1

]
.

As the results can be collected in a second membrane without catalysts, we even
have

NRE = NO∗Cn+1 (max, γ,N) [catk] = NO∗Cn+1 (max, γ,N)
[
pcatk+1

]
.

If we now partition the rule set in a purely catalytic P system according to
the catalysts present in each membrane, this partitioning replaces the use of the
catalysts when working in the 1-restricted minimally parallel transition mode,
because by definition from each of these sets then – if possible – exactly one rule
(as with the use of the corresponding catalyst) is chosen: from the set of purely
catalytic rules R we obtain the corresponding set of noncooperative rules R′ as

R′ = {(I : (a, i)→ (y1, 1) . . . (yn, n)) |
(I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) ∈ R}

as well as the corresponding partitioning of R′ as

R′i,c = {(I : (a, i)→ (y1, 1) . . . (yn, n)) |
(I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) ∈ R} .

Considering purely catalytic P systems in one membrane, we immediately
infer that when using the 1-restricted minimally parallel transition mode for a
suitable partitioning of rules we only need noncooperative rules:

Corollary 1. For all n ∈ N and k ≥ 3 as well as γ ∈ {H,F},

NRE = NO∗Cn (min1(k), γ,N) [ncoo] .
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On the other hand, when using the asynchronous, the sequential or even the
maximally parallel transition mode, we only obtain regular sets (see [11]):

Theorem 5. For each Y ∈ {N,Ps}, for any ϑ ∈ {asyn, sequ,max}, any γ ∈
{H,h,A, F}, and any ρ ∈ {N,T} ∪ {−l | l ∈ N},

Y REG = Y O∗C∗ (ϑ, γ, ρ) [ncoo] .

Combining the results of Theorem 5 with those from Theorem 1, we imme-
diately obtain the following corollary for the sequential transition mode:

Corollary 2. For any halting condition γ ∈ {H,h,A, F}, any ρ ∈ {N,T} ∪
{−l | l ∈ N}, and each Y ∈ {N,Ps},

Y REG = Y O
[d]
∗ C∗ (sequ, γ, E) [ncoo] = Y O∗C∗ (sequ, γ, ρ) [ncoo] ,

for all d ≥ 1.

For purely catalytic P systems with decaying objects, even in the maximally
parallel transition mode the conditions of Lemma 1 are fulfilled, hence, we get
the following results:

Theorem 6. For all n, d, k ≥ 1, each Y ∈ {N,Ps}, as well as for any halting
condition γ ∈ {H,h,A, F},

Y REG = Y O
[d]
∗ Cn (max, γ,E) [pcatk] .

Theorem 7. For all n, d, k ≥ 1, each Y ∈ {N,Ps}, as well as for any halting
condition γ ∈ {H,h, F}, for any ρ ∈ {N,T} ∪ {−l | l ∈ N},

Y FIN = Y O
[d]
∗ Cn (max, γ,−k) [pcatk]

= Y O
[d]
∗ Cn+1 (max, γ, ρ) [pcatk] .

In all these systems with decaying objects, the catalysts are assumed to only
have life time d, too.

3.4 The k-Restricted Maximally Parallel Transition Mode

In this subsection, we investigate the k-restricted maximally parallel transition
mode. With cooperative rules, we again easily obtain computational complete-
ness when using the k-restricted maximally parallel transition mode, a result
which immediately follows from the results proved in the preceding section, i.e.,
from Theorem 4 and Corollary 1 (see [11]):

Corollary 3. For all n ≥ 1 and k ≥ 3, as well as for any halting condition
γ ∈ {H,h, F},

NRE = NO∗Cn (maxk,−k) [coo] = NO∗Cn (maxk,−k) [pcatk] .
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Yet in contrast to the results proved in the preceding section for the 1-
restricted minimally transition mode, now with noncooperative rules we only
obtain semilinear sets when using the k-restricted maximally parallel transition
mode:

Theorem 8. For every ρ ∈ {N,T} and every k ∈ N as well as any possible
partitioning Θ of the rule sets in the P systems, i.e., for all p ∈ N, and for any
halting condition γ ∈ {H,F},

NREG = NO∗C∗ (maxk(p), γ, ρ) [ncoo] .

Again, with decaying objects, the conditions of Lemma 1 are fulfilled, hence,
we get the following results:

Theorem 9. For all n, d ≥ 1, each Y ∈ {N,Ps}, as well as for any halting
condition γ ∈ {H,h,A, F},

Y REG = Y O
[d]
∗ Cn (maxk, γ, E) [coo] .

Theorem 10. For all n, d ≥ 1, each Y ∈ {N,Ps}, as well as for any halting
condition γ ∈ {H,h, F}, for any ρ ∈ {N,T} ∪ {−l | l ∈ N},

Y FIN = Y O
[d]
∗ Cn (maxk, γ, ρ) [coo] .

4 Computational Completeness Results for P Systems
with Decaying Objects

In this section we prove computational completeness for catalytic P systems as
well as for P systems using cooperative rules with decaying objects. Moreover,
we only consider P systems with one membrane/cell.

Catalytic P systems can be seen as a specific variant of P systems using
cooperative rules, hence, we first establish the computational completeness result
for P systems using cooperative rules; when using arbitrary cooperative rules,
additional ingredients such as context conditions can be avoided, yet only when
using the transition mode maxobj instead of max as well as with adult halting
or halting with final state:

Theorem 11. For all n ≥ 1 and all d ≥ 2 as well as any γ ∈ {A,F}, any
ρ ∈ {N,T} ∪ {−l | l ∈ N}, and each Y ∈ {N,Ps},

Y RE = Y O
[d]
∗ Cn (maxobj, γ, ρ) [coo] .

Proof (sketch). We only show PsRE ⊆ PsO
[2]
∗ C1 (maxobj, γ, ρ) [coo]. The in-

structions of a register machine M = (m,B, l0, lh, P ) can be simulated by a P
system Π = (1, V, T, l0, R, 1) with decaying objects of decay d = 2 using cooper-
ative rules in the transition mode maxobj. As usual, the contents of a register j
is represented by the corresponding number of copies of the symbol aj ; T con-
sists of the symbols aj , 3 ≤ j ≤ m. For keeping the objects aj , 1 ≤ j ≤ m, alive,
we use the rules aj → aj .
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– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m,
is simulated by the rules l1 → l2aj and l1 → l3aj in R.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ 2,
is simulated in three steps:
in the first step, the rule l1 → l′1hj is used;
in the second step, l′1 → l̄1 is used, eventually in parallel with the rule
hjaj → h̄j which is the crucial step of the simulation where we need the
features of the transition mode maxobj – it guarantees that for exactly one
object aj the rule hjaj → h̄j has priority over the rule aj → aj which
involves less objects than the other one;
finally, depending on the availability of an object aj in the second step for
the application of the rule hjaj → h̄j , in the third step either h̄j is present
and the rule l̄1h̄j → l2 is applied, or else hj is still present so that the rule
l̄1hj → l3 is used.

– lh : HALT is simulated by the rule lh → λ.

Collecting all objects used in the rules defined above, we get

V = B ∪
{
l′, l̄ | l ∈ B \ {lh}

}
∪
{
h1, h̄1, h2, h̄2

}

∪ {aj | 1 ≤ j ≤ m} .

At the end of a successful computation, only the objects aj , 3 ≤ j ≤ m, repre-
senting the result are present and kept in an infinite loop by the rules aj → aj ,
hence, the condition for adult halting is fulfilled; in sum we have shown that
L (M) = Ps[2] (Π,maxobj, A, ρ).

For halting with final states, we can use the condition that only the objects
aj , 3 ≤ j ≤ m, may be present. It seems to be impossible to stop the application
of the rules aj → aj without using context conditions (or priorities on the rules),
hence, we have to restrict ourselves to the halting conditions A and F . �

The idea for simulating the SUB-instruction elaborated in the preceding
proof does not work with the transition mode max as the application of the rule
hjaj → h̄j cannot be enforced without giving it priority over the rule aj → aj ;
on the other hand, when adding only these two priorities

hjaj → h̄j > aj → aj , 1 ≤ j ≤ 2,

(priorities were already used in the original paper [6]), then the rest of the proof
of Theorem 11 also works with the transition mode max.

We now return to catalytic P systems and establish the computational com-
pleteness result for catalytic P systems with decaying objects using the standard
transition mode max (and the standard total halting):

Theorem 12. For all n ≥ 1, k ≥ 2, and all d ≥ 2 as well as any γ ∈
{H,h,A, F}, any ρ ∈ {T} ∪ {−l | l ≥ k}, and each Y ∈ {N,Ps},

Y RE = Y O
[d]
∗ Cn (max, γ, ρ) [catk] .
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Proof (sketch). We only show PsRE ⊆ PsO
[2]
∗ C1 (max, γ,−2) [cat2]. The in-

structions of a register machine M = (m,B, l0, lh, P ) can be simulated by a P
system Π = (1, V, T, l0c1c2, R, 1) with decaying objects of decay d = 2 using
noncooperative and catalytic rules in the transition mode max. The contents of
a register j is represented by the corresponding number of copies of the sym-
bol aj ; T consists of the symbols aj , 3 ≤ j ≤ m. For keeping the objects aj ,
1 ≤ j ≤ m, alive, we now use the rules with context conditions

{({l′} , ∅) | l ∈ B} : aj → aj .

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m,
is simulated in two steps by the rules
c1l1 → c1l

′
1 as well as c2l

′
1 → c2l2aj and c2l

′
1 → c2l3aj in R.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ 2,
is simulated in two steps, too:
in the first step, the rule c1l1 → c1l

′
1 and eventually the rule with context

conditions

{({l1} , ∅) | l1 : (SUB (j) , l2, l3) ∈ R} : c2aj → c2a
′
j

is used;
in the second step, if a′j is present, then the rules c1a

′
j → c1 and c2l

′
1 → c2l2

are used in parallel; otherwise, only the rule with context conditions

{(
∅,
{
a′j
})}

: c2l
′
1 → c2l3

is used.
– lh : HALT is simulated by the sequence of rules lh → l′h, l′h → λ.

Collecting all objects used in the rules defined above, we get

V = B ∪ {l′ | l ∈ B} ∪ {c1, c2}
∪ {aj | 1 ≤ j ≤ m} ∪ {a′1, a′2} .

At the end of a successful computation, only the objects aj , 3 ≤ j ≤ m, rep-
resenting the result are present and kept alive three steps when lh appears,
whereas the catalysts die after two steps and the computation successfully halts
with no rule being applicable anymore; in sum we have shown that L (M) =
Ps[2] (Π,max,H,−2). Partial halting with the trivial partitioning {R} success-
fully stops as total halting. For halting with final states, we can use the condi-
tion that only the objects aj , 3 ≤ j ≤ m, may be present. Using again the rules
aj → aj instead of the corresponding ones with context conditions, the condition
for adult halting can be fulfilled. �

5 Summary and Future Research

The main purpose of this paper has been to investigate the effect of using de-
caying objects in contrast to the non-decaying objects used in most cases so far
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in the area of P systems. Many variants of P systems known to be computa-
tionally complete with non-decaying objects can be shown to only characterize
the finite or the regular sets of multisets in combination with transition modes
only allowing for the application of a bounded number of rules in each com-
putation step. On the other hand, in combination with the maximally parallel
mode, computational completeness can be obtained for catalytic and P systems
using cooperative rules, respectively, yet only with also using permitting and
forbidden contexts. As an interesting special result, computational completeness
can be obtained for P systems using cooperative rules with the mode using the
maximal number of objects, yet without needing context conditions.

With respect to the maximally parallel mode and the mode using the maximal
number of objects, a lot of technical details remain for future research, especially
concerning the need of using context conditions, not only in connection with
catalytic P systems and P systems using cooperative rules, but also with many
other variants of (static) P systems.

The effect of using decaying objects in combination with the asynchronuous
transition mode has been left open in this paper. With non-decaying objects, the
asynchronous mode usually yields the same results as the sequential mode. Yet
in connection with using decaying objects, the situation becomes more difficult,
and although the generative power seems to become rather degenerate, precise
characterizations might be challenging problems for future research.

In this paper, only generative P systems with decaying objects are investi-
gated. Obviously, decaying objects can also be considered for accepting P systems
as well as for P systems computing functions. In order to obtain high compu-
tational power, it again is necessary to keep objects alive for an arbitray long
period of computation steps. Yet we may expect slightly different results com-
pared with those obtained in the generative case, e.g., with transition modes
only allowing for the application of a bounded number of rules in each com-
putation step, specific variants of such P systems allow for at least accepting
FIN ∪ co-FIN .

The idea of decaying objects can be extended from static (tissue) P systems
to dynamic P systems, where membranes (cells) may be newly generated and/or
deleted. In addition, the idea of decaying entities can be extended to membranes,
too, i.e., we may consider membranes (cells) only surviving for a certain number
of computation steps. Moreover, in nature different types of cells have different
life cycles; hence, it is quite natural to allow different objects to have different
decays or even to allow to introduce different decays for the same object in
different rules.

Another challenging problem is to find non-trivial infinite hierarchies with
respect to the decay of objects for specific kinds of P systems with decaying
objects; Example 2 shows a very simple example of such an infinite hierarchy
with respect to the decay of the objects.

When going from multisets to sets of objects, another wide field of future
research may be opened; in this case, reaction systems can be seen as very
specific variants of such a kind of P systems.
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16. Gh. Păun: Computing with membranes. J. of Computer and System Sciences 61
(1), 108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi)
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Turing and von Neumann’s Brains and their 
Computers  

Dedicated to Alan Turing’s 100th Birthday and John von Neumann’s 110th 

Birthday* 

Sorin Istrail1 and Solomon Marcus2 

1Brown University, Department of Computer Science 
Box 1910, Providence, RI 02912, USA 

2Stoilow Institute of Mathematics, Romanian Academy 
P.O. Box 1-764014700 Bucharest, Romania 

“There exists today a very elaborate system of formal logic, and 

specifically, of logic as applied to mathematics. This is a discipline with 

many good sides, but also with certain serious weaknesses. ... Everybody who 

has worked in formal logic will confirm that it is one of the technically 

most refractory parts of mathematics. The reason for this is that it deals 

with rigid, all-or-none concepts, and has very little contact with the 

continuous concept of the real or of complex number, that is, with 

mathematical analysis. Yet analysis is the technically most successful and 

best-elaborated part of mathematics.  

Thus formal logic is, by the nature of its approach, cut off from the best 

cultivated portions of mathematics, and forced onto the most difficult part 

of mathematical terrain, into combinatorics.”
*
 

 
– John von Neumann 

 

 

1. The Duo  

Were it not for two decades of the intertwined intellectual lives of Alan Turing and 
John von Neumann, the disciplines of mathematics and computer science would not be 
what they are today. 

Their shared intellectual path began in 1933, when college student Turing wrote to his 
mother, Sarah, that his prize book was von Neumann’s Mathematical Foundations of 
Quantum Mechanics, which he described as being “very interesting, and not at all 
difficult reading, although the applied mathematicians seem to find it rather strong.” 

Shortly after, in 1935, von Neumann finds his way into the first line of the first 
sentence in Turing’s first paper: “In his [1934] paper Almost periodic functions in a 
group, J. v. Neumann has used independently the ideas of left and right periodicity. 

I shall now show that these are equivalent.” Such a demonstration of Turing’s power 

                                                        
* The two “founts” [term used by Turing] are used in the paper for verbatim citation from 
Turing [American typewriter] and von Neumann  [Bank Gothic]. Von Neumann’s 110th birthday 

anniversary will be in 2013. 

13th International Conference on Membrane Computing, CMC13,

Budapest, Hungary, August 28 - 31, 2012. Proceedings, pages 37 - 47.
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of proof surely must have caught von Neumann’s attention, for in 1937, he wrote a 
letter in support of a Princeton fellowship for Turing, and in 1938 offered Turing a 
position as his assistant which, although it paid $1,500 a year, Turing declined as the 
shadows of war lengthened in Europe.  
 
(The admiration was mutual. In a letter written home from Princeton, von Neumann’s 
is the first name on a list of Princeton luminaries that included “Weyl, Courant, 
Hardy, Einstein, Lefschetz, as well as hosts of smaller fry.”) 
 

Though Turing returned to his native England, the two continued to correspond and 
collaborate for the rest of their all-too-short lives. In 1939, after hearing of a 
continuous group problem from von Neumann, Turing proved the general negative 
solution and sent it to von Neumann for Annals of Mathematics. [see von Neumann 
letter to Turing and Stan Ulam letter]. A 1949 letter from von Neumann to Turing 
acknowledged receipt of Turing’s submission of a paper for Annals of Mathematics for 
which von Neumann served as an editor. “exceedingly glad to get your 

paper” and “agree with your assessment of the paper character … 
our machine-project is moving along quite satisfactory but we 

are not at the point you are” [Turing digital archive 
http://www.turingarchive.org/browse.php/D/5] (It may be interesting to note that von 
Neumann would be assigning Turing’s famous paper on computable numbers as 
required reading for his collaborators in the EDVAC project of constructing his 
computers.) 
 

Even in critical discourse, Turing and von Neumann are intertwined. “The fathers of 
the field had been pretty confusing,” E. W. Dijkstra wrote. “John von Neumann 
speculated about computers and the human brain in analogies sufficiently wild to be 
worthy of a medieval thinker and Alan M. Turing thought about criteria to settle the 
question of whether Machines Can Think, which we now know is about as relevant as 
the question of whether Submarines Can Swim.”. 
 
Although Turing was 10 years younger than von Neumann, they acknowledged one 
another’s intellectual seniority, with Von Neumann serving as an elder in mathematics 
to Turing and Turing the elder in computer science to von Neumann. Turing papers on 
almost periodicity, Lie groups, numerical matrix analysis and word problem for 
compact groups follow from two relatively deep theorems – one due to Tarski and the 
other to Von Neumann. In a letter to Max Newman, Turing talks about Godel and von 
Neumann: “Godel’s paper has reached me at last. I am very suspicious of it now but 
will have to swot up the Zermelo-v. Neumann system a bit before I can put objections 
down in black and white. The present report gives a fairly complete account of the 
proposed calculator. It is recommended however that it be read in conjunction with J. 
von Neumann’s ‘Report on the EDVAC’ [Proposal for the Development of an Automatic 
Computing Engine]. Most of the most hopeful scheme, for economy combined with 
speed, seems to be the ‘storage tube’ or ‘iconoscope’ (in J. v. Neumann’s terminology).”  
 
Their age difference is irrelevant in another respect: We could consider Turing the 
grandfather of computer science and von Neumann its father, because the Turing 
machine was invented in the 1930s, while von Neumann’s basic work in the field 
belongs to the 1940s and 1950s. 
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We find similarities on many fronts: Turing and von Neumann were essentially 
involved in the creative intellectual effort required by their governments during the 
Second World War against Nazism and Fascism, and each was considered a war hero 
by his country, with von Neumann receiving the Presidential Medal of Freedom and 
Turing the OBE; both showed interest for biology (although von Neumann’s interest in 
this respect was much longer and deeper); they both were struck by Gödel’s 
incompleteness theorem and both contributed to a better understanding of its 
meaning and significance; they both were strongly related in some periods of their 
lives to Princeton University; they both were attracted by game aspects of computing 
and of life; and they both left some important unpublished manuscripts. Did they 
meet? No sign exists in this respect in the available writings. Both lived lives that were 
too short: Just 41 when he died, Turing lived two years longer than Bernard Riemann; 
von Neumann died at 53, four years younger than Henri Poincaré was at the time of 
his death.  
 

Von Neumann was a high achiever from a young age. At 15, he began to study 
advanced calculus. At 19, he published two major mathematical papers, the second of 
which gave the modern definition of ordinal numbers. He was 21 when he published 
An axiomatization of set theory, 22 when he began his work on Mathematical 
Foundations of Quantum Mechanics (finished when he was 25) and 24 when he 
published his minimax theorem. By 26, he was one of the first four people (among 
them Einstein and Gödel) Princeton University selected for the faculty of its Institute 
for Advanced Study. He was the first to capture the meaning and significance of 
Gödel’s incompleteness theorem, realizing that “if a system of mathematics does not 
lead into contradiction, then this fact cannot be demonstrated with the procedures of 
that system.” [von Neumann, “The Mathematician”, The Works of the Mind(ed.R.R. 
Heywood), University of the Chicago Press, 1947, 180-196] 

In examining the totality of von Neumann’s work, it is difficult to find names equal in 
class. If we refer to those historically near to him, maybe Poincaré and David Hilbert 
before him and A.N. Kolmogorov, after him. But even with respect to these great 
names, it is important to observe that von Neumann’s impact spans the whole 
landscape of sciences, be they more or less exact, natural sciences or social sciences, 
science or engineering (like in his work related to nuclear weapons). From axiomatic 
foundations of set theory to the foundation of continuous geometry, from measure 
theory to ergodic theory, from operator theory to its use to build the foundations of 
quantum mechanics, from probability theory to lattice theory, from quantum logic to 
game theory, from mathematical economics to linear programming, mathematical 
statistics and nuclear weapons, computer science, fluid dynamics, weather systems, 
politics and social affairs, everywhere he shined new light upon the very essential 
roots of the  respective problems. Mediocrity was not his neighbor. 

Turing’s achievements as a young man are no less remarkable than von Neumann’s. 
On the strength of his fellowship dissertation, On the Gaussian Error Function, 
completed and submitted in November 1934, the 22-year-old Turing was elected a 
Fellow of King's College four months later, on March 16, 1935. Economist John 
Maynard Keynes was among the committee members electing him. The paper 
contained a proof of the Central Limit Theorem, one of the most fundamental in 

Turing and von Neumanns brains and their computers

39



probability theory.  In 1937 at age 25 he published his seminal paper “On Computable 
Numbers, with an Application to the Entscheidungsproblem,” solving one of the most 
famous problems in mathematics proposed by Hilbert. This paper, with negative and 
positive results of greatest depth, defining the Turing machine, and inspiring the 
designers of electronic computers in England and United States -- von Neumann, in 
particular, in such a decisive way -- is without question the most important and 
influential paper in computer science, one offering proof positive that the new field 
had emerged. 
 

2. From Leibniz, Boole, Bohr and Turing to Shannon, 
McCullogh-Pitts and von Neumann and the emergence of 
the Information Paradigm 

The middle of the past century has been very hot, characterized by the appearance of 
the new fields defining the move from the domination of the energy paradigm, 
characterizing the second half of the 19th century and the first half of the 20th century, 
to the domination of the information-communication-computation paradigms, 
appearing at the crossroad of the first and the second halves of the 20th century. So, 
John von Neumann’s reflection, by which he became a pioneer of the new era, 
developed in the context of concomitant emergence in the fifth and the sixth decades 
of the 20th century of theory of algorithms (A.A. Markov), simply typed lambda 
calculus (Alonzo Church), game theory (von Neumann and Oskar Morgenstern), 
computer science (Turing and von Neumann), cybernetics (Norbert Wiener), 
information theory (Claude Shannon), molecular genetics (Francis Crick, James 
Watson, Maurice Wilkins, among others), coding theory (R. W. Hamming), system 
theory (L. van Bertalanfy), control theory, complexity theory, and generative 
grammars (Noam Chomsky). Many of these lines of development were no longer 
available to von Neumann and we are in the situation to question the consequences of 
this fact. 

Von Neumann was impressed by Warren McCullogh and Walter Pitts’s result 
connecting logic, language and neural networks. [“A logical calculus of the ideas 
imminent in nervous activity”, Bull. Math. Biophysics 5, 1943, 115-133] In von 
Neumann’s formulation, this result shows “that anything that can be exhaustively and 
unambiguously described, anything that can be completely and unambiguously put 
into words, is ipso facto realizable by a suitable finite neural network. Three things 
deserve to be brought into attention in this respect: a) In the 19th century, George 
Boole’s project to unify logic, language, thought and algebra (continuing Leibniz’s 
dream in this respect) was only partially realized (An investigation in the laws of 
thought, on which are founded the mathematical theories of logic and probabilities, 
1854) and it prepared the way for similar projects in the 20th century; b) Claude 
Shannon, in his master’s thesis (A symbolic analysis of relay and switching circuits) 
submitted in 1937, only one year after Turing published his famous Non-computable…, 
proved the isomorphism between logic and electrical circuits; c) Niels Bohr, in his 
philosophical writings, developed the idea according to which the sphere of 
competence of the human language is limited to the macroscopic universe; see, in this 
respect, David Favrholdt’s ‘Niels Bohr’s views concerning language’ in Semiotica 94, 
1993, 1/2. Putting together all these facts, we get an image of the strong limitations 
that our sensations, our intuitions, our logic and our language have to obey. We can 
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put all these things in a more complete statement: The following restrictions are 
mutually equivalent: to be macroscopic; to be Euclidean (i.e. to adopt the parallel 
axiom in the way we represent space and spatial relations); to be Galileo-Newtonian 
in the way we represent motion, time and energy; to capture the surrounding and to 
act according to our sensorial-intuitive perception of reality; to use and to represent 
language, in both its natural and artificial variants (moreover, to use human semiosis 
in all its manifestations).” 

So a natural sequence emerges, having Leibniz, Boole, Bohr, Turing, Shannon, 
McCullogh-Pitts and von Neumann as successive steps. It tells us the idea of the unity 
of human knowledge, the unifying trend bringing in the same framework logic, 
language, thought and algebra. But we have here only the discrete aspects, while von 
Neumann wanted much more.  

3. John von Neumann’s Brain  
 
3.1 von Neumann’s unification: formal logic + 
mathematical analysis + thermodynamic error 

It was only too fitting for von Neumann to study the most inspiring automaton of all: 
the brain.  
 
“Our thoughts ... mostly focused on the subject of neurology, 

and more specifically on the human nervous system, and there 

primarily on the central nervous system. Thus in trying to 

understand the function of the automata and the general 

principles governing them, we selected for prompt action the 

most complicated object under the sun – literally.”   

 

His theory of building reliable organs from unreliable components and the associated 
probabilistic logics was focused on modeling system errors in biological cells, central 
nervous systems cells in particular. His research program aimed boldly at the 
unification of the “most refractory” and “rigid” formal logic (discrete math) with the 
“best cultivated” mathematical analysis (continuous math) proposals via a concept of 
thermodynamic error. “It is the author’s conviction, voiced over 
many years, that error should be treated by thermodynamical 

methods, and be the subject of a thermodynamical theory, as 

information has been, by the work of L. Szilard and C. E. 

Shannon.” 

Turing also uses thermodynamics arguments in dealing with errors in computing 
machines. For von Neumann this was at the core of a theory of information processing 
for the biological cell, the nervous system and the brain. The error model was given 
the latitude to approximate and therefore was not an explicit model of “the more 
complicated aspects of neuron functioning: threshold, temporal summation, relative 
inhibition, changes of the threshold by aftereffects of stimulation beyond synaptic 
delay, etc.” He proposed two models of error. One, concrete – ala Weiner and Shannon 
“error is noise” where in every operation the organ will fail to function correctly in a 
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statistically independent way with respect with the state of the network, i.e. with “the 
(precise) probability epsilon” and another one, more realistic assuming an unspecified 
dependence of the errors on the network and among them. For detailing the 
dependence to the general state of the network, more needed to be known about the 
biological “microscopic” mechanism, about which von Neumann was growing 
increasingly frustrated since technology had not yet advanced to the point necessary. 
Indeed, it is here where molecular biology developments since von Neumann’s time 
could bring the next well-defined concepts of errors that would satisfy his axioms. He 
managed in the paper to prove a constructive version of biological channel “capacity” 
that Shannon could only prove nonconstructively.  
 

In a 1946 letter to Norbert Wiener, von Neumann expresses his unhappiness with the 
results of “Turing-cum-Pitts-and-McCulloch:” “What seems worth 
emphasizing to me is, however, that after the great positive 

contribution of Turing-cum-Pitts-and-McCulloch is 

assimilated, the situation is rather worse than before. 

Indeed, these authors have demonstrated in absolute and 

hopeless generality that anything and everything Browerian 

can be done by an appropriate mechanism, and specifically by 

a neural mechanism – and that even one, definite mechanism 

can be ‘universal.’ Inverting the argument: Nothing that we 

may know or learn about the functioning of the organism can 

give, without ‘microscopic,’ cytological work any clues 

regarding the further details of neural mechanism … I think 

you will feel with me the type of frustration that I am 

trying to express.” 

   
He expresses skepticism that neurological methods would help in understanding the 
brain as much as experimenting with a fire hose on a computing machine. “Besides the 
system is not even purely digital (i.e. neural): It is intimately connected to a very 
complex analogy (i.e. humoral or hormonal) system, and almost every feedback loop 
goes through both sectors, if not through the ‘outside’ world (i.e. the world outside the 
epidermis or within the digestive system) as well. And it contains, even in its digital 
part, a million times more units than the ENIAC.”   
 

Another basic idea in von Neumann’s writings is related to the analog-digital 
distinction and to the fact that the noise level is strongly inferior in digital machines 
than in the analog ones. However, in living organisms both analog and digital aspects 
are essential, and von Neumann indicates the contrast between the digital nature of 
the central nervous system and the analog aspect of the humoral system. 

To capture the novelty of these considerations, we have to point out several aspects. 
The analog-digital distinction is a particular form of the more general distinction 
between discreteness and continuity. In mathematics, the use of expressions such as 
discrete mathematics and continuous mathematics became frequent only in the 
second half of the 20th century, in contrast with other fields, such as biology, 
psychology and linguistics, where the discrete-continuous distinction appeared earlier. 
The famous mind-body problem considered by Leibniz is just the expression of the 
dual discrete-continuous nature of the human being. Leibniz is announcing both the 
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computing era, by his digital codification, and the theory of dynamical systems as a 
framework of the mathematical model of the human body. 

 
3.2 You would certainly say that Watson and Crick 
depended on von Neumann  

 
Nobel laureate Sydney Brenner talks about von Neumann as one of his heroes in his 
memoir, My Life in Science (2001). Frenner was a close collaborator with Francis 
Crick. These reflections and story are possibly the greatest mathematical insight of all 
times for biology. That qualifies von Neumann as a prophet. 
 
Freeman Dyson noted that what today’s high school students learn about DNA is what 
von Neumann discovered purely by mathematics. 
 
Nobel Laureate Syndey Brenner recalls a symposium titled “The Hixton Symposium on 
Cerebral Mechanism in Behaviour,” held in Pasadena, California, in 1948. “The 
symposium was published in 1951, and in this book was a very famous paper by John 
von Neumann, which few people have read. The brilliant part of his paper in the 
Hixton Symposium is his description of what it takes to make a self-reproducing 
machine. Von Neumann shows that you have to have a mechanism for not only 
copying the machine, but copying the information that specifies the machine. So he 
divided – the automaton as he called it – into three components: the functional part of 
the automaton; a decoding section which actually takes a tape, reads the instructions 
and builds the automaton; and a device that takes a copy of this tape and inserts it into 
the new automaton. 
 
“Now this was published in1951, and I read it a year later in 1952. But we know from 
later work that these ideas were first put forward by him in the late 1940s. … It is one 
of the ironies of the entire field that were you to write a history of ideas of the whole 
DNA, simply from the documented information as it exists in the literature – that is, a 
kind of Hegelian history of ideas – you would certainly say that Watson and Crick 
depended on von Neumann, because von Neumann essentially tells you how it’s done. 
But of course no one knew anything about the other. It’s a great paradox to me that in 
fact this connection was not seen.”  
 
He claims that von Neumann made him see “what I have come to call this 
‘Schrodinger’s fundamental error’ in his famous book What is Life? When asked who 
are his scientific heroes he lists three names. ‘There are many people whom I admire, 
both people I’ve known and whom I’ve read about. Von Neumann is a great hero to 
me, because he seemed to have something special. Of course it may be envy rather 
than admiration, but it’s good to envy someone like von Neumann.’”  The other two 
names in his heroes list: Francis Crick and Leo Szilard.  
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4. … one will not be able to prove any result of the 

required kind which gives any intellectual satisfaction 

“The exactness of mathematics is well illustrated by proofs of impossibility. When 
asserting that doubling the cube ... is impossible, the statement does not merely refer to a 
temporary limitation of human ability to perform this feat. It goes far beyond this, for it 
proclaims that never, no matter what, will anybody ever be able to [double the cube]. No 
other science, or for that matter no other discipline of human endeavor, can even 
contemplate anything of such finality.” - Mark Kac and Stan Ulam, 1968  

Turing’s seminal paper solved Hilbert’s Entscheidingsproblem (decision problem) in 
the negative. After Gödel’s first hit to Hilbert’s program to find a mechanical process 
for deciding whether a theorem is true or false in a given axiomatic system, Turing 
provided the second hit, effectively terminating Hilbert’s program. 

Papers with negative results as such Turing’s are the most impressive and deep in 
mathematics. To understand the magnitude of Turing’s challenge to prove 
mathematically “such finality,” one has to rule out “everything,” and this needed a 
definition of what a most general “mechanical process” is, i.e., a machine that could 
compute “everything” that is computable. In turn, the Turing machine was one of the 
most positive and powerful results in mathematics. The computer era, with Turing 
and von Neumann as founding fathers, had this paper with negative-and-positive 
results of greatest depth possible as its foundation.  

For both von Neumann and Turing, mathematical proof was a philosophy of how truth 
is won. In discovering it, they possessed a power almost unequalled by 
mathematicians of any era.  

 

5. Not the language of mathematics but the 
language of the brain  

5.1 From Universal Turing Machine to Universal 
Grammar 

Universality is an important concept in mathematics, in computer science, in 
linguistics, in philosophy. There are universal sets in set theory and topology, 
universal functions in mathematical analysis, universal recursive functions in logic, 
universal grammars in linguistics. 

According to a long tradition that originated with Roger Bacon and endures still, 
awareness of an idea of a universal grammar came from multiple directions -- Joseph 
Greenberg (Language Universals, The Hague: Mouton, 1966) and Noam Chomsky 
(Aspects of the Theory of Syntax, MIT Press, 1965) sought universals of natural 
languages; Richard Montague (Formal Philosophy, 1974) for universals of all human 
languages, be they natural or artificial. In the theory of formal languages and 
grammars, results outline in what conditions universality is possible in the field of 
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context free languages, of context sensitive languages, of recursively enumerable 
languages [Takumi Kasai, in Information and Control 28, 1975, 30-34; Sheila Greibach in 
Information and Control 39, 1978, 135-142; Grzegorz Rozenberg, in Information and 
Control 34, 1977, 172-175]  

Each of these types of universal grammars can be used to obtain a specific cognitive 
model of the brain activity; it concerns not only language, but any learning process. 
The potential connection between universal Turing machines and the nervous system 
is approached just towards the end of CB, at the moment when von Neumann had to 
stop his work, defeated by his cancer. We are pushed to imagine possible 
continuations, but we cannot help but consider ideas, results, theories which did no 
yet exist at the moment of his death. A joint paper with Cristian Calude and Gheorghe 
Paun [The universal grammar as a hypothetical brain. Revue Roumaine de 
Linguistique 24, 1979, 5, 479-489] adopted the assumption according to which any 
type of human or social competence is based on our linguistic generative competence. 
This assumption was motivated in a previous paper [Solomon Marcus, “Linguistics as a 
pilot science”. Current Trends in Linguistics (ed. Th. A. Sebeok), vol. XII, 1974, The Hague-
Paris: Mouton, 1974, 2871-2887]. The generative linguistic nature of most human 
competences may be interpreted as a hypothesis about the way our brain works. But 
it is more than this, because nature and society seem to be based on similar generative 
devices.  

It seems to be more realistic to look for a metaphorical brain (see Michael Arbib’s The 
Metaphorical Brain. New York: Academic Press, 1975), giving an a posteriori 
explanation of various creative processes. But, for Arbib, the metaphorical brain is just 
the computer. Other authors speak of artificial brains; see Ulrich Ramacher, Christoph 
von der Malsburg (eds.) On the Construction of Artificial Brains (Berlin-Heidelberg; 
Springer, 2010). 

Our aim is to explain how so many human competences, i.e. so many grammars, find a 
place in our brain, how we successfully identify the grammar we need and, after this, 
how we return it to its previous place for use again when necessary. An adequate 
alternation of actualizations and potentialisations needs a hyper-grammar. For 
instance, if we know several languages, at each moment only one of them does, it is 
actualized, all the other are only, they remain only in a potential stage. We are looking 
for a hyper-competence, i.e. a universal competence, a competence of the second 
order, whose role is just to manage, to activate at each moment the right individual 
competence. This is the universal grammar as a hypothetical brain, appearing in the 
title of our joint paper.  

Behind this strategy is the philosophy according to which any human action is the 
result of the activity of a generative machine, defining a specific human competence, 
while the particular result of this process is the corresponding performance. Chomsky 
used the slogan “linguistics is a branch of cognitive psychology.” Learning processes 
are the result of the interaction among the innate and the acquired factors, in contrast 
with the traditional view, seeing these processes only as the interaction among stimuli 
and responses to them. The historical debate organized in 1979 between Chomsky 
and Piaget aimed just to make the point in this respect [see Massimo Piatelli-Palmarini 
(ed.) Language and Learning. Te Debate between Jean Piaget and Noam Chomsky. 
Routledge, 1979]. With respect to the claim formulated by von Neumann on page 82 in 
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his final book – “The logics and mathematics in the central nervous system, when 
viewed as languages, must structurally be essentially different from those languages 
to which our common experience refers” -- it seems that the prevalent view today, at 
least in the field of linguistics, is to replace the strong requirement asking for the 
grammar of the brain by the weak requirement asking for a grammar whose result is 
similar to that of the brain. In the first case, the form of the generative rules should be 
iconic images of the operations taking place in the brain; in the second case, this 
strong requirement, for which there is little evidence in the existing experiments, is 
replaced with the less demanding requirement that the result of the grammar is 
similar to the result of the brain activity. Chomsky never claimed that the regular, the 
context free and the context sensitive rules have their correspondent in the brain’s 
activity, despite the fact that he imagined the architecture of his grammars having as 
term of reference the grammatical needs of natural languages. No such claims were 
formulated with respect to other generative devices used in logic or in computer 
science. 

An idea emerging frequently in his writings is clearly expressed in GLTA (p. 526-527):  
“Natural organisms are, as a rule, much more complicated and subtle, and therefore 
much less understood in detail, than artificial automata.” The highest complexity is 
realized by the human central nervous system. We can approach it by decomposing it 
in various parts and by analyzing each part (component) on its own. Physics, 
chemistry and, in a near future, quantum mechanics are involved here, believed von 
Neumann. But for the mathematician and the logician, the data of the first step can be 
organized in a system of axioms, adopting for each component the representation as a 
black-box metaphor used in Norbert Wiener’s cybernetics. Then, in a second step, we 
try to understand how these different components interact as a whole and how the 
functioning of the whole is obtained by the right interaction of the components. While 
the first step is just here, logic and mathematics are at home. 

 

6. The Axioms 

 
Axiom 0. Be an automata theorist 

 
Axiom 1. Work on the very theoretical and very practical at the same time 
(H.A.~Newman “ Turing Practical at heart” – v. Neumann “most theoretical and most 
practical”)  
 
Axiom 2. Mathematician of the Discrete and Continuous 
 
Axiom 3. Intra-math, inter-sciences, cross-cultures 
 

Turing: his Turing machine he described as a “human” computer – formalizing 
how a human would do computations; - criticized.. but Church redefined 
definition, without any anthropomorphic connotation 
Von Neumann; described his EDVAC (Johnniac) computer in terms of neurons 
and brain components; criticized, more correctly attacked, by Eckert and 
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accused the he did not invent the von Neumann architecture but Eckert and 
(second name X here); big dispute still alive today; there is even a Eckert and 
X prize today for computer architecture to somewhat compensate … von 
Neumann writes in a letter “in group discussions it is hard to say who had 
first the idea …”  

 
Both were deeply influenced by and made contributions in mathematical 
logic, quantum mechanics, biology; 

 
Axiom 4. Work on the hardest problems  
 
Axiom [last] And in the end, the love you take … 
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1 Introduction

The purpose of this article is to remind three fundamental contributions made
by A. M. Turing to three important fields of contemporary science and engi-
neering to the theory of computation, to the field of artificial intelligence, and
to first approaches to set up formal models of the biological reality. All these
contributions are vivid up to now in science. However because of the listed fields
are mutually relatively distant, the interplays between the contributions made
by Turing to them remain often out of discussions. As its central goal this article
tries to make these connections more distinct. We will try to show that there
is possible to find some perhaps interesting interplay between the three initia-
tives, and will give some arguments for supporting that proposition. We remind
also three hypotheses related to the three initiatives, and discuss in short their
mutual interrelatedness.

2 The Machine and Turings 1st Hypothesis

The machinery called now as the Turing machine and forming the headstone of
the present days theory of computation, and in certain sense of the all theoret-
ical computer science, has been introduced in (Turing, 1936) under the name
a-machine (staying for theabstract machine) and particularized in the correc-
tions of the previously mentioned publication in (Turing, 1937). The original
definition of the a-machine is rather different form the present days definitions
of the Turing machine, but its basic idea remind practically unchanged. This
actual definition of the Turing machine can be founded practically in all of the
present days textbook or monographs related to theory of computation.

Let us mention that the original definition of the a-machine has been invented in
order to make mathematically as precise as possible the notion of computability,
esp. in connection with the computability of real numbers, and making possi-
ble to answer the question on decidability whether all of the real numbers are
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computable in certain constructive way as results of some algorithm or not. The
Turing’s effort to define mathematically precisely the meaning of the algorithm
leaded him top the concept of the abstract computing machine.

In (Turing, 1936) a very important statement is proved: It is possible to invent
(in a constructive way) a single a-machine which can be used to compute any
computable numbers (more generally, any sequence of symbols). If this machine,
say I, is supplied with a tape on the beginning of which is written the so called
standard description of some computing machine, say M , then the machine I
will compute the same sequence as M , outlined Turing the idea in (Turing, 1936).

However from our perspective with respect of the next section contents will
has a key importance the observations, made in (Turing, 1936) concerning the
generalization of the meaning of computability of number to other mathemati-
cal objects, too. Although his subject is ostensibly the computable numbers, it
is, citing from (Turing, 1936) ”. . . almost equally easy to define and investigate
computable functions of an integral variables or a real or computable variable,
computable predicates, and so forth.” In this way the approach is general in the
sense that it makes possible to divide all mathematically definable functions into
two classes with respect their computability by appropriate Turing machines or,
more generally, by the reminded above universal Turing machine.

Shortly after the proposal of the formal model of the universal digital computer
the Turing machine Alonzo Church who was deeply interested in the theory of
computability, too, formulated a hypothesis called today as the Church-Turing
hypothesis or simply the Turing hypothesis. In the core of it stays the question
’Whether or not are all imaginable computations transformable into the form
of computations executable by Turing machines?’ The hypothesized answer is:
”Whatever can be calculated by a machine (working on finite data in accor-
dance with a finite program of instructions) is Turing-machine-computable”.
One among the informal definitions of the thesis has been formulated personally
by Turing: ”The idea behind digital computers may be explained by saying that
these machines are intended to carry out any operations which could be done
by a human computer” (Turing, 1950).

3 The Turing Test and the 2nd Hypothesis

”I propose to consider the question, ’Can machines think?’ This should begin
with definitions of the meaning of the terms ’machine’and ’think’. The defini-
tions might be framed so as to reflect so far as possible the normal use of the
words, but this attitude is dangerous. If the meaning of the words ’machine’ and
’think’are to be found by examining how they are commonly used it is difficult
to escape the conclusion that the meaning and the answer to the question, ’Can
machines think?’ is to be sought in a statistical survey such as a Gallup poll.
But this is absurd. Instead of attempting such a definition I shall replace the
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question by another, which is closely related to it and is expressed in relatively
unambiguous words”.

This is the first paragraph of Turings fundamental paper originated after
Turings participation at the Manchester University discussion on the mind and
computing machines of the philosophy seminar chaired by Dorothy Emmet in
October 27, 1949. Turing has been dissatisfied by his own argumentation against
the arguments of colleagues like Michael Polanyi, neurophysiologist J. Z. Young,
and mathematician Max H. A. Newman, for instance. Turing early after the
discussion started to write an article devoted to the topic and published it as
(Turing, 1951). The question ’Can machines think’ he replaced by the new ques-
tion described in terms of a game he called them the ’imitation game as follows:

The game ”. . . is played with three people, a man (A), a woman (B), and an in-
terrogator (C) who may be of either sex. The interrogator stays in a room apart
from the other two. The object of the game for the interrogator is to determine
which of the other two is the man and which is the woman. He knows them by
labels X and Y, and at the end of the game he says either ’X is A and Y is B’
or ’X is B and Y is A’. The interrogator is allowed to put questions to A and B
thus. (. . . ) Now suppose X is actually A, then A must answer.

Concerning digital computers he emphasizes that the idea behind them may be
explained by saying that this type of machines are intended to carry out any
operations which could be done by a human computer who is supposed to be
following fixed rules as ”supplied in a book” and he (the human computer, sic!)
has no authority to deviate from them in any detail. With respect to digital
computers he emphasizes that they are regarded as consisting of three basic
architectural components: the store (the memory in todays terminology), the
executive unit (the processor in the today’s terminology), and the control (the
program in todays wording). In Section 5 of (Turing, 1950) the universality of
digital computers are discussed with only small references to the formal model
proposed in (Turing, 1936), and without any reference to the formalized no-
tion of the universal a-machine. However, he mentioned, informally and without
referring to the formally precise definition or the corresponding proof to the
universality of the digital computers. But this remark evokes more the idea of a
really existing hardware rather than of an abstract, formalized device. After that
Turing reformulates his original question Can machines think? into the equiva-
lent form of ’Are there imaginable digital computers which would do well in the
imitation game?’.

Let us turn off the Turing’s original flow of argumentation in this moment, and
focus to the formalized meaning of the universal Turing machine and to its ca-
pacity to compute any Turing-computable functions in the sense sketched in the
previous Section of the present article. The last formulated question then looks
like follows: ”Are there imaginable a system of Turing-computable functions (a
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mutually interconnected system of such functions of this property, so a composed
function) which would do well in the imitation game?” But having in the mind of
the universality property of digital computer, we have the question in the form
from the end of the Chapter 5 if (Turing, 1950): ”Let us fix our attention on
one particular digital computer C. Is it true that by modifying this computer to
have an adequate storage, suitably increasing its speed of action, and providing
it with an appropriate program, C can be made to play satisfactorily the part
of A in the imitation game, the part of B being taken by a man?”

We can conclude that the Turing machine and the Turing test are strongly
connected in this point which emphasized the deep strong connection not only
between computer programming and the field of Artificial Intelligence, but also
the similar connection between the theory of abstract computing and the AI
research. The above formulated original questions might be reformulated into
a more general form of ’Be the human intelligence transformable to the form
of any Turing-computable (interconnected system of) functions?’ Let us call the
positive answer to this question as the base of the 2nd Turing hypothesis.

4 Morphogenesis and Turing’s 3rd Hypothesis

The purpose of (Turing, 1952) is to discuss a possible mechanism by which the
genes of a zygote may determine the anatomical structure of the resulting organ-
ism. The theory, according Turing’s words, does not make any new hypotheses.
It merely suggests only that certain well-known physical laws are sufficient to ac-
count for many of the facts. Continuing in the station of the abstract of (Turing,
1952) we read that ’it is suggested that a system of chemical substances, called
morphogens, reacting together and diffusing through a tissue, is adequate to ac-
count for the main phenomena of morphogenesis’ and that ’A system of reactions
and diffusion on a sphere is also considered.’ This first look to the abstract is
sufficient for strengthen our conviction that the article contains some pioneer-
ing steps in the field developed today e.g. in the frame of so called membrane
computing or molecular computing. So let us focus our attention to (Turing,
1952) form the position of bio-inspired computation, ore specifically form the
standpoint of membrane computing.

’The theory which has been developed here’, resumes Turing the (Turing, 1952)
’depends essentially on the assumption that the reaction rates are linear func-
tions of the concentrations, an assumption which is justifiable in the case of a
system just beginning to leave a homogeneous condition. Such systems certainly
have a special interest as giving the first appearance of a pattern, but they are,
he point out, the exception rather than the rule. Most of an organism, most of
the time, is developing from one pattern into another, rather than from homo-
geneity into a pattern. One would like to be able to follow this more general
process mathematically also. The difficulties are, however, such that one cannot
hope to have any very embracing theory of such processes, beyond the statement
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of the equations. It might be possible, however, to treat a few particular cases
in detail with the aid of a digital computer.’

Turing recognizes two basic possibilities of how the digital computer might make
useful for the research of some of biochemical phenomena: First, he suppose that
computer simulations might allow simplifying assumptions required if we decide
to use another approaches to the formal study. Second, he recognizes the ap-
proaches which use computer simulations make possible to take the ”mechanical”
aspects of the modelled reality into account during the study. Moreover, he add
a very short but from today perspective important comment to the previously
mentioned advantages writing: ’Even with the (. . . ) problem, considered in this
paper, for which a reasonably complete mathematical analysis was possible, the
computational treatment of a particular case was most illuminating.’ (Turing,
1952).

The proposal to be interested in computational aspects of chemical and bio-
logical structures and processes become into the focus of many of present days
research activities. As an example from the large spectrum of approaches we
mention as an example the so called membrane computing paradigm presented
in (Păun, 2002). Păun characterizes the membrane systems the basic computing
machinery of the membrane computing) as a ”. . . distributed parallel computing
devices, processing multisets of objects, synchronously, in the compartments de-
limited by a membrane structure. The objects, which correspond to chemicals
evolving in the compartments of a cell, can also pass through membranes. The
membranes form a hierarchical structure they can be dissolved, divided, cre-
ated, and their permeability can be modified. A sequence of transitions between
configurations of a system forms a computation.” The monograph (Păun, 2002)
form the Preface of which we cited the previous strokes contains tens of theo-
rems concerning the computational power of different variations of the membrane
systems in comparison with the different computing models (more often formal
grammars) but also with the (universal) Turing Machine. The result proves the
existence of certain variations of membrane systems which are equivalent with
the Turing Machine with respect their computational power.
In the consequence of that and from the perspective followed in this contribu-
tion we can conclude the third version of the Turing hypothesis, the 3rd Turing
Hypothesis, and formulate it in the following form, for instance: Biochemical sys-
tems are able at least in principle to perform all computations performable by
the universal Turing machine.

This hypothesis competes in certain sense our speculations providing a possibil-
ity for us to mention the surprising conclusions: The computation as defined by
the universal Turing Machine, the human ability to perform intellectual tasks,
and the nature of biochemical (living) systems are in their certain sense in their
capacities (almost) identical. The computation, the mind, and the life are in
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certain sense the same phenomena . . . . Can it be true? In what sense?
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Abstract. MP systems concepts will be revisited, in more general terms,
by stressing their special role in solving dynamical inverse problems.
Then, a main application of MP systems to Systems Biology will be
outlined, which concerns gene expression in breast cancer (in coopera-
tion with Karmanos Cancer Institute, Wayne State University, Detroit
MI, USA). From recent experimental results developed at KCI, it follows
that MP systems can provide ”good” models of pathological phenomena,
where good, in this case, means useful to oncologists. In fact, the MP sys-
tems methodology has identified previously unknown intermediaries in a
breast cancer cell-specific signaling circuit. This could provide a signif-
icant contribution to the task of mapping complete oncogenic signaling
networks to improve cancer treatments.

1 Introduction

The theory of MP systems (Metabolic P systems) started in first years of
2000s as a discrete mathematical method, inspired from P systems (an uncon-
ventional computation model based on abstract membranes, [1]), for describing
biological dynamics. In the following years, algorithms and software were devel-
oped for simulating and reconstructing many biological phenomena [2-11], but
the main problem addressed in the theory, and systematically solved in many
significant cases, is the so called dynamical inverse problem [10], which is a very
old problem in science (it was the starting problem of differential models of
planetary orbits). Its discrete formulation and solution is crucial in many bio-
logical situations. First, let us recall that a dynamical system is given by a set
of real variables changing in time and a set of invariants, that is, conditions
(constraints) which are satisfied by the variables during their change. Let us ob-
serve the variables of a (discrete) dynamical system along a number of (equally
spaced) time points (steps). The sequences of these values constitute a set of
time series representing the behavior of the observed system. We pose the fol-
lowing question: can we reconstruct these time series as generated by certain
kinds of interactions/transformations among the variables of the system? If this
reconstruction is possible (even with some approximations), then we are able to
infer an internal logic that is responsible of what we observe. Therefore, we can
deduce a mechanism ruling the observed phenomenon, by passing from the time
manifestation of the system to its state causation law.

In the MP theory this internal mechanism is expressed by means of a gram-
mar, that is, a set of rules transforming quantities (metabolite quantities, gene
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expression levels, etc.) denoted by a reaction such as X→ Y, meaning that X (in
general all the real variables on the left part of the rule) decreases of a certain
amount, while Y (in general all the right real variables) increases of the same
amount (with respect to some measurement unit). The decreasing/increasing
amount, called flux of the rule, is determined by a regulator (regulation map) f
depending on some variables of the system. In the case that a variable occurs in
a rule with multiplicity k greater than 1, its increasing/decreasing is k times the
value of the flux of the rule.

An MP grammar (see [2-4] for formal definitions) is a set of rules: reaction +
regulator. A reaction is constituted by left variables (decreasing) → right vari-
ables (increasing), each variable with a corresponding multiplicity. A regulator,
is a function providing the flux of the rule, in dependence of the values of some
regulation variables, called tuners of the rule. Given a grammar, when we start
from an initial state (the values of the variables at an initial time), by applying
all the rules of the grammar, we obtain the next state, and so on, for all the sub-
sequent steps. An MP grammar becomes an MP system when some numerical
values are fixed for the physical interpretation of the time series: the time inter-
val between two consecutive applications of rules, and other values related to the
quantity units (depending on the physical nature of the variables). In mathemat-
ical terms an MP grammar is specified by: variables, reactions, regulators, and
initial values. Variables which do not occur in reactions, but occur in regulators
are called parameters. Therefore, an MP grammar deterministically generates
a time series for each of its proper variables (different from parameters), which
is determined by its initial state (and by the time series of parameters if they
are present). It is easy to realize that an MP grammar define a system of fi-
nite difference equations which represent the invariant of the dynamical system
generated from the initial state.

An important mathematical aspect of MP grammars is their representation
in linear algebra notation (by means of vectors and matrices). This makes very
efficient the computation of the dynamics generated by an MP grammar, which
provides a particular kind of finite difference recurrent vector equation. More-
over, an algorithm was discovered, called LGSS (Log Gain Stoichiometric Step-
wise algorithm, see [8,10]) that solves the inverse dynamical problem in terms of
MP grammars.

2 MP analysis of gene expression

In the specific application of MP grammars to breast cancer gene expression,
we started from the time series of gene expressions of a cancer cell under an
effect E that inhibits the cancer growth factor HER2. After standard procedures
of error filtering and data normalization, the expression time series were selected
which show a behavior clearly correlated to the inhibitory effect E. This means
that genes having time series that are constant in time, or with a chaotic shape,
are considered to be scarcely related to E. Therefore, only about one thousand
genes having time series with influenced shapes were selected. Then we clus-
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tered these genes in eight types C1, C2, C3, C4, C5, C6, C7, C8, depending on
the kind of time behaviour: linear-quick-up, linear-slow-up, linear-quick-down,
linear-slow-down, parabolic-up, parabolic-down, cubic-up-down, cubic-down-up.
To each cluster an average curve was associated, which constituted the variables
of a dynamical system under investigation. By means of the LGSS algorithm, MP
grammars over these variables were searched for generating the related curves.
The LGSS algorithm was applied with a set of regressors constituted by simple
monomials over the variables. At end, we got a number of possible MP gram-
mars. One of them had the most reasonable set of regulation maps, according
to the literature about gene regulatory networks. We know that the cancer cell
presents a resistance to the inhibition of the HER2 factor. Can our MP gram-
mar tell us something about this resistance phenomenon? A deduction, coming
from the obtained grammar, concerned with clusters with cubic behavior C7,
C8. In fact, from the MP grammar we obtained, with a very easy translation
[11], a regulation networks among clusters. In this network it appears clearly
that the HER2 factor promotes C7, while inhibits C8. However, their curves
behave in conflict with the HER2 effect. We interpreted this phenomenon as
a clue of resistance. A deep biological investigation of genes included in these
clusters provided the discovery of a gene having an unknown crucial effect in
this regulatory mechanism.
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1 Introduction

Alan Turing began a new area in science; he discovered that there are universal
computers, which in principal are very simple. Up to now this is the basis of
a modern computing theory and practice. In the talk we consider Turing com-
putability in the frame of P (membrane) systems and other distributive systems.
We give an overview of the recent results about small universal P and DNA sys-
tems and present some open problems and possible directions of investigation.

We present several very small universal computing devices in computing mod-
els inspired by molecular biology. Alan Turing [32] discovered that there are
universal computing devices, which in principal are very simple. Claude Shan-
non [31] suggest to find universal Turing machine of smallest size (he considered
a descriptional complexity of universal programs). Current state of the art in
solving of Shannon’s task is presented in [21]. Now we apply the Shannon’s task
to other computing models, especially to modern computing models inspired by
molecular biology. We consider Shannon’s task for DNA computing, Membrane
computing and some others computing models.

2 Parallel Biologically Inspired Computing Models

Head splicing systems (H systems) [15] were one of the first theoretical models
of biomolecular computing (DNA-computing). The molecules from biology are
replaced by words over a finite alphabet and the chemical reactions are replaced
by the splicing operation. An H system specifies a set of rules used to perform
a splicing and a set of initial words or axioms. The computation is done by
applying iteratively the rules to the set of words until no more new words can
be generated. This corresponds to a bio-chemical experiment where one has
enzymes (splicing rules) and initial molecules (axioms) which are put together
in a tube and one waits until the reaction stops.

From the formal language theory point of view, the computational power of
the obtained model is rather limited, only regular languages can be generated.
Various additional control mechanisms were proposed in order to “overcome”
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this obstacle and to generate all recursively enumerable languages. An overview
of such mechanisms can be found in [16].

One of the goals of this work is to present several of small size universal
systems based on splicing. Like in [29, 5] we consider the number of rules as a
measure of the size of the system. This approach is coherent with investigations
related to small universal Turing machines, e.g. [28].

One of the first ideas to increase the computational power of splicing systems
is to consider them in a distributed framework. Such a framework introduces
test tubes, corresponding to H systems, which are arranged in a communicating
network. The computation is then performed as a repeated sequence of two
steps: computation and communication. During the computational step, each
test tube evolves as an ordinary H system in an independent manner. During
the communication step, the words at each test tube are redistributed among
other tubes according to some communication protocol.

Test tube systems based on splicing, introduced in [8], communicate through
redistribution of the contents of the test tubes via filters that are simply sets
of letters (in a similar way to the separate operation of Lipton-Adleman [11, 1]).
These systems, with finite initial contents of the tubes and finite sets of splicing
rules associated to each component, are computationally complete, they charac-
terize the family of recursively enumerable languages. The existence of universal
splicing test tube distributed systems was obtained on this basis, hence the theo-
retical proof of the possibility to design universal programmable computers with
the structure of such a system. After a series of results, the number of tubes
sufficient to achieve this result was established to be 3 [12]. The computational
power of splicing test tube systems with two tubes is still an open question. The
descriptional complexity for such kind of systems was investigated in [2] where
it was shown that there exist universal splicing test tube system with 10 rules.
The best known result shows that there exist universal splicing test tube system
with 8 rules [6] and this result also is presented in this paper.

Another extension of H systems was done using the framework of P sys-
tems [23], see also [14] and [24]. In a formal way, splicing P systems can be
considered like a graph, whose nodes contain sets of strings and sets of splic-
ing rules. Every rule permits to perform a splicing and to send the result to
some other node. Since splicing P systems generate any recursively enumerable
language, it is clear that there are universal splicing P systems. Like for small
universal Turing machines, we are interested in such universal systems that have
a small number of rules. A first result was obtained in [29] where a universal
splicing P system with 8 rules was shown. Recently a new construction was pre-
sented in [5] for a universal splicing P system with 6 rules. The best known result
[6] shows that there exists a universal splicing P system with 5 rules and this
result is presented in this paper using an inverse morphism and a weak coding.
Notice, that this result (5 rules) is the best known for “classical” approach to
construct small universal devices. This result is presented in the paper. Similar
investigations for P systems with symbol-objects were done in [9, 7] and the lat-
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ter article constructs a universal antiport P system with 23 rules. This result
also is presented in the paper.

We also consider a class of H systems which can be viewed as a counterpart
of the matrix grammars in the regulated rewriting area. These systems are called
double splicing extended H systems [16]. In [6] one obtains an unexpected result:
5 rules are enough for such kind of H systems in order to be universal.

The following series of results claim existence of universal devices of very
small size is presented in the paper. Thus, there exist the following universal
devices:

– A double splicing extended H system with 5 rules [6],
– An extended splicing test tube system with 3 tubes having 8 rules [6],
– An extended splicing test tube system with 2 tubes and two alternating

filters, having 10 rules [2],
– An extended splicing test tube system with 2 tubes and two-symbol filters

having 10 rules [2],
– A TVDH system of degree 2 having 15 rules [2],
– A TVDH system of degree 1 having 17 rules [2],
– A splicing P system having 5 rules [6],
– An antiport P system having 23 rules [7].
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Extended Abstract

Throughout this paper, the term hypercomputation refers to systems whose
behaviour cannot be simulated by any Turing program. Many systems have
been proposed in the literature which appear to have hypercomputational power.
While these are mostly theoretical in nature, some of the more recent models
may arguably be implementable (by suitably advanced civilisations); we review
this evidence below, and explain why this is not incompatible with Turing’s
original (and compelling) analysis of what constitutes real-world computation.
A related topic – called fypercomputation in [Pău11, Pău12] – concerns systems
which operate exponentially faster than Turing machines, in the strong sense
that they allow NP-complete (and possibly harder) problems to be solved by
polynomial means. It should be noted that this is an extremely strong property,
which may well go beyond what is possible even using quantum computation. For
example, although Shor’s algorithm [Sho97] can famously solve the traditionally
hard problem of integer factorisation in polynomial time, it is not known whether
factorisation is itself an NP-complete problem. Indeed, it is suspected that no
problem in BQP (problems soluble with high probability in polynomial time
using a quantum computer) is NP-complete [NC00].

The simplest way to achieve (theoretical) hypercomputation is via accelerat-
ing speed-up. If each instruction in a program can be executed in half the time
of its predecessor, even an infinite program can be executed in finite time, but
Thomson’s Lamp [Tho54] reminds us that we need to provide clear semantics
concerning the program’s output, since this may need to be defined as the limit
of successive approximations, and there is no a priori guarantee that any mean-
ingful limit exists. Accelerating P systems have been considered by Calude and
Păun [CP04], and can easily be used to solve Σ1 problems, which are those
problems (including the Halting Problem) which can be expressed in the form
∃x.R(x), where R is a recursive decision procedure (we place a no token in the
output compartment, and then dovetail successive instances of R(n). If any R(n)
returns true, activate a rule that replaces the no token with yes . After two sec-
onds (say) the entire procedure has run to completion, so we can simply check
the output container to see whether the token it contains is yes or no).

⋆ The author is partially supported under the Royal Society International Exchanges
Scheme (ref. IE110369). This work was partially undertaken whilst the author was
a visiting fellow at the Isaac Newton Institute for the Mathematical Sciences in the
programme Semantics & Syntax: A Legacy of Alan Turing.
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The question arises, whether accelerating speed-up of this kind is physi-
cally feasible. Calude and Păun’s construction was based on the observation
that smaller is faster, but this analogy has obvious physical limitations (in any
event, it is not the volume of reagents that matters, but their concentration).
Nonetheless, a careful analysis of accelerating systems shows that certain cos-
mological implementations may indeed be possible. Our system clearly contains
two agents: an observer A and a computing device B whose output is observed
by A. Write t for the spacetime trajectory followed by B, and p for the point
in spacetime at which A makes its observation. For the system to be imple-
mentable, we require two things: t should be infinitely long from B’s point of
view (to allow all instances of R(n) to be executed in the case they all return
false); and it must be possible for a signal to be sent from any point on t to p. We
call p a Malament-Hogarth (MH) event (Fig. 1). Perhaps surprisingly, sensible
spacetimes containing MH-events (MH-spacetimes) can be defined, and their use
[EN02] provides perhaps the most hopeful approach to demonstrating the feasi-
bility of physical hypercomputation since they are known to be associated with
slowly rotating massive black holes of the kind considered to have been observed
experimentally at the centre of our own galaxy [G+09]. It should nonetheless
be noted that the suitability of such black holes for computational purposes is
the subject of ongoing debate; it is as yet an open question whether other, less
controversial, examples of physically relevant MH-spacetimes can be identified.

If the program
halts, B sends a
note saying so

A receives
the note

here, if one
was sent

Does the following
program ever halt?

A sends the program
to B, who runs it

p

A says "yes" if a note
arrived, "no" if not

B
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Fig. 1. Using Malament-Hogarth spacetime to solve the halting problem

More complicated spacetime configurations (involving chains of MH-events)
can be exploited to solve problems at all levels of the arithmetic hierarchy
[Hog04], and this naturally raises the question whether accelerating P systems
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can also be ‘chained together’ to solve more complex problems. In joint work with
Marian Gheorghe, we have considered this problem in detail: we have shown how
a natural extension of the accelerated P system concept easily allows us to tra-
verse all levels of the arithmetic hierarchy, and that the higher systems have
even greater power – they can solve a problem that is too hard to belong to any
class in the hierarchy [GS12].
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Abstract. Membrane systems (with symbol objects) are distributed
controlled multiset processing systems. Non-cooperative P systems with
either promoters or inhibitors (of weight not restricted to one) are known
to be computationally complete. In this paper we show that the power of
the deterministic subclass of such systems is computationally complete
in the sequential mode, but only subregular in the asynchronuous mode
and in the maximally parallel mode.

1 Introduction

The most famous membrane computing model where determinism is a criterion
of universality versus decidability is the model of catalytic P systems, see [2]
and [5].

It is also known that non-cooperative rewriting P systems with either promot-
ers or inhibitors are computationally complete, [1]. Moreover, the proof satisfies
some additional properties:

– Either promoters of weight 2 or inhibitors of weight 2 are enough.

– The system is non-deterministic, but it restores the previous configuration
if the guess is wrong, which leads to correct simulations with probability 1.

The purpose of this paper is to formally prove that computational complete-
ness cannot be achieved by deterministic systems when working in the asyn-
chronuous or in the maximally parallel mode.

13th International Conference on Membrane Computing, CMC13,

Budapest, Hungary, August 28 - 31, 2012. Proceedings, pages 87 - 97.
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2 Definitions

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The set of non-negative
integers is denoted by N; a set S of non-negative integers is called co-finite if N\S
is finite. The family of all finite (co-finite) sets of non-negative integers is denoted
by NFIN (coNFIN , respectively). The family of all recursively enumerable sets
of non-negative integers is denoted by NRE. In the following, we will use ⊆ both
for the subset as well as the submultiset relation.

Since flattening the membrane structure of a membrane system preserves
both determinism and the model, in the following we restrict ourselves to con-
sider membrane systems as one-region multiset rewriting systems.

A (one-region) membrane system (P system) is a tuple

Π = (O,Σ,w,R′) ,

where O is a finite alphabet, Σ ⊆ O is the input sub-alphabet, w ∈ O∗ is a string
representing the initial multiset, and R′ is a set of rules of the form r : u → v,
u ∈ O+, v ∈ O∗.

A configuration of the system Π is represented by a multiset of objects from
O contained in the region, the set of all configurations over O is denoted by
C (O). A rule r : u → v is applicable if the current configuration contains the
multiset specified by u. Furthermore, applicability may be controlled by context
conditions, specified by pairs of sets of multisets.

Definition 1. Let Pi, Qi be (finite) sets of multisets over O, 1 ≤ i ≤ m. A rule
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)) is applicable to a configura-
tion C if r is applicable, and there exists some j ∈ {1, · · · ,m} for which

– there exists some p ∈ Pj such that p ⊆ C and

– q 6⊆ C for all q ∈ Qj.

In words, context conditions are satisfied if there exists a pair of sets of multi-
sets (called promoter set and inhibitor set, respectively), such that at least one
multiset in the promoter set is a submultiset of the current configuration, and
no multiset in the inhibitor set is a submultiset of the current configuration.

Definition 2. A P system with context conditions and priorities on the rules
is a construct

Π = (O,Σ,w,R′, R,>) ,

where (O,Σ,w,R′) is a (one-region) P system as defined above, R is a set of
rules with context conditions and > is a priority relation on the rules in R; if
rule r′ has priority over rule r, denoted by r′ > r, then r cannot be applied if r′

is applicable.

A. Alhazov, R. Freund
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Throughout the paper, we will use the word control to mean that at least one
of these features is allowed (context conditions or promoters or inhibitors only
and eventually priorities).

In the sequential mode (sequ), a computation step consists in the non-
deterministic application of one applicable rule r, replacing its left-hand side
(lhs (r)) with its right-hand side (rhs (r)). In the maximally parallel mode
(maxpar), multiple applicable rules may be chosen non-deterministically to be
applied in parallel to the underlying configuration to disjoint submultisets, pos-
sibly leaving some objects idle, under the condition that no further rule is appli-
cable to them (i.e., no supermultiset of the chosen multiset is applicable to the
underlying configuration). Maximal parallelism is the most common computa-
tion mode in membrane computing, see also Definition 4.8 in [4]. In the asyn-
chronuous mode (asyn), any positive number of applicable rules may be chosen
non-deterministically to be applied in parallel to the underlying configuration to
disjoint submultisets. The computation step between two configurations C and
C ′ is denoted by C → C ′, thus yielding the binary relation ⇒: C (O)×C (O). A
computation halts when there are no rules applicable to the current configuration
(halting configuration) in the corresponding mode.

The computation of a generating P system starts with w, and its result is
|x| if it halts, an accepting system starts with wx, x ∈ Σ∗, and we say that |x|
is its results – is accepted – if it halts. The set of numbers generated/accepted
by a P system working in the mode α is the set of results of its computations
for all x ∈ Σ∗ and denoted by Nα

g (Π) and Nα
a (Π), respectively. The family of

sets of numbers generated/accepted by a family of (one-region) P systems with
context conditions and priorities on the rules with rules of type β working in
the mode α is denoted by NδOP

α
1

(
β, (prok,l, inhk′,l′)d , pri

)
with δ = g for the

generating and δ = a for the accepting case; d denotes the maximal number m
in the rules with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)); k and k′ denote
the maximum number of promoters/inhibitors in the Pi and Qi, respectively; l
and l′ indicate the maximum of weights of promotors and inhibitors, respectively.
If any of these numbers k, k′, l, l′ is not bounded, we replace it by ∗. As types
of rules we are going to distinguish between cooperative (β = coo) and non-
cooperative (i.e., the left-hand side of each rule is a single object; β = ncoo)
ones.

In the case of accepting systems, we also consider the idea of determinism,
which means that in each step of any computation at most one (multiset of)
rule(s) is applicable; in this case, we write deta for δ.

In the literature, we find a lot of restricted variants of P systems with con-
text conditions and priorities on the rules, e.g., we may omit the priorities
or the context conditions completely. If in a rule (r, (P1, Q1) , · · · , (Pm, Qm))
we have m = 1, we say that (r, (P1, Q1)) is a rule with a simple con-
text condition, and we omit the inner parentheses in the notation. Moreover,
context conditions only using promoters are denoted by r|p1,··· ,pn , meaning
(r, {p1, · · · , pn} , ∅), or, equivalently, (r, (p1, ∅) , · · · , (pn, ∅)); context conditions
only using inhibitors are denoted by r|¬q1,··· ,¬qn , meaning (r, λ, {q1, · · · , qn}), or

Asynchronuous and maximally parallel deterministic controlled
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r|¬{q1,··· ,qn}. Likewise, a rule with both promoters and inhibitors can be speci-
fied as a rule with a simple context condition, i.e., r|p1,··· ,pn,¬q1,··· ,¬qn stands for
(r, {p1, · · · , pn} , {q1, · · · , qn}). Finally, promoters and inhibitors of weight one
are called atomic.

Remark 1. If we do not consider determinism, then (the effect of) the rule
(r, (P1, Q1) , · · · , (Pm, Qm)) is equivalent to (the effect of) the collection of rules
{(r, Pj , Qj) | 1 ≤ j ≤ m}, no matter in which mode the P system is working
(obviously, the priority relation has to be adapted accordingly, too).

Remark 2. Let (r, {p1, · · · , pn} , Q) be a rule with a simple context condition;
then we claim that (the effect of) this rule is equivalent to (the effect of) the
collection of rules

{(r, {pj} , Q ∪ {pk | 1 ≤ k < j}) | 1 ≤ j ≤ m}

even in the the case of a deterministic P system: If the first promoter is chosen
to make the rule r applicable, we do not care about the other promoters; if the
second promoter is chosen to make the rule r applicable, we do not allow p1 to ap-
pear in the configuration, but do not care about the other promoters p3 to pm; in
general, when promoter pj is chosen to make the rule r applicable, we do not al-
low p1 to pj−1 to appear in the configuration, but do not care about the other pro-
moters pj+1 to pm; finally, we have the rule {(r, {pm} , Q ∪ {pk | 1 ≤ k < m})}.
If adding {pk | 1 ≤ k < j} to Q has the effect of prohibiting the promotor pj
from enabling the rule r to be applied, this makes no harm as in this case one
of the promoters pk, 1 ≤ k < j, must have the possibility for enabling r to
be applied. By construction, the domains of the new context conditions now
are disjoint, so this transformation does not create (new) non-determinism. In a
similar way, this transformation may be performed on context conditions which
are not simple. Therefore, without restricting generality, the set of promoters
may be assumed to be a singleton. In this case, we may omit the braces of the
multiset notation for the promoter multiset and write (r, p,Q).

Example 1. Consider an arbitrary finite set H of numbers. Choose K =
max (H) + 1; then we construct the following deterministic accepting P system
with promoters and inhibitors:

Π = (O, {a} , s0f0 · · · fk, R′, R) ,

O = {a} ∪ {si, fi | 0 ≤ i ≤ K} ,
R′ = {si → si+1 | 0 ≤ i ≤ K − 1} ∪ {fi → fi | 0 ≤ i ≤ K} ,
R = {si → si+1|ai+1 , | 0 ≤ i ≤ K − 1}
∪
{
fi → fi|si,¬ai+1 , | 0 ≤ i < K, i /∈ H

}
∪ {fk → fk|sk} .

The system step by step, by the application of the rule si → si+1|ai+1 , 0 ≤ i < K,
checks if (at least) i+ 1 copies of the symbol a are present. If the computation
stops after i steps, i.e., if the input has consisted of exactly i copies of a, then
this input is accepted if and only if i ∈ H, as exactly in this case the system does

A. Alhazov, R. Freund

90



not start an infinite loop with using fi → fi|si,¬ai+1 . If the input has contained
more than max (H) copies of a, then the system arrives in the state sk and will
loop forever with fk → fk|sk . Therefore, exactly H is accepted. To accept the
complement of H instead, we simply change i /∈ H to i ∈ H and as well omit the
rule fk → fk|sk . It is easy to see that for the maximally parallel mode, we can
replace each rule fi → fi|si,¬ai+1 by the corresponding rule fi → fi|si ; in this
case, this rule may be applied with still some a being present while the system
passes through the state si, but it will not get into an infinite loop in that case.

In sum, we have shown that

NdetaOP
asyn
1

(
ncoo, (pro1,∗, inh1,∗)1

)
⊇ FIN ∪ coNFIN and

NdetaOP
maxpar
1 (ncoo, pro1,∗) ⊇ FIN ∪ coNFIN.

Example 2. For P systems working in the maximally parallel way we can even
construct a system with inhibitors only:

Π = (O, {a} , tsk, R′, R) ,

O = {a, t} ∪ {si | 0 ≤ i ≤ K} ,
R′ = {si → tsi−1, si → si | 1 ≤ i ≤ K} ∪ {t→ λ, s0 → s0} ,
R = {si → tsi−1|¬ai | 1 ≤ i ≤ K}
∪ {t→ λ} ∪ {si → si|¬t | 0 ≤ i ≤ K, i /∈ H} .

This construction does not carry over to the case of the asynchronuous mode, as
the rule t→ λ is applied in parallel to the rules si → tsi−1|¬ai until the input ai

is reached. In this case, the system cannot change the state si anymore, and then
it starts to loop if and only if i /∈ H. To accept the complement of H instead,
change i ∈ H to i /∈ H, i.e., in sum, we have proved that

NdetaOP
maxpar
1 (ncoo, inh1,∗) ⊇ FIN ∪ coNFIN.

As we shall show later, all the inclusions stated in Example 1 and Example 2
are equalities.

2.1 Register Machines

In what follows we will need to simulate register machines; here we briefly recall
their definition and some of their computational properties. A register machine
is a tuple M = (m,B, l0, lh, P ), where m is the number of registers, P is the set
of instructions bijectively labeled by elements of B, l0 ∈ B is the initial label,
and lh ∈ B is the final label. The instructions of M can be of the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increase the value of register j by one, and non-deterministically jump to
instruction l2 or l3. This instruction is usually called increment.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of
this instruction are usually called zero-test and decrement, respectively.

Asynchronuous and maximally parallel deterministic controlled
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– lh : HALT . Stop the execution of the register machine.

A register machine is deterministic if l2 = l3 in all its ADD instructions. A
configuration of a register machine is described by the contents of each register
and by the value of the program counter, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labelled
with l0), and terminate with reaching a HALT -instruction.

Register machines provide a simple universal computational model [6]. We
here consider register machines used as accepting or as generating devices. In
accepting register machines, a vector of non-negative integers is accepted if and
only if the register machine halts having it as input. Usually, without loss of gen-
erality, we may assume that the instruction lh : HALT always appears exactly
once in P , with label lh. In the generative case, we start with empty registers
and take the results of all possible halting computations.

3 Results

In this section we mainly investigate deterministic accepting P systems with con-
text conditions and priorities on the rules (deterministic P systems for short) us-
ing only non-cooperative rules and working in the sequential, the asynchronous,
and the maximally parallel mode.

Remark 3. We first notice that maximal parallelism in systems with non-
cooperative rules means the total parallelism for all symbols to which at least
one rule is applicable, and determinism guarantees that “at least one” is “exactly
one” for all reachable configurations and objects. Determinism in the sequential
mode requires that at most one symbol has an associated applicable rule for all
reachable configurations. Surprisingly enough, in the case of the asynchronuous
mode we face an even worse situation than in the case of maximal parallelism –
if more than one copy of a specific symbol is present in the configuration, then
no rule can be applicable to such a symbol in order not to violate the condition
of determinism.

We now define the bounding operation over multisets, with a parameter k ∈ N
as follows:

for u ∈ O∗, bk(u) = v with |v|a = min(|u|a , k) for all a ∈ O.

The mapping bk “crops” the multisets by removing copies of every object
a present in more than k copies until exactly k remain. For two multisets
u, u′, bk (u) = bk (u′) if for every a ∈ O, either |u|a = |u′|a < k, or |u|a ≥ k
and |u′|a ≥ k. Mapping bk induces an equivalence relation, mapping O∗ into

(k + 1)
|O|

equivalence classes. Each equivalence class corresponds to specifying,
for each a ∈ O∗, whether no copy, one copy, or · · · k − 1 copies, or “k copies or
more” are present. We denote the range of bk by {0, · · · , k}O.
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Lemma 1. Context conditions are equivalent to predicates defined on boundings.

Proof. We start by representing context conditions by predicates on boundings.
Consider a rule with a simple context condition (r, p,Q), and let the current
configuration be C. Then, it suffices to take k ≥ max (|p| ,max{|q| | q ∈ Q}),
and let C ′ = bk (C). The applicability condition for (r, p,Q) may be expressed

as p ⊆ C ′∧
(∧

q∈Q q 6⊆ C ′
)

. Indeed, x ⊆ C ←→ x ⊆ C ′ for every multiset x with

|x| ≤ k, because for every a ∈ O, |x|a ≤ |C|a ←→ |x|a ≤ min (|C|a , k) holds if
|x|a ≤ k. Finally, we notice that context conditions which are not simple can be
represented by a disjunction of the corresponding predicates.

Conversely, we show that any predicate E ⊆ {0, · · · , k}O for the bounding
mapping bk for rule r can be represented by some context conditions. For each
multiset c ∈ E, we construct a simple context condition to the effect of “con-
tains c, but, for each a contained in c for less than k times, not more than |c|a
symbols a”: {(

r, c,
{
a|c|a+1 | |c|a < k

})
| c ∈ E

}
.

Joining multiple simple context conditions over the same rule into one rule with
context conditions concludes the proof. �

The following theorem is valid even when the rules are not restricted to non-
cooperative ones, and when determinism is not required, in either derivation
mode (also see [3]).

Theorem 1. Priorities are subsumed by conditional contexts.

Proof. A rule is prohibited from being applicable due to a priority relation if
and only if at least one of the rules with higher priority might be applied. Let
r be a rule of a P system (O,Σ,w,R′, R,>), and let r1 > r, · · · , rn > r. Hence,
the rule r is not blocked by the rules r1, · · · , rn if and only if the left-hand
sides of the rules r1, · · · , rn, lhs (r1) , · · · , lhs (rn) are not present in the current
configuration or the context conditions given in these rules are not fulfilled.
According to Lemma 1, these context conditions can be formulated as predicates
on the bounding bk where k is the maximum of weights of all left-hand sides,
promoters, and inhibitors in the rules with higher priority r1, · · · , rn. Together
with the context conditions from r itself, we finally get context conditions for
a new rule r′ simulating r, but also incorporating the conditions of the priority
relation. Performing this transformation for all rules r concludes the proof. �

Remark 4. From [3] we already know that in the case of rules without con-
text conditions, the context conditions in the new rules are only sets of atomic
inhibitors, which also follows from the construction given above. A careful in-
vestigation of the constuction given in the proof of Theorem 1 reveals the fact
that the maximal weights for the promoters and inhibitors to be used in the new
system are bounded by the number k in the bounding bk.
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Remark 5. As in a P system (O,Σ,w,R′, R,>) the set of rules R′ can easily be
deduced from the set of rules with context conditions R, in the following we omit
R′ in the description of the P system. Moreover, for systems having only rules
with a simple context condition, we omit d in the description of the families of
sets of numbers and simply write

NδOP
α
1 (β, prok,l, inhk′,l′ , pri) .

Moreover, each control mechanism not used can be omitted, e.g., if no priorities
and only promoters are used, we only write NδOP

α
1 (β, prok,l).

3.1 Sequential Systems

Although throughout the rest of the paper we are not dealing with sequential
systems anymore, the proof of the following theorem gives us some intuition why,
for deterministic non-cooperative systems, there are severe differences between
the sequential mode and the asynchronuous or the maximally parallel mode.

Theorem 2. NdetaOP
sequ
1 (ncoo, pro1,1, inh1,1) = NRE.

Proof. Consider an arbitrary deterministic register machine M =
(m,B, l0, lh, P ). We simulate M by a determistic P system Π = (O, {a1} , l0, R),
where

O = {aj | 1 ≤ j ≤ m} ∪ {l, l1, l2 | l ∈ B} ,
R = {l→ aj l

′ | (l : ADD(j), l′) ∈ P}
∪ {l→ l1|aj , aj → a′j |l1,¬a′j , l1 → l2|a′j , a

′
j → λ|l2 , l1 → l′|¬a′j ,

l→ l′′|¬aj | (l : SUB(j), l′, l′′) ∈ P}.

We claim that Π is deterministic and non-cooperative, and it accepts the same
set as M . �

As can be seen in the construction of the deterministic P system in the proof
above, the rule aj → a′j |l1,¬a′j used in the sequential mode can be applied exactly
once, priming exactly one symbol aj to be deleted afterwards. Intuitively, in the
asynchronuous or the maximally parallel mode, it is impossible to choose only
one symbol out of an unbounded number of copies to be deleted. The bounding
operation defined above will allow us to put this intuition into a formal proof.

3.2 Asynchronuous and Maximally Parallel Systems

Fix an arbitrary deterministic controlled non-cooperative P system. Take k as the
maximum of size of all multisets in all context conditions. Then, the bounding
does not influence applicability of rules, and bk (u) is halting if and only if u
is halting. We proceed by showing that bounding induces equivalence classes
preserved by any computation.
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Lemma 2. Assume u → x and v → y. Then bk (u) = bk (v) implies bk (x) =
bk (y).

Proof. Equality bk (u) = bk (v) means that for every symbol a ∈ O, if |u|a 6= |va|
then |u|a ≥ k and |v|a ≥ k, and we have a few cases to be considered. If no rule is
applicable to a, then the inequality of symbols a will be indistinguishable after
bounding also in the next step (both with at least k copies of a). Otherwise,
exactly one rule r is applicable to a (by determinism, and bounding does not
affect applicability), then the difference of the multiplicities of the symbol a may
only lead to differences of the multiplicities of symbols b for all b ∈ rhs (r).
However, either all copies of a are erased by the rule a→ λ or else at least one
copy of a symbol b will be generated from each copy of a by this rule alone, so
|x|b ≥ |u|a ≥ k and |y|b ≥ |v|a ≥ k, so all differences of multiplicities of an object
b in u and v will be indistinguishable after bounding in this case, too. �

Corollary 1. If bk (u) = bk (v), then u is accepted if and only if v is accepted.

Proof. Let w be the fixed part of the initial configuration. Then we consider
computations from uw and from vw. Clearly, bk (uw) = bk (vw). Equality of
boundings is preserved by one computation step, and hence, by any number of
computation steps.

Assume the contrary of the claim: one of the computations halts after s steps,
while the other one does not, i.e., let uw ⇒s u′ and vw ⇒s v′. By the previous
paragraph, bk (u′) = bk (v′). Since bounding does not affect applicability of rules,
either both u′ and v′ are halting, or none of them. The contradiction proves the
claim. �

We should like to notice that the arguments in the proofs of Lemma 2 and
Corollary 1 are given for the maximal parallel mode; following the observation
stated at the end of Remark 3, these two results can also be argued for the
asynchronuous mode.

Theorem 3. For deterministic P systems working in the asynchronuous or in
the maximally parallel mode, we have the following characterization:

NFIN ∪ coNFIN = NdetaOP
asyn
1 (ncoo, pro1,∗, inh1,∗)

= NdetaOP
maxpar
1 (ncoo, pro1,∗)

= NdetaOP
maxpar
1 (ncoo, inh1,∗)

= NdetaOP
asyn
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)

= NdetaOP
maxpar
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
.

Proof. Each equivalence class induced by bounding is completely accepted or
completely rejected. If no infinite equivalence class is accepted, then the accepted
set is finite (containing numbers not exceeding (k − 1)·|O|). If at least one infinite
equivalence class is accepted, then the rejected set is finite (containing numbers
not exceeding (k − 1) · |O|). This proves the “at most NFIN ∪ coNFIN” part.
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In Examples 1 and 2 we have already shown that

NdetaOP
α
1 (ncoo, pro1,∗, inh1,∗) ⊇ FIN ∪ coNFIN, α ∈ {asyn,maxpar} ,

NdetaOP
maxpar
1 (ncoo, γ1,∗) ⊇ FIN ∪ coNFIN, γ ∈ {pro, inh} .

This observation concludes the proof. �

There are several questions remaining open, for instance, whether only
inhibitors in the rules or only priorities in the rules are sufficient to yield
FIN ∪ coNFIN with the asynchronuous mode, too.

4 Conclusions

We have shown that, like in case of catalytic P systems, for non-cooperative
P systems with promoters and/or inhibitors (with or without priorities), deter-
minism is a criterion drawing a borderline between universality and decidability.
In fact, for non-cooperative P systems working in the maximally parallel or the
asynchronuous mode, we have computational completeness in the unrestricted
case, and only all finite number sets and their complements in the deterministic
case.
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Abstract. In this article we introduce the regulating mechanism of con-
trol languages for the application of rules assigned to the membranes of
a sequential P system and the variant of time-varying sets of rules avail-
able at different transition steps. Computational completeness can only
be achieved when allowing the system to have no rules applicable for a
bounded number of steps; in this case we only need one membrane and
periodically available sets of non-cooperative rules, i.e., time-varying se-
quential P systems. On the other hand, even with an arbitrary number
of membranes and regular control languages, only Parikh sets of matrix
languages can be obtained if the terminal result has to be taken as soon
as the system cannot apply any rule anymore.

1 Introduction

P systems are formal models derived from the functioning of living cells, closely
related to multiset rewriting. We refer to [13], [14], and to the web page [19] for
more details on P systems. In this article, we investigate the power of controlling
the availability of the sets of rules assigned to the membranes of a (static) P
system by a regular control language L, especially for languages L being of the
form {w}∗, which leads to the notion of a time-varying P system where the set
of rules available at each membrane varies periodically with time.

The notion of the time-varying controlled application of rules comes from the
area of regulated rewriting; comprehensive overviews of this area can be found in
[3], [5], and [6]); periodically time-varying grammars were already mentioned in

13th International Conference on Membrane Computing, CMC13,

Budapest, Hungary, August 28 - 31, 2012. Proceedings, pages 99 - 114.
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[18] following the work on time-varying automata [17]. This notion was also con-
sidered in the area of Lindenmayer systems, corresponding to controlled tabled
Lindenmayer systems, with the tables being used periodically (see [12]). We can
also interpret these systems as counterparts of cooperating distributed grammar
systems ([2]) with the order of enabling the components controlled by a graph
having the shape of a ring. In the field of DNA computing several models us-
ing the variation in time of the set of available rules were considered. The first
model in this area – time-varying distributed H systems – was introduced in [15]
and using the splicing operation. A similar model having some differences in the
operation application was considered in [10]. In [20] the time-varying mechanism
was used in conjunction with splicing test tube systems; there no direct action
on the splicing rules was considered, yet instead a time-varying dependency in
the communication step.

2 Preliminaries

After some preliminaries from formal language theory, we define the main con-
cept of P systems with control languages considered in this paper.

The set of integers is denoted by Z, the set of non-negative integers by N.
An alphabet V is a finite non-empty set of abstract symbols. Given V , the free
monoid generated by V under the operation of concatenation is denoted by
V ∗; the elements of V ∗ are called strings, and the empty string is denoted by
λ; V ∗ \ {λ} is denoted by V +. Let {a1, · · · , an} be an arbitrary alphabet; the
number of occurrences of a symbol ai in a string x is denoted by |x|ai ; the

Parikh vector associated with x with respect to a1, · · · , an is
(
|x|a1 , · · · , |x|an

)
.

The Parikh image of a language L over {a1, · · · , an} is the set of all Parikh
vectors of strings in L, and we denote it by Ps (L). For a family of languages
FL, the family of Parikh images of languages in FL is denoted by PsFL.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V −→ N and represented by 〈f (a1) , a1〉 · · · 〈f (an) , an〉 or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (an)).
In the following we will not distinguish between a vector (m1, · · · ,mn) , its rep-
resentation by a multiset 〈m1, a1〉 · · · 〈mn, an〉 or its representation by a string x
having the Parikh vector

(
|x|a1 , · · · , |x|an

)
= (m1, · · · ,mn). Fixing the sequence

of symbols a1, · · · , an in the alphabet V in advance, the representation of the
multiset 〈m1, a1〉 · · · 〈mn, an〉 by the string am1

1 · · · amn
n is unique. The set of all

finite multisets over an alphabet V is denoted by V ◦.
The family of regular and recursively enumerable string languages is denoted

by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [3] and [16].

2.1 Register Machines

For our main result establishing computational completeness for time-varying
P systems, we will need to simulate register machines. A register machine is a
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tuple M = (m,B, l0, lh, P ), where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:

– l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to
instruction l2 or l3. This instruction is usually called increment.

– l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of
this instruction are usually called zero-test and decrement, respectively.

– lh : HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the program counter, which indicates the next in-
struction to be executed. Computations start by executing the first instruction
of P (labeled with l0), and terminate with reaching a HALT -instruction.

Register machines provide a simple universal computational model [11]. In
the generative case as we need it later, we start with empty registers, use the first
two registers for the necessary computations and take as results the contents of
the k registers 3 to k + 2 in all possible halting computations; during a compu-
tation of M , only the registers 1 and 2 can be decremented. In the following, we
shall call a specific model of P systems computationally complete if and only if
for any register machine M we can effectively construct an equivalent P system
Π of that type simulating each step of M in a bounded number of steps and
yielding the same results.

2.2 Sequential Grammars

A grammar G of type X is a construct (O,OT , A, P,=⇒G) where O is a set of
objects, OT ⊆ O is a set of terminal objects, A ∈ O is the axiom, and P is a
finite set of rules of type X. Each rule p ∈ P induces a relation =⇒p⊆ O × O;
p is called applicable to an object x ∈ O if and only if there exists at least one
object y ∈ O such that (x, y) ∈ =⇒p; we also write x =⇒p y. The derivation
relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The reflexive and

transitive closure of =⇒G is denoted by
∗

=⇒G.
The language generated by G is the set of all terminal objects derivable

from the axiom, i.e., L (G) =
{
v ∈ OT | A ∗

=⇒G v
}

. The family of languages

generated by grammars of type X is denoted by L (X).

In this paper, we consider string grammars and multiset grammars:

String grammars In the general notion as defined above, a string grammar
GS is represented as (

(N ∪ T )
∗
, T ∗, w, P,=⇒GS

)
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where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩ T = ∅, w ∈ (N ∪ T )

+
, P is a finite set of rules of the form u→ v

with u ∈ V + and v ∈ V ∗, with V := N∪T ; the derivation relation for u→ v ∈ P
is defined by xuy =⇒u→v xvy for all x, y ∈ V ∗, thus yielding the well-known
derivation relation =⇒GS

for the string grammar GS . As special types of string
grammars we consider string grammars with arbitrary rules, context-free rules
of the form A → v with A ∈ N and v ∈ V ∗, and (right-)regular rules of the
form A → v with A ∈ N and v ∈ TN ∪ {λ}. In the following, we shall also use
the common notation GS = (N,T,w, P ) instead, too. The corresponding types
of grammars are denoted by ARB, CF , and REG, thus yielding the families
of languages L (ARB), i.e., the family of recursively enumerable languages RE,
as well as L (CF ), and L (REG), i.e., the families of context-free, and regular
languages (also denoted by REG), respectively.

The subfamily of REG only consisting of 1-star languages of the form W ∗ for
some finite set of strings W is denoted by REG1∗; to be more specific, we also
consider REG1∗ (k, p) consisting of all 1-star languages of the form W ∗ with k
being the maximum number of strings in W and p being the maximum lengths
of the strings in W . If W = {w} for a singleton w, we call the set {w}∗ periodic
and |w| its period ; thus, REG1∗ (1, p) denotes the family of all periodic sets with
period at most p. If any of the numbers k or p may be arbitrarily large, we
replace it by ∗.

Multiset grammars A multiset grammar [1, 9] Gm is of the form
(
(N ∪ T )

◦
, T ◦, w, P,=⇒Gm

)

where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩ T = ∅, w is a non-empty multiset over V , V := N ∪ T , and P
is a (finite) set of multiset rules yielding a derivation relation =⇒Gm

on the
multisets over V ; the application of the rule u→ v to a multiset x has the effect
of replacing the multiset u contained in x by the multiset v. For the multiset
grammar Gm we also write (N,T,w, P,=⇒Gm

).
As special types of multiset grammars we consider multiset grammars with

arbitrary rules, context-free rules of the form A → v with A ∈ N and v ∈ V ◦,
and regular rules of the form A → v with A ∈ N and v ∈ T ◦N ∪ T ◦; the
corresponding types X of multiset grammars are denoted by mARB, mCF ,
and mREG, thus yielding the families of multiset languages L (X). Even with
arbitrary multiset rules, it is not possible to get Ps (L (ARB)) [9]:

Ps (L (REG)) = L (mREG) = L (mCF ) = Ps (L (CF ))
$ L (mARB) $ Ps (L (ARB)) .

2.3 Graph-controlled and Programmed Grammars

A graph-controlled grammar (with appearance checking) of type X is a construct

GGC = (G, g,Hi, Hf ,=⇒GC)
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where G = (O,OT , w, P,=⇒G) is a grammar of type X; g = (H,E,K) is a
labeled graph where H is the set of node labels identifying the nodes of the
graph in a one-to-one manner, E ⊆ H × {Y,N} ×H is the set of edges labeled
by Y or N , K : H → 2P is a function assigning a subset of P to each node
of g; Hi ⊆ H is the set of initial labels, and Hf ⊆ H is the set of final labels.
The derivation relation =⇒GC is defined based on =⇒G and the control graph
g as follows: For any i, j ∈ H and any u, v ∈ O, (u, i) =⇒GC (v, j) if and only if
either

– u =⇒p v by some rule p ∈ K (i) and (i, Y, j) ∈ E (success case), or
– u = v, no p ∈ K (i) is applicable to u, and (i,N, j) ∈ E (failure case).

The language generated by GGC is defined by

L(GGC) =
{
v ∈ OT | (w, i) =⇒∗GGC

(v, j) , i ∈ Hi, j ∈ Hf

}
.

If Hi = Hf = H, then GGC is called a programmed grammar. The families of
languages generated by graph-controlled and programmed grammars of type X
are denoted by L (X-GCac) and L (X-Pac), respectively. If the set E contains
no edges of the form (i,N, j), then the graph-controlled grammar GGC is said
to be without appearance checking ; the corresponding families of languages are
denoted by L (X-GC) and L (X-P ), respectively. If (i, Y, j) ∈ E if and only if
(i,N, j) ∈ E for all i, j ∈ H, then GGC is said to be a graph-controlled grammar
or programmed grammar with unconditional transfer, the corresponding families
of languages are denoted by L (X-GCut) and L (X-Put), respectively. In the case
of string grammars, it is well-known (e.g., see [6]) that

RE = L (CF -GCac) = L (CF -Pac) = L (CF -GCut) = L (CF -Put)
' L (CF -GC) = L (CF -P ) .

2.4 Matrix Grammars

A matrix grammar (with appearance checking) of type X is a construct

GM = (G,M,F,=⇒GM
)

where G = (O,OT , w, P,=⇒G) is a grammar of type X, M is a finite set of
sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P , and F ⊆ P . For w, z ∈ O
we write w =⇒GM

z if there are a matrix (p1, . . . , pn) in M and objects wi ∈ O,
1 ≤ i ≤ n+ 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

– wi =⇒G wi+1 or
– wi = wi+1, pi is not applicable to wi, and pi ∈ F .

L(GM ) =
{
v ∈ OT | w =⇒∗GM

v
}

is the language generated by GM . The
family of languages generated by matrix grammars of type X is denoted by
L (X-MATac). If the set F is empty (or if F = P ), then the grammar is said to
be without appearance checking (with unconditional control); the corresponding
family of languages is denoted by L (X-MAT ) (L (X-MATut)).
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2.5 Grammars with Regular Control and Time-Varying Grammars

Another possibility to capture the idea of controlling the derivation in a grammar
as with a control graph is to consider the sequence of rules applied during a
computation and to require this sequence to be an element of a regular language:

A grammar with regular control and appearance checking is a construct

GC = (G,HC , L, F )

where G = (O,OT , w, P,=⇒G) is a grammar of type X and L is a regular
language over HC , where HC is the set of labels identifying the subsets of pro-
ductions from P in a one-to-one manner (HC is a bijective function on 2P ), and
F ⊆ HC . The language generated by GC consists of all terminal objects z such
that there exist a string HC (P1) · · ·HC (Pn) ∈ L as well as objects wi ∈ O,
1 ≤ i ≤ n+ 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

– wi =⇒G wi+1 by some production from Pi or

– wi = wi+1, no production from Pi is applicable to wi, and HC (Pi) ∈ F .

It is rather easy to see that the model of grammars with regular control is
closely related with the model of graph-controlled grammars in the sense that
the control graph corresponds to the deterministic finite automaton accepting L.
Hence, we may also speak of a grammar with regular control and without appear-
ance checking if F = ∅, and if F = HC then GC is said to be a grammar with reg-
ular control and unconditional transfer. The corresponding families of languages
are denoted by L (X-C (REG)ac), L (X-C (REG)), and L (X-C (REG)ut).

Obviously, the control languages can also be taken from another family of lan-
guages Y , e.g., L (CF ), thus yielding the families L (X-C (Y )ac), etc., but in this
paper we shall restrict ourselves to the cases Y = REG and Y = REG1∗ (k, p).
For Y = REG1∗ (1, p), these grammars are also known as (periodically) time-
varying grammars, as a control language {HC (P1) · · ·HC (Pp)}∗ means that the
set of productions available at a time t in a derivation is Pi if t = kp+ i, k ≥ 0;
p is called the period of the time-varying system. The corresponding families
of languages generated by time-varying grammars with appearance checking,
without appearance checking, with unconditional transfer and with period p are
denoted by L (X-TVac (p)), L (X-TV (p)), and L (X-TVut (p)), respectively; if p
may be arbitrarily large, p is replaced by ∗ in these notions.

In many cases it is not necessary to insist that the control string
HC (P1) · · ·HC (Pn) of a derivation is in L, it usually also is sufficient that
HC (P1) · · ·HC (Pn) is a prefix of some string in L. We call this control weak
and replace C by wC and TV by wTV in the notions of the families of lan-
guages. We should like to mention that in the case of wTV the control words
are just prefices of the ω-word (HC (P1) · · ·HC (Pp))

ω
.
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In the case of string grammars, from the results stated in [6], we obtain the
following, for α ∈ {λ,w}:

RE = L (CF -GCac) = L (CF -Pac) = L (CF -MATac)
= L (CF -GCut) = L (CF -Put)
= L (CF -αC (REG)ac) = L (CF -αC (REG)ut)
= L (CF -αTVac) = L (CF -αTVut)
' L (CF -GC) = L (CF -P ) = L (CF -MAT ) .

Remark 1. We would like to point out that we have not forbidden HC (∅) to
appear in a control word. Whereas in the case of unconditional transfer or in
the case of appearance checking, provided that HC (∅) ∈ F , this just means
that this derivation step is done without making any changes on the underlying
object, in the case of grammars with regular control and without appearance
checking, reaching HC (∅) means that the derivation has to have stopped with
the preceding derivation step.

3 P Systems

In this section we consider several variants of P systems with control languages
guiding the applicability of rules assigned to each membrane at a specific step
of a computation.

A (sequential) P system of type X with n membranes is a construct

Π = (G,µ,R,A, f)

where G = (O,OT , A
′, P,=⇒G) is a grammar of type X and

– µ is the membrane (tree) structure of the system with n membranes (µ
usually is represented by a string containing correctly nested marked paren-
theses); we assume the membranes, i.e., the nodes of the tree representing
µ, being uniquely labeled by labels from a set H;

– R is a set of rules of the form (h, r, tar) where h ∈ H, r ∈ P , and
tar, called the target indicator, is taken from the set {here, in, out} ∪
{inj | 1 ≤ j ≤ n}; the rules assigned to membrane h form the set Rh =
{(r, tar) | (h, r, tar) ∈ R}, i.e., R can also be represented by the vector
(Rh)h∈H ; for the systems considered in this paper, we do not consider com-
munication with the environment, i.e., no objects may be sent out from the
skin membrane (the outermost membrane) or taken into the skin membrane
from the environment;

– A is the initial configuration specifying the objects from O assigned to each
membrane at the beginning of a computation, i.e., A = {(h,Ah) | h ∈ H};

– f is the final membrane where the terminal results are taken from at the end
of a computation.
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A configuration C of the P system Π can be represented as a set
{(h,wh) | h ∈ H}, where wh is the current contents of objects contained in the
membrane labeled by h. In the sequential transition mode, one rule from R is
applied to the objects in the current configuration in order to obtain the next con-
figuration in one transition. A sequence of transitions between configurations of
Π, starting from the initial configuration A, is called a computation of Π. A halt-
ing computation is a computation ending with a configuration {(h,wh) | h ∈ H}
such that no from R can be applied to the objects wh, h ∈ H, anymore, and
the object w from (f, w) then is called the result of this halting computation if
w ∈ OT . L (Π), the language generated by Π, consists of all terminal objects
obtained as results of a halting computation in Π. By L (X-OP ) (L (X-OPn))
we denote the family of languages generated by P systems (with at most n
membranes) of type X.

In a similar way as for grammars themselves, we are able to consider various
control mechanisms as defined in the previous section for P systems, too, e.g.,
using a control graph. In this paper, we are going to investigate the power of
regular control.

A (sequential) P system of type X with n membranes and regular control
is a construct ΠC = (Π,HC , L, F ) where Π = (G,µ,R,A, f) is a (sequential)
P system of type X, L is a regular language over HC , where HC is the set of
labels identifying the subsets of productions from R in a one-to-one manner,
and F ⊆ HC . The language generated by ΠC consists of all terminal objects
z obtained in membrane region f as results of a halting computation in Π.
Observe that as in the case of normal grammars, the sequence of computation
steps must correspond to a string HC (R1) · · ·HC (Rm) ∈ L with R1, · · · , Rm
being subsets of R. The corresponding families of languages generated by P
systems with regular control ΠC (with at most n membranes) are denoted by

L
(
X-αC (REG)β OPn

)
, α ∈ {λ,w}, β ∈ {λ, ac, ut}.

Yet in contrast to the previous case, appearance checking and unconditional
transfer have a special effect, as we cannot make a derivation step without ap-
plying a rule, but the derivation thus will halt immediately. In order to cope
with this problem specific for P systems, we allow the system to be inactive
for a bounded number of steps before it really “dies”, i.e., halts. We call this
specific way of terminating a computation halting with delay d, i.e., a compu-
tation halts if for a whole sequence of length d of production sets in a control
word no rule has become applicable. In that way we obtain the language classes

L
(
X-αC (REG)β OPn, d

)
, α ∈ {λ,w}, β ∈ {λ, ac, ut}; if any of the numbers n

or d may be arbitrarily large, we replace it by ∗. The case k = 0 describes the
situation with normal halting, i.e., by definition

L
(
X-αC (REG)β OPn, 0

)
= L

(
X-αC (REG)β OPn

)
.

In the P systems area we often deal with multisets, i.e., the underlying gram-
mar is a multiset grammar. In the following, we first restrict ourselves to non-
cooperative rules, the corresponding type is abbreviated by ncoo.
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Theorem 1. For all α ∈ {λ,w}, β ∈ {λ, ac, ut}, and n ≥ 1,

L
(
ncoo-αC (REG)β OPn

)
⊆ PsL (CF -MAT ) .

Proof. According to the arguments given above, we only have to consider the
case of regular control languages without appearance checking, i.e., we only have
to show that

L (ncoo-αC (REG)OPn) ⊆ PsL (CF -MAT ) .

So let ΠC = (Π0, H0, L0) be a P system of degree n with regular con-
trol (and without appearance checking) where Π0 = (G0, µ,R0, A0, f) and
G0 = (N0, T0, w0, P0,=⇒G0) is a multiset grammar. As we are dealing with static
P systems not communicating with the environment, it is clear that we can use
the well-known flattening procedure reducing it to an equivalent system P sys-
tem Π1 = (Π,H,L) where Π = (Gm, [1 ] 1, R,A, 1), Gm = (N,T,w, P1,=⇒Gm

)
is a multiset grammar and L is a regular control set over H, i.e., H is the set of
labels for the subsets of R; Π1 uses non-cooperative rules in only one membrane
region, i.e., we may consider this P system as a multiset rewriting device where
a symbol b from membrane region i in the original P system ΠC is represented
as [i, b]; it is easy to see that the control language L0 can be changed accordingly
to obtain the regular control set L for Π1. We also observe that the terminal
objects b ∈ T0 in the output region f of the original system ΠC in Π1 now are
represented as objects [f, b] .

Let M = (Q,H, δ, q0, Qf ) be the deterministic finite automaton accepting L
where Q is the set of states, δ is the transition function, q0 is the initial state,
Qf is the set of final states. The simulation then works in several steps:

– We first construct a matrix grammar with context-free rules

GM = (G,M,=⇒GM
)

where
G =

(
N ∪ T ∪Q ∪ Q̄,N ′ ∪ T ′ ∪Q′, q0A,P,=⇒G

)
.

For any non-cooperative rule a→ u ∈ R, we take the matrix (p→ q, a→ u)
into M if and only if a → u is in the set of rules Rp labeled by p and
(p,Rp, q) ∈ δ. At the end of a computation, arriving at some q, with q ∈ F
for α = λ or q ∈ Q for α = w, we may prime every remaining symbol to make
it a terminal one by using the matrices (q → q̄) as well as (q̄ → q̄, a→ a′) for
all a ∈ N ∪ T and finally ending up with the matrix (q̄ → q′). In that way
we can simulate the computations in Π1, but

– it remains to check that we have arrived at a configuration to which no rule
is applicable anymore. This can be achieved by intersecting the language
L (GM ) generated by GM with a regular set Lr that cuts out all elements
of L (GM ) representing a configuration containing a primed version of a
symbol which would allow for the application of a rule from the set of rules

Time-varying sequential P systems

107



labeled by q represented by q′ in a string in L (GM ). In that way we get
a language L (G′M ) for a matrix grammar G′M , as L (CF -MAT ) is closed
under intersection with regular languages.

– In order to filter out the desired terminal results of L (ΠC) from L (G′M ), we
need a morphism h which maps any symbol [f, b]

′
to the terminal symbol

b for b ∈ T and all other symbols to λ. As L (CF -MAT ) is closed under
morphisms, we can construct a matrix grammar G′′M with

L (G′′M ) = h (L (G′M )) = h (L (GM ) ∩ Lr) = L (ΠC) .

These observations conclude the proof. �

It is somehow surprising that the proof technique elaborated in the proof of
Theorem 1 also works for cooperative multiset rules, which type is abbreviated
by coo.

Corollary 1. For all α ∈ {λ,w}, β ∈ {λ, ac, ut}, and n ≥ 1,

L
(
coo-αC (REG)β OPn

)
⊆ PsL (CF -MAT ) .

Proof. We proceed exactly as in the proof of Theorem 1, except that
for any cooperative rule a1 · · · ak → u ∈ R, we now take the matrix
(q → p, a1 → λ, · · · , ak−1 → λ, ak → u) into M if and only if a1 · · · ak → u is
in the set of rules Rq labeled by q and (q,Rq, p) ∈ δ. Moreover, the regular set
Lr has to check for the (non-)appearance of a bounded number of symbols for
each rule, yet the main parts of the proof remain valid as elaborated before. �

As PsL (CF -MAT ) = L (mCF -MAT ), from Theorem 1 and Corollary 1
we finally obtain a characterization of L (mARB-MAT ) via specific families of
languages generated by P systems with regular control:

Theorem 2. For all α ∈ {λ,w}, β ∈ {λ, ac, ut}, and k, n, p ≥ 1,

L (mARB-MAT ) = L (mCF -MAT )
= PsL (CF -MAT )
= L (mARB)
= L (coo-TV (p)OPn)

= L
(
coo-αC (REG)β OPn

)

= L
(
ncoo-αC

(
REG1∗ (∗, p+ 1)

)
β
OPn

)

= L
(
ncoo-αC (REG)β OPn

)
.

Proof. We first show that

L (mCF -MAT ) ⊆ L
(
ncoo-C

(
REG1∗ (∗, 2)

)
OP1

)
.
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Let GmM = (Gm,M,=⇒GmM
) be a matrix grammar without appearance

checking and Gm = (N,T,w, P,=⇒Gm) the underlying multiset grammar. We
now construct a P system with regular control ΠC = (Π,H,L) with

Π = (Gm, [1 ] 1, P, {(1, w)} , 1)

generating L (GmM ) as follows: Let M = {mi | 1 ≤ i ≤ k} and mi =
(mi,1, · · · ,mi,ki), mi,j ∈ P , 1 ≤ j ≤ ki, 1 ≤ i ≤ k. A matrix mi

can be simulated by ΠC by having the sequence of labels of singleton sets
HC ({mi,1}) · · ·HC ({mi,ki}) in L, i.e., we just take

L = {HC ({mi,1}) · · ·HC ({mi,ki}) | 1 ≤ i ≤ k}∗ .

This basic result with a one-star control language containing words of arbitrary
length can be improved to a one-star control language containing words of length
two only when starting with a matrix grammar in binary normal form, i.e., N is
divided into two disjoint alphabets N1 and N2, the axiom w is of the form X0S
with X0 ∈ N1 and S ∈ N2, and all the matrices are of the special (binary) form
(X → Y,A→ w) with X ∈ N1, Y ∈ N1 ∪ {λ}, A ∈ N2, and w ∈ (N2 ∪ T )

∗
.

In the case of allowing cooperative rules, the two rules in the binary matrix
(X → Y,A→ w) can be put together into the single rule (XA→ Y w), i.e., for
this new set of cooperative multiset rules

P ′ = {XA→ Y w | (X → Y,A→ w) ∈M}

and the corresponding labeling function H ′C we can take the control language

L′ = {H ′C ({XA→ Y w}) | (X → Y,A→ w) ∈M}∗

and, equivalently,

L′′ = {H ′C ({XA→ Y w | (X → Y,A→ w) ∈M})}∗ ,

which proves the assertion for time-varying P systems with cooperative rules,
i.e.,

L (mCF -MAT ) ⊆ L (coo-TV (1)OP1) .

In fact, we have proved even more, as the multiset grammar

G′m =
(
N1 ∪N2, T,X0S, P

′,=⇒G′
m

)

generates the same multiset language as the original matrix grammar GmM ,
which shows that

L (mCF -MAT ) ⊆ L (mARB) .

As the binary normal form for matrix grammars is not restricted to context-free
multiset rules, we immediately infer that we even have

L (mARB-MAT ) ⊆ L (coo-TV (1)OP1) .

In sum, all the families of languages considered in the statement of the theorem
coincide with L (mARB-MAT ). �
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We now turn our attention to the case of time-varying P systems with de-
lay d > 0. Already allowing halting with delay two, in contrast to the preced-
ing results, we obtain computational completeness, needing only time-varying P
systems using non-cooperative rules in one membrane region even with uncon-
ditional transfer:

Theorem 3. For all α ∈ {λ,w}, β ∈ {ac, ut}, n ≥ 1, p ≥ 12, and d ≥ 2,

L (ncoo-αTVβOPn (p) , d) = PsRE.

Proof. As appearance checking is at least as powerful as unconditional transfer,
we only have to show that

PsRE ⊆ L (ncoo-TVutOP1 (12) , 2) .

The proof is based on a construction used for purely catalytic P systems, see
[7] having in mind that the rules being applied with the (three) catalysts in
parallel there can be applied sequentially when periodically using different sets
of rules. In fact, the first two catalysts were used to guide the simulation of the
instructions applied to the first two registers of a register machine, whereas the
third one was used for all the trapping rules only to be applied in case a non-
deterministic choice for a rule assigned to the other two catalysts was taken in
a wrong way. As the simulation of a SUB-instruction there took four steps with
rules for the first two catalysts, we now need three sequential substeps for each
of these four steps, i.e., in total a period of 12.

Now let us consider a language from PsRE, i.e., there exists a register ma-
chine M = (m,B, 1, f, P ) which uses its first two registers for the necessary
computations; during a computation of M , only these registers 1 and 2 can be
decremented. The remaining registers 3 to m are used to store the results of a
computation. We now construct a time-varying P system ΠC = (Π,H,L) where
Π = (Gm, [1 ] 1, R,A, 1), Gm = (N,T,w, P,=⇒Gm

) is a multiset grammar and
L is a control language having periodicity 12; ΠC halts with bounded delay 2,
i.e., the P system ΠC definitely halts if for more than two steps no rule can be
applied anymore.

One basic principle for the construction of the P system ΠC is that we
represent the contents of register i by the corresponding number of symbols
oi and variants of the labels of instructions to be simulated lead through the
simulation steps. In the following we give a sketch of how the rule sets Pi, 1 ≤
i ≤ 12, are to be constructed, which contain the rules to be applied periodically
in the derivation steps 12k + i, k ≥ 0. We start with the axiom A = p1p̃1; in
fact,when reaching P1 again, only such a pair pj p̃j for some label j ∈ B \ {f}
should be present besides the symbols oi, 1 ≤ i ≤ m; the numbers of copies of
these symbols represent the number currently stored in the registers i.

The following table shows which rules have to be taken into the rule sets Pi,
1 ≤ i ≤ 12, to simulate a SUB-instruction j : (SUB (a) , k, l), with j ∈ B \ {lh},
k, l ∈ B, a ∈ {1, 2}; in any case, the rule sets P3, P6, P9, and P12 contain the
rule # → #, where # is a trap symbol which guarantees that as soon as this
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symbol is introduced the computation can never stop, as at least in every third
step this rule is applicable, because due to the halting condition with delay 2
the system enters an infinite loop and never halts.

Simulation of SUB-instruction j : (SUB (a) , k, l) in case the contents of
register a is non-empty register a is empty

Pa : pj → p̂j p̂
′
j pj → p̄j p̄

′
j p̄
′′
j

P3−a : p̃j → λ p̃j → λ
P3 : pj → #, p̃j → # pj → #, p̃j → #
P3+a : oa → o′a, p̂′j → # p̄j → λ
P6−a : p̂j → λ p̄′′j → p′′j
P6 : p̂j → # p̄j → #, p̄′′j → #
P6+a : o′a → o′′a oa → o′a
P9−a : p̂′j → p̂′′j p′′j → p′j
P9 : p̂′j → #, o′a → # p′′j → #, o′a → #
P9+a : p̂′′j → pkp̃k p′j → plp̃l
P12−a : o′′a → λ p̄′j → λ
P12 : o′′a → #, p̂′′j → # p′j → #, p̄′j → #

In case register a is assumed to be non-empty and the guess was wrong,
p̂′j → # has to be applied instead of oa → o′a from P3+a, hence, the symbol
p̂′j cannot wait to be applied with the rule p̂′j → p̂′′j in P9−a. In the other case,
when assuming register a to be empty, the rule oa → o′a should not be applicable
from rule set P6+a, as then o′a → # would become applicable from rule set P9.
Observe that these arguments only work because we interchange the rule sets
for a = 1 and a = 2, e.g., o1 → o′1 is in P4 and o2 → o′2 is in P5.

For an ADD-instruction j : (ADD (a) , k, l), with j, k, l ∈ B\{lh}, 1 ≤ a ≤ m,
it would be sufficient to just use the rules p̃j → λ and pj → pkp̃k or pj → plp̃l
in a sequence of two steps, but we have to extend this to a sequence of total
length 12 in order to have the same period as in the case of the simulation of a
SUB-instruction. Hence, for each ADD-instruction j : (ADD (a) , k, l), we take
the following rules into the rule sets Pi, 1 ≤ i ≤ 12; in this case, we need not
interchange the rule sets for different registers a, a ∈ {1, 2}:
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Simulation of ADD-instruction j : (ADD (a) , k, l)

P1 : pj → p′j
P2 : p̃j → λ
P3 : p̃j → #, pj → #
P4 : p′j → p̄j
P5 : p̄j → p̄′j
P6 : p′j → #, p̄j → #
P7 : p̄′j → p̂j
P8 : p̂j → p̂′j
P9 : p̄′j → #, p̂j → #
P10 : p̂′j → p̂′′j
P11 : p̂′′j → oapkp̃k, p̂′′j → oaplp̃l
P12 : p̂′j → #, p̂′′j → #

The trap rules introduced in the rule sets P3, P6, P9, and P12 guarantee that
the rules in the rule sets P1, P2, P4, P5, P7, P8, P10, and P11 have to be applied
in a correct way to avoid the introduction of the trap symbol #.

Without loss of generality, we may assume that the last instruction applied in
the register machine M is a SUB-instruction (labeled by j) being applied to the
empty register 1; instead of taking the rule p′j → pf p̃f we take the rule p′j → λ
into P10. If until then the actions of the register machine have been simulated
correctly in ΠC , only the terminal results consisting of specific numbers of copies
of the symbols oi, 3 ≤ i ≤ m, remain in the membrane region. The P system
therefore finally stops before entering a new cycle P1 · · ·P12; hence, in sum we
have shown that the language generated by the register machine is also generated
by the time-varying P system ΠC with delay 2, i.e.,

PsRE ⊆ L (ncoo-TVutOP1 (12) , 2) .

As weak control is the less restrictive control variant, we immediately infer

PsRE ⊆ L (ncoo-wTVutOP1 (12) , 2) .

too. �

As a challenge for future research it remains to search for a proof which even-
tually allows to obtain computational completeness with delay one only. Another
parameter to be improved is the period of the control language. Eventually there
might also be a trade-off between these two parameters: It is easy to see that
using pj only instead of the pair pj p̃j we could save the second rule set at the
beginning of a simulation; then, in addition, we might even omit P3 and P12,
but with these rather obvious changes we would increase the delay to 3.

The construction given in the preceding proof shows that any action in the
time-varying P system can be seen as simple multiset rewriting, hence, we obvi-
ously get the following result:
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Corollary 2. For all α ∈ {λ,w}, β ∈ {ac, ut}, and p ≥ 12,

L (mCF -αTVβ (p)) = PsRE.

4 Conclusion

In this paper we have considered (sequential) P systems where the applications
of the rules assigned to each membrane are controlled by a regular language. We
have shown that with usual halting we can only get PsL (CF -MAT ). On the
other hand, with delayed halting, i.e., allowing the system to wait a bounded
number d of computation steps to become active again, even with delay two and
control languages of the form {w}∗, i.e., even time-varying P systems with only
one membrane and delay 2 characterize PsRE.

The same proof ideas as used in Theorem 3 can be used to show a similar
result for string languages, i.e., collecting terminal symbols sent out of the skin
membrane during a computation of a time-varying P systems into a string we can
obtain any recursively enumerable string language. Moreover, a lot of variants
deserve to be considered in the future, e.g.,

– other transition modes, especially the maximally parallel mode max, the
minimally parallel mode min, the min1-mode, etc.;

– other variants of halting, especially adult halting, halting with final state,
and partial halting;

– variants of combinations of types of rules assigned to the membranes and
types of control languages;

– dynamic P systems, i.e., control languages are assigned to labels of mem-
branes and not to membranes themselves;

– etc.

We shall return to these questions and related ones in an extended version
of this paper.
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Abstract. Membrane systems (with symbol objects) are formal models
of distributed parallel multiset processing. Symport rules move multiple
objects to a neighboring region. It is known that for P systems with
symport rules of weight at most 3 and a single membrane, 7 superfluous
symbols are enough for computational completeness, and 1 is necessary.

We improve the lower bounds on the generative power of P systems with
symport of weight bounded by 3 and 4, in particular establishing that 6
and 2 extra symbols suffice, respectively.

1 Introduction

Membrane systems (with symbol objects) are formal models of distributed par-
allel multiset processing. Symport rules move predefined groups objects to a
neighboring region [7]. In the maximally parallel mode (typical for membrane
computing), this alone is sufficient to construct a computationally universal de-
vice, as long as the environment may contain an unbounded supply of some
objects. The number of symbols specified in a symport rule is called its weight.
The result of a computation is the total number of objects when the system
halts. In some cases, however, for technical reasons the desired result may only
be obtained alongside a small number of superfluous objects in the output region.

There were multiple papers improving the results on P systems with sym-
port/antiport of small weight (an antiport rule moves objects between 2 regions
in both directions, and its weight is the maximum of objects per direction), see
[5] for a survey of results. Computational completeness is achieved even for min-
imal cooperation: either symport/antiport of weight 1, or symport of weight at
most 2. This holds for 2 membranes, without superfluous objects if the output is
considered in the skin, or with 1 superfluous object under the classical assump-
tion of the output in the elementary membrane. In the tissue case, the accepting
systems can even be made deterministic.

13th International Conference on Membrane Computing, CMC13,

Budapest, Hungary, August 28 - 31, 2012. Proceedings, pages 115 - 124.
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With cooperation of up to 3 objects, a single membrane suffices. The regions
are called the skin and the environment, the latter contains an unbounded supply
of some objects, while the contents of the former is always finite. With antiport-
2/1 alone (i.e., exchanging 1 object against 2), the computational completeness
is obtained with a single superfluous object. With symport-3 (i.e., symport rules
only, of weight up to 3), one proved in [6] that 13 extra objects suffice for com-
putational completeness. This result has been improved in [1] to 7 superfluous
symbols. In the same paper it was shown that without any superfluous symbols
such systems only generate finite sets. Although one-membrane pure symport
systems are, in principle, universal, their exact characterization remains open,
and narrowing the gap between 7 objects and 1 object presents an interesting
combinatorics-style problem. While this line of research may seem like a corner
case study, it is precisely the case of exact generative power in one-membrane
systems that demonstrates the difference between symport rules and antiport
rules, and reveals certain intricacies of the former.

The computation consists of multiple, sometimes simultaneous, actions of two
types: move objects from the skin to the environment, and move objects from the
environment into the skin. It is obvious that trying to move all objects out in the
environment will activate the rules of the second type. Since, clearly, rules of the
first type alone cannot generate more than finite sets, it immediately follows that
the “garbage” is unavoidable. Recently, in [3] one obtained some partial results
on the power of one-membrane systems with symport-3, concerning intermediate
number of extra objects. This paper tries to further improve the currently best
bounds on how much “garbage” is sufficient. For instance, we claim that 6 extra
objects are enough for symport of weight at most 3, and 2 objects are enough
for symport of weight at most 4.

2 Definitions

Throughout the paper, by “number” we will mean a non-negative integer. We
write SEG1 to denote finite consecutive numeric segments and SEG2 to denote
all elements of SEG1 with the same parity:

SEG1 = {{j | m ≤ j ≤ n} | m,n ∈ N},
SEG2 = {{i+ 2j | 0 ≤ j ≤ m} | i,m ∈ N}.

We write NjFINk to denote the family of all sets of numbers each not smaller
than j, of cardinality k. By NjREGk we denote the family of all sets {x + j |
|u| = x, u ∈ L} for all languages L accepted by some finite automata with k
states.

We assume the reader to be familiar with the basics of the formal language
theory, and we recall that for a finite set V , the set of words over V is denoted
by V ∗, the set of non-empty words is denoted by V +, and a multiset may be
represented by a string, representing the multiplicity of each symbol by the
number of its occurrences in the string, their order not being important.
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We denote the family of all recursively enumerable sets of non-negative inte-
gers by NRE. By NjRE we denote the family {{x+ j | x ∈M} |M ∈ NRE},
i.e., the family of all recursively enumerable sets of non-negative integers, such
that j has been added to each element of every set (or, equivalently, {M ∈
NRE | x ≤ j, x ∈ M}, i.e., the family of all recursively enumerable sets of
integers not smaller than j).

2.1 Finite Automata

Definition 1. A finite automaton is a tuple A = (Σ,Q, q0, δ, F ), where Σ is an
input alphabet, Q is the set of states, q0 ∈ Q is the initial state, F ⊆ Q is the
set of final states, and δ : Q×Σ −→ 2Q is the transition mapping.

The function δ is naturally extended from symbols to strings. The language
accepted by A is the set {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅}.

Throughout the paper we assume the following property holds for finite au-
tomata: there is at least one transition from every non-final state. This does not
restrict the generality, since adding transitions from each non-final dead state to
itself leads to an equivalent automaton satisfying the needed property.

2.2 Counter Automata

In the universality proofs of this paper we will use counter automata with con-
flicting counters. We use slightly different semantics of conflicting counters in
Theorems 1, 2, so we introduce them locally.

Definition 2. A non-deterministic counter automaton is a construct M = (Q,
q0, qf , P, C), where

– Q is the set of states,
– q0 ∈ Q is the initial state,
– qf ∈ Q is the final state,
– P is the set of instructions of types (q → q′, i+), (q → q′, i−) and (q →
q′, i = 0), modifying the state and incrementing or decrementing counter i
by one, or verifying the value of the counter is zero,

– C is the set of counters.

A computation of M consists of transitions between the states from Q with
updating/checking the counters. Attempting to decrement a counter with value
zero, or to zero-test a counter with a non-zero value leads to aborting a computa-
tion without producing a result. Without restricting generality, we assume that
for every state, there is at least one instruction from it. Counter automata are
known to be computationally complete: for every recursively enumerable set U
of non-negative integers there exists a counter automaton starting in q0 from the
empty counters and generating in qf precisely elements of U in the first counter,
all others having zero value.
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2.3 P Systems with Symport

The scope of this paper is limited to P systems with symport only, with a single
membrane.

Definition 3. A P system with symport rules and one membrane is a tuple

Π = (O,E, [ ]
1
, w,R), where

– O is a finite set called alphabet; its elements are called symbols,

– E ⊆ O is the set of objects appearing in the environment in an unbounded
supply,

– µ is the membrane structure, trivial in case of one membrane; the inner
region is called the skin and the outer region is called the environment,

– w ∈ O∗ is the specification of the initial contents of the inner region,

– R is the set of rules of types (u, out) or (v, in), u, v ∈ O+.

An action of a rule (u, out) is to move the multiset of objects specified by u from
the skin into the environment. An action of a rule (v, in) is to move the multi-
set of objects specified by v from the environment into the skin (v ∈ E∗ is not
allowed by definition). The objects are assigned to rules non-deterministically.
A transition in sequential mode consists of application of one rule, chosen non-
deterministically. In maximally parallel mode, application of multiple rules si-
multaneously and multiple times is allowed, as long as there are enough copies
of objects for them; it is also required that no further rule is applicable to the
unassigned objects.

The computation halts when no rules are applicable at some step. The result
of a halting computation is the total number of objects in the inner region when
it halts. The set of numbers N(Π) generated by a P system Π is the set of
results of all its computations.

The family of sets of numbers generated by a family of P systems with one
membrane and symport rules of weight at most k is denoted by NOP1(symk) in
maximally parallel mode. We add superscript sequ to P to indicate sequential
mode instead.

3 Results

It is known that the power of one-membrane P systems with symport of weight
at most 2 is quite limited:

NOP1(sym2) ⊆ NFIN, [6]

NOP1(sym2) ⊇ SEG1 ∪ SEG2, [2]

It is not difficult to see that the proofs of both bounds remain valid also for the
sequential case, i.e., for NOP sequ

1 (sym2).
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We proceed with symport of weight at most 3, by first recalling the results
obtained in [3] or cited there.

NOP sequ
1 (sym3) ⊆ N1REG ∪NFIN.

NOP1(sym3) ⊆ N1REG ∪NFIN.

NOP sequ
1 (sym3) ⊇ NFIN1 ∪

∞⋃

k=0

(NkFINk ∪NkREGk).

NOP1(sym3) ⊇ NFIN1 ∪
5⋃

k=0

(NkFINk ∪NkREGk) ∪N6REG ∪N7RE.

We now focus on the maximally parallel mode, recall the constructions from [3]
and then present the new results.

3.1 Few-Element Sets

We start with a simple system: Π0 = (O = {a}, E = ∅, [ ]
1
, w = a,R =

{(a, in), (a, out)}). System Π0 perpetually moves a single object in and out,
effectively generating the empty set. For any x ∈ N, setting R = ∅ and w = ax

will lead to a system Π1 which immediately halts, generating a singleton {x}.
We now proceed to arbitrary small-cardinality sets. To generate a multi-

element set, the system must make at least one non-deterministic choice. Since
we want to allow the difference between the elements to be arbitrarily large,
such choice must be persistent, i.e., the decision information should not vanish,
at least until multiple objects are moved accordingly. For any numbers y > x,
consider the following P system:

Π2 = (O = {a, b, i, p, q}, E = {q}, [ ]
1
, w = axby−x+1ip, R),

R = {(i, out), (ip, out), (pq, in), (pqb, out)}.

There are two possible computations of Π2: either i exits alone, halting with
axby−x+1p, generating y+2, or i exits with p, leading to a sequence of application
of the last two rules until no objects b remain in the skin, halting with axpq,
generating x+2. Therefore, Π2 generates an arbitrary 2-element set with 2 extra
objects.

This construction can be improved to generate higher-cardinality sets as
follows. Let m ≥ 2; for arbitrary m + 1 distinct numbers denote the largest
one by y and the others by xj , 1 ≤ j ≤ m. We construct another P system:

Πm+1 = (O,E = {qj | 1 ≤ j ≤ m}, [ ]
1
, w,R),

O = {aj | 1 ≤ j ≤ y + 1} ∪ {i} ∪ {pj , qj | 1 ≤ j ≤ m},

w = i

y+1∏

j=1

aj

m∏

j=1

pj ,

R = {(i, out)} ∪ {(ipj , out), (pjqj , in) | 1 ≤ j ≤ m}
∪ (pjqjak, out) | 1 ≤ j ≤ m, xj + 1 ≤ k ≤ y + 1, j 6= k}.
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Such a system behaves like Π2, except it also chooses among different objects
pj to send out symbols ak for k > xj . It halts either with a1 · · · ay+1p1 · · · pm
generating y + m + 1, or with a1 · · · axjqjp1 · · · pm generating xj + m + 1. For
m = 2, 3, 4 this leads to Π3 generating {x1 + 3, x2 + 3, y + 3}, Π4 generating
{x1+4, x2+4, x3+4, y+4}, and Π5 generating {x1+5, x2+5, x3+5, x4+5, y+5},
i.e., any 3-, 4- or 5-element set with 3, 4 or 5 extra objects, respectively.

3.2 Straightforward Regularity

We now proceed by constructing a P system generating the length set of a
language accepted by a finite automaton A = (Q,Σ, δ, q0, F ), where Q = {qj |
0 ≤ j ≤ m}; we assume A satisfies the following property: there is at least one
transition from every non-final state.

ΠA = (O = Q ∪Q′ ∪Σ,E = Q′ ∪Σ, [ ]
1
, w = q0 · · · qmq′0, R),

R = {(qjq′j , out) | 0 ≤ j ≤ m}
∪ {(qjaq′k, in) | qk ∈ δ(qj , a), a ∈ Σ} ∪ {(q′j , out) | qj ∈ F}.

Unfortunately, besides the needed number, the skin region at halting also con-
tains the superfluous symbols, as many as there are states in A. Therefore, we
have obtained all sets NkREGk.

The simplest examples of application of ΠA are the set of all positive numbers
and the set of all positive even numbers.

Therefore, NOP1(sym3) contains NFIN1 ∪
⋃∞

k=0(NkFINk ∪NkREGk).

3.3 Improved Universality

We now revisit the symport-3 construction from [1]. The 7 extra objects were
denoted lh, b, d, x1, x4, x5, x6. We present an improvement to this construction,
lowering the number of extra objects to 6 (thus also improving a regularity result
from [3] to a universality result).

Theorem 1. NOP1(sym3) ⊇ N6RE.

Proof. Consider an arbitrary counter automaton M . We first transform it as fol-
lows: for each counter i, a conflicting counter ī is introduced, initially containing
value zero. The semantics of a counter machine is modified such that whenever
counters i and ī are non-zero, the computation is aborted without producing a
result.

Then, all zero-test instructions for any counter i are performed by increment-
ing a conflicting counter ī, and then decrementing it. The counter automaton
M ′ = (Q, q0, qf , P, C) under the conflicting counter semantics is equivalent to
the counter automaton M .
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We construct a P system simulating the counter automaton M ′:

Π = (O,E, [ ]
1
, w,R, 1), where

O = E ∪ alph(w),

E = Q \ {qf} ∪ {x2, x4,#} ∪ {ai | i ∈ C} ∪ {p2 | p ∈ P},
O′ = {pi | i ∈ {1, 3}, p ∈ P} ∪ {Ai | i ∈ C},
w = qfoq0x1x3x5ds, where s represents O′,

R = {1 : (x1x2, in), 2 : (x2x1x3, out), 3 : (x2d, out),

4 : (x3x4, in), 5 : (x4x3x5, out), 6 : (x4d, out)}
∪ {7 : (Aiaix5, in), 8 : (aiaīd, out) | i ∈ C}
∪ {9 : (qp1x1, out), 10 : (p1p2x1, in), 11 : (p2p3Ai, out),

12 : (p3q
′x3, in), 13 : (p3#qf , in) | p : (q → q′, i+) ∈ P}

∪ {14 : (qp1x3, out), 15 : (p1p2x3, in), 16 : (p2p3ai, out), 17 : (p2p3d, out),

18 : (p3q
′x5, in), 19 : (p3#qf , in) | p : (q → q′, i−) ∈ P}

∪ {20 : (qfbx, out) | x ∈ O′} ∪ {21 : (qfb, in),

22 : (#d, out), 23 : (#d, in), 24 : (oqf , out), 25 : (od, out)}.

We now explain the “correct” work of Π. If non-determinism allows to apply a
different multiset of rules, then one of rules from the group

T = {3, 6, 8, 13, 17, 19, 25}

is also applied, and then the computation applies rules 22, 23 forever, without
producing the result. Notice that even if multiple applications of rules from T
happen, this would only add further objects # to the skin, and the computation
would still be unable to halt. In the “correct” computations of Π, rules from
T are not applied, their role is only to ensure that symbols x2, x4, p2, o or pairs
(ai, aī) are never idle in the skin, as well as that symbols p3 are never idle in the
environment.

Rule 24 is applied at the beginning of the computation, in parallel with
simulation of the first instruction of M ′. If rule 21 is applied instead, then rule
25 forces an infinite computation. Throughout the simulation of M ′, object qf
stays in the environment (available in a single copy unlike other objects from
Q).

Increment is performed by a sequence of multisets of rules 9,1,2,(10,4),(5,11),
(7,12). We remark that the system seems to have a choice between rules 1 and
10. However, if rule 10 is applied immediately after rule 9, then rule 11 is applied,
followed by rule 13, forcing a non-ending computation. Yet, if rule 1 is applied
again immediately after rule 2, then rule 2 is no longer applicable, forcing rule
3 and a non-ending computation.

Decrement is performed by a sequence of multisets of rules 14,4,5,15,16,18.
We remark that the system seems to have a choice between rules 4 and 15.
However, if rule 15 is applied immediately after rule 14, then rule 16 or 17 is
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applied, followed by rule 19, forcing a non-ending computation. Yet, if rule 4
is applied again immediately after rule 5, then rule 5 is no longer applicable,
forcing rule 6 and a non-ending computation. If decrement is attempted on a
counter with a zero value, then rule 17 is applied instead of rule 16, forcing an
infinite computation.

The conflicting counter semantics is ensured by rule 8.
Notice that once the simulation of M ′ arrives to qf , symbols x1, x3, x5, qf

stay in the skin, while symbols from Q \ {qf} stay in the environment. Hence,
all the rules moving objects p1, p3 or Ai in, i.e., rules 7,10,12,15,18 could not be
applied even if objects from O′ are sent out, which is carried out by rules 20,21.
Rules 13,19 temporary become applicable, but lead to an infinite computation;
they are no longer applicable once all object from O′ are taken out, and qf
stays in the skin. The computation halts with the skin containing the result (the
desired number of copies of a1) as well as 6 extra objects: x1, x3, x5, d, qf , b. �

3.4 Symport of Weight at Most 4

If we allow up to 4 objects to participate in symport rules, then the number of
extra objects can be decreased to 2.

Theorem 2. NOP1(sym4) ⊇ N2RE.

Proof. Consider an arbitrary counter automaton M . We first transform it as fol-
lows: for each counter i, a conflicting counter ī is introduced, initially containing
value zero. The semantics of counter machines is modified such that whenever
counters i and ī are non-zero, both are instantly decremented.

Then, all zero-test instructions for any counter i are performed by increment-
ing a conflicting counter ī, and then decrementing it (nothing changes except the
states if counter i has value zero). Otherwise, both counters are decremented,
and then the decrement of counter ī fails. Therefore, we have transformed M
into a counter automaton M ′ = (Q, q0, qf , P, C), which is equivalent under the
conflicting counter semantics.

We construct a P system simulating a counter automaton M ′:

Π = (O,E, [ ]
1
, w,R, 1), where

O = E ∪O′ ∪ {T,N},
E = {ai | i ∈ C} ∪Q ∪ {p2 | p ∈ P},
O′ = {pi | i ∈ {1, 3, 4}, p ∈ P},
w = q0 T s c|O

′|−1 N, where s represents O′,

R = {1 : (qp1T, out), 2 : (p1q
′aiT, in) | p : (q → q′, i+) ∈ P}

∪ {3 : (qp1T, out), 4 : (p1p2T, in), 5 : (p2p3aiT, out), 6 : (p2p4T, out),

7 : (p2p4T, in), 8 : (p3q
′T, in) | p : (q → q′, i−) ∈ P}

∪ {9 : (aiaī, out) | i ∈ C}
∪ {10 : (qfbx, out | x ∈ O′)} ∪ {11 : (Nc, out), 12 : (qfbN, in).

The simulation of a transition in A is performed as follows:
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– An increment instruction is performed by replacing q by q′ in two steps with
the help of object p1, also bringing an object ai in.

– A decrement instruction is performed by replacing q by q′ in four steps with
the help of objects p1, p2, p3, also bringing an object ai out. Moreover, rules
6,7 are optionally applied an arbitrary number of steps. If ai is not present,
then the computation never exits the loop of applying rules 6,7.

– The conflicting counter semantics is implemented by rule 9.
– Once the simulation of M is finished, object qf enters the system. Each

application of the group of rules 11,10,12 leads to removal from the skin of
one copy of c and one object from O′. Notice that objects from O′ cannot
reenter the skin without object T . The first application of rule 11 actually
happens in the first step of the computation, but the rest of this process
takes place after the simulation of M ′ is finished. The multiplicity of objects
c has been chosen to be |O′|−1 so that objects qf , b stop reentering the skin
exactly when no more objects from O′ remain there. The computation halts
with the skin containing the result and objects T , N . �
Hence, the known bounds can be described as follows.

NOP1(sym2) ⊇ SEG1 ∪ SEG2. (1)

NOP1(sym2) ⊆ NFIN. (2)

NOP1(sym3) ⊇ NFIN1 ∪
5⋃

k=0

(NkFINk ∪NkREGk) ∪N6RE. (3)

NOP1(sym4) ⊇ NFIN0 ∪NFIN1 ∪N1REG1 ∪N2RE. (4)

NOP1(sym∗) ⊆ NFIN ∪N1RE. (5)

3.5 Sequential Mode

Recently, in [4] we obtained the counterpart of these results for sequential sys-
tems. We recall them here.

NOP sequ
1 (sym2) ⊇ SEG1 ∪ SEG2. (6)

NOP sequ
1 (sym2) ⊆ NFIN. (7)

NOP sequ
1 (sym3) ⊇ NFIN1 ∪

∞⋃

k=0

(NkFINk ∪NkREGk). (8)

NOP sequ
1 (sym∗) = NFIN ∪N1REG. (9)

4 Discussion

We have improved the best known lower bounds of the computational power of
one-membrane P systems with symport only. Using symport of weight at most 3,
computational completeness holds with 6 extra objects. With symport of weight
at most 4, 2 extra objects suffice. Since 1 extra object is known to be necessary
to generate infinite sets by any symport-only P system, a particularly interesting
open question is whether
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– one extra object is also sufficient for computational completeness (and what
symport weight bound is enough), or

– two extra objects are also necessary for computational completeness.

Another problem is to bridge or further (see (3)) decrease the gap between 6
and 1 extra objects for symport of weight at most 3.

Acknowledgments The first author acknowledges the project RetroNet by the
Lombardy Region of Italy under the ASTIL Program (regional decree 6119,
20100618).
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Abstract. Mobile membranes with objects on surface represent a rule-
based formalism involving parallelism and mobility. We use this class of
mobile membranes to model the low-density lipoprotein degradation. A
translation of this formalism into colored Petri nets is provided in order
to analyze, using CPN Tools, some important properties of mobile mem-
branes: reachability, boundedness, liveness, fairness. In order to show
how this translation works, we translate the model of the low-density
lipoprotein degradation using mobile membranes into colored Petri nets.

1 Introduction

Formal models are used for many purposes, and each purpose influences the
degree of abstraction and detail. If we provide a greater detail, the number of
systems to which our model applies will decrease. A formal model should have
three properties, and each of these properties trades off against the other two [12]:
generality: the number of systems and situations to which the model correctly
applies, realism: the degree to which the model mimics the real world, power
and precision: collection of revealed properties, and the accuracy of the model
predictions.

In this paper we use two formalisms: mobile membranes (realism, being in-
spired by cell biology) and colored Petri nets (power and precision provided
by complex software tools). A relation can be established between these two
formalisms by providing an encoding of mobile membranes into colored Petri
nets. By considering the endocytic pathway for low-density lipoprotein degra-
dation, we show how mobile membranes can be used to model such a biological
phenomenon, while colored Petri nets can be used to analyze and verify auto-
matically some behavioral properties of this pathway. The endocytic pathway for
low-density lipoprotein (LDL) degradation has been modeled before using other
formalisms (e.g., bioambients [15]). However, none of the previous descriptions
of the pathway is not translated into a formalism having software tools able to
check automatically some complex behavioral properties.

The first connections between membrane systems and Petri nets are pre-
sented in [6] and [16]. In [10], a direct structural relationship between these two
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formalisms is established by defining a new class of Petri nets called Petri nets
with localities. This new class of Petri nets has been used to show how maximal
evolutions from membrane systems are faithfully reflected in the maximally con-
current step sequence semantics of their corresponding Petri nets with localities.

In this paper, we present the syntax and semantics of mobile membranes with
objects on surface in Section 2, and in Section 3 we use this formalism to model
the LDL pathway. In order to be able to use a complex software called CPN
Tools, a translation of a system with a bounded number of mobile membranes
into colored Petri nets (described briefly in Section 4) is provided in Section 5.
The description of the LDL degradation obtained via the given translation is
presented in Section 6. The colored Petri nets software tools are used to ana-
lyze automatically some behavioral properties. Conclusion and references end
the paper.

2 Mobile Membranes with Objects on Surface

To be able to model nondeterministic, spatial and dynamic biological processes,
we use a rule-based model of computation called mobile membranes [2]. The first
systems with mobile membranes were introduced in [11] as a particular class of
membrane computing [14], while mobile membranes were studied in detail in [3].
A specific feature of this formalism is given by the parallel application of rules;
this feature is inspired from biology, and it is not present in process calculi with
mobility that use interleaving semantics [1]. The parallel application of rules
depends on the available resources (i.e., elements of the left hand side of the
rules). The mobile membranes systems are defined by two features:

1. A spatial structure consisting of a hierarchy of membranes (which are ei-
ther disjoint or included) with multisets of objects on their surface; a mem-
brane without any other membrane inside is called elementary, while a non-
elementary membrane is called a composite membrane.

2. The biologically inspired rules describing the mobility of membranes inside
the structure: pinocytosis (engulfing zero external membranes), phagocytosis
(engulfing just one external membrane), and exocytosis (expelling the con-
tent of a membrane outside the membrane where it is placed). Pinocytosis
and phagocytosis represent different types of endocytosis.

In terms of computation, we are working with membrane configurations. We
define the set M of membrane configurations (ranged by M,N, . . . ) by using
the free monoid O∗ (ranged over by u, v, . . . ) generated by a finite alphabet O
of objects (ranged over by a, a, b, b, . . . ).

Definition 1. The set M(Π) of membrane configurations in a system Π of
mobile membranes with objects on their surfaces is defined inductively as follows:

• if w is a multiset over O, then [ ]w ∈ M(Π);
[ ]w is called an elementary membrane configuration;
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• if M1, . . . ,Mn ∈ M(Π), n ≥ 1, and w is a multiset of objects over O then
[M1‖ . . . ‖Mn]w ∈ M(Π); [M1‖ . . . ‖Mn]w is called a composite membrane
and M1, . . . ,Mn are called adjacent membrane configurations.

We use string representation of multisets of objects; in this way, multisets of
objects on the membranes surfaces are represented by sequences w, meaning that
every permutation of such a sequence is allowed (as an equivalent representation
of the same multiset).

Inspired from the immune system [8], we define specific rules called pino,
phago and exo in which the membranes agree on their movement by using com-
plementary objects a and a. Biologically speaking, the objects a and their cor-
responding co-objects a fit properly.

IfM andN are arbitrary membrane configurations, and u and v are arbitrary
multisets of objects, the evolution from a configuration to another is provided
by a set R of rules defined as follows:

• [ ]a u a v →m [ [ ]c u]d v, for a, a ∈ O, c, d, u, v ∈ O∗ pino

M1 M2

auav
m M1 M2

dv
cu

An object a together with its complementary object a indicate the creation
of an empty membrane within the membrane on which a and a objects are
attached. We should imagine that this initial membrane buckles towards the
inside, and pinches off by breaking the connection between a and a. The
multiset of objects u on the new created (empty) membrane is transferred
from the initial membrane. The objects a and a can be modified during
this step into the multisets c and d, respectively. On the surface of the
membrane appearing in the left hand side of the rule there are some objects
(others than auav) which are ignored; these objects are also not specified on
the right hand side of the rule, being randomly distributed between the two
resulting membranes. By M1 and M2 are denoted (possible empty) multisets
of elementary and composite membranes.

• [ ]a u‖ [ ]a v →m [ [ [ ]c u]d]v, for a, a ∈ O, c, d, u, v ∈ O∗ phago

M1 au
M2

av

m M1M2

v
d

cu

An object a together with its complementary object a indicate a membrane
(the one with a on its surface) “eating” an elementary membrane (the one
with a on its surface). The membrane having a and v on its surface wraps
around the membrane having a and u on its surface. An additional membrane
is created around the eaten membrane; the objects a and a are modified
during this evolution into the multisets c and d (the multiset c corresponds
to a and remains on the eaten membrane, while the multiset d corresponds
to a and is placed on the new created membrane). On the surface of the
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membranes appearing in the left hand side of the rule there are some objects
(others than au and av) which are ignored; these objects are also not specified
on the right hand side of the rule. The objects appearing on the membrane
having initially the object a on surface remain unchanged, while the objects
appearing on the membrane having initially the object a on surface are
randomly distributed between the two resulting membranes (the ones with d
and v). By M1 and M2 are denoted (possible empty) multisets of elementary
and composite membranes.

• [ [ ]a u]a v →m [ ]c u d v, for a, a ∈ O, c, d, u, v ∈ O∗ exo

M1 M2 M3

cudv

M1 M2

av

M3 au m

An object a together with its complementary object a indicate the merging
of a nested membrane with its surrounding membrane. We should imagine
that the connection between a and a represent the point where the mem-
branes connect each other. In this merging process (which is a smooth and
continuous process), the membrane having the multiset a u on its surface
is expelled to the outside, and all objects of the two membranes are united
into a multiset on the membrane which initially contained v. The objects
a and a can be modified during this evolution into the multisets c and d,
respectively. If the membrane having on its surface the object a is composite,
then its content is released near the newly merged membrane after applying
the rule. On the surface of the membranes appearing in the left hand side of
the rule there are some objects (others than au and av) which are ignored;
these objects are also not specified on the right hand side of the rule, being
moved on the resulting membrane. By M1, M2 and M3 are denoted (possible
empty) multisets of elementary and composite membranes.

Definition 2. For a system Π of mobile membranes with objects on their sur-
faces, if M and N are two membrane configurations from M(Π), then

• M reduces to N (denoted by M → N) if there exists a rule in R applicable
to configuration M such that configuration N is obtained;

• a transition from M to N represents a number of reductions performed in
one step using a maximal set of rules from R (such that no further rule can

be added to the set); by M
R′
⇒ M ′ we denote that M evolves to M ′ due to

the parallel applications of the rules from a set R′ ⊆ R;
• a sequence of transitions is a computation, and a computation is successful if

it halts (it reaches a membrane configuration where no rule can be applied).

3 LDL Degradation Pathway Using Mobile Membranes

LDL is one of several complexes carrying cholesterol through the bloodstream.
An LDL particle is a lipoprotein complex that contains one thousand or more
cholesterol molecules in the form of cholesteryl esters. A monolayer of phospho-
lipid surrounds the cholesterol and contains a single molecule of a large protein
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apolipoprotein B (known as apoB). In a receptor-mediated endocytosis, a cell
engulfs a particle of low-density lipoprotein from the outside. To do this, the cell
uses receptors that specifically recognize and bind to the LDL particle. By this
mechanism, cells acquire from the bloodstream the cholesterol required for the
membrane synthesis that occurs during the cell growth.

Fig. 1. Endocytic Pathway for Low-Density Lipoprotein [13]

The degradation of LDL particles is realized in five steps (see Figure 1):

1. Cell-surface LDL receptors bind to an apoB protein of an LDL particles
forming an receptor-ligand complex.

2. Clathrin-coated pits containing receptor-LDL complexes are pinched off.
3. After the vesicle coat is shed, the uncoated endocytic vesicle (early endo-

some) fuses with the late endosome. The acidic pH in this compartment
causes a conformational change in the LDL receptor that leads to freeing
the bound LDL particle.

4. The late endosome fuses with the lysosome, and the proteins and lipids of
the free LDL particle are broken down to their constituent parts by enzymes
in the lysosome.

5. The LDL receptor recycles to the cell surface where, at the neutral pH of
the exterior medium, the receptor undergoes a conformational change such
that it can bind another LDL particle.

We illustrate how the LDL degradation pathway can be described in terms of mo-
bile membranes with objects on surface, and simulate all these steps. We describe
an LDL particle in membrane systems as [ ]apoB cho representing the monolayer
of phospholipid that contains a single apoB protein, and cholesterol cho. A cell
engulfing the LDL particle is described as [ [ ]lyso ‖ [ ]late aux]recep recep, where:
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• [ ]recep recep represents the cell containing on its surface two receptors recep
able to recognize an apoB protein; we do not use clathrin and others receptors
of the cell because we are not interested in their evolution;

• [ ]lyso represents the lysosome;
• [ ]late aux represents the late endosome, and aux is an auxiliary object in

creating new membranes by pino and phago rules.

The initial configuration of the systems is
M1 = [ ]apoB cho ‖ [ [ ]lyso aux ‖ [ ]late aux]recep recep

The steps presented in Figure 1 are described by using the following rules:

1. [ ]apoB ‖ [ ]recep recep → [ [ [ ]apoB]recep]recep (phago) (recep = apoB)

2. [ ]recep ‖ [ ]late aux → [ [ [ ]recep]aux]late (phago) (aux = recep)

3. [ [ ]recep]aux → [ ]recep1 aux (exo) (aux = recep)

4. [ [ ]aux]late → [ ]aux4 late (exo) (late = aux)

5. [ ]lyso aux ‖ [ ]late → [ [ [ ]late]aux1]lyso (phago) (aux = late)

6. [ [ ]recep1]aux1 → [ ]recep2 aux2 (exo) (aux1 = recep1)

7. [ ]late recep2 aux2 aux4 → [ [ ]late recep3 aux4]aux3 (pino) (aux2 = recep2)

8. [ [ ]aux3]lyso → [ ]lyso aux (exo) (lyso = aux3)

9. [ [ ]apoB]lyso → [ ]lyso apoB (exo) (lyso = apoB)

10. [ ]late recep3 aux4 → [ [ ]recep4 aux4]late (pino) (late = recep3)

11. [ ]aux4 recep4 → [ [ ]recep5]aux5 (pino) (aux4 = recep4)

12. [ [ ]aux5]late → [ ]late aux (exo) (late = aux5)

13. [ [ ]recep5]recep → [ ]recep recep (exo) (recep = recep5)

where by (recep = apoB) we denote that an object recep is complementary to
an object apoB.

Fig. 2. Evolution of the LDL degradation
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The evolution of the LDL degradation could be represented graphically as
in Figure 2. By M1, . . . ,M24 are denoted the possible configurations of the sys-
tem, and on each arrow from a Mi to a Mj is placed the number of the rule
which is applied in order to evolve from Mi to Mj. To denote that an object
recep changes its position and interacts with different objects, we use different
notations (namely, recep, recep1, . . . , recep5) in the evolution of the system.

Remark 1. The number of the applied rules to reach the configurationM24 start-
ing from the configuration M1 is always 13.

4 Colored Petri Nets

Colored Petri nets (CPN) represent a graphical language used to describe sys-
tems in which communication, synchronization and resource sharing play an
important role [9]. The CPN model contains places (drawn as ellipses or circles),
transitions (drawn as rectangular boxes), a number of directed arcs connecting
places and transitions, and finally some textual inscriptions located near the
places, transitions and arcs.

The places are used to represent the state of the modeled system, and this
state is given by the number of tokens of all the places. Such a state is called
a marking of the CPN model. By convention, we write the names of the places
inside the ellipses. The names have no formal meaning, but they have a practical
importance for the readability of a CPN model, just like the use of mnemonic
names in traditional programming.

The arc expressions on the input arcs of a transition determine when the
transition is enabled, i.e., to be activated by a certain marking. A transition is
enabled whenever it is possible to find a binding of the variables that appear in
the surrounding arc expressions of the transition such that the arc expression
of each input arc evaluates to a multiset of tokens that is present in the corre-
sponding input place. When a transition occurs with a given binding, it removes
from each input place the multiset of tokens to which the corresponding input
arc expression evaluates. Analogously, it adds to each output place the multiset
of tokens to which the corresponding output arc expression evaluates.

The colored Petri nets have also a mathematical representation with a well
defined syntax and semantics. This formal representation is the framework for
the study of different behavioral properties. We denote by EXPR the set of
expressions provided by the inscription language (which is ML in the case of
CPN Tools), and by Type[e] we denote the type of an expression e ∈ EXPR,
i.e., the type of the values obtained when evaluating e. The set of free variables
in an expression e is denoted V ar[e], and the type of a variable x is denoted
Type[x]. We denote the set of variables by X; the set of expressions e ∈ EXPR
for which V ar[e] ⊆ X is denoted by EXPRX . The set of all multisets over S is
denoted by SMS .

The following definition differs from that presented in [9] just because simul-
taneous parallel arcs from the same place to the same transition are not allowed
(i.e., it is enough to have only one arc).
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Definition 3. A non-hierarchical Colored Petri Net is a nine tuple
CPN = (P, T,A,Σ,X,C,G,E, I), where

1. P is a finite set of places;
2. T is a finite set of transitions such that P ∩ T = ∅;
3. A ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs;
4. Σ is a finite set of non-empty color set;
5. X is a finite set of typed variables such that Type[x] ∈ Σ for all x ∈ X;
6. C : P → Σ is a color set function that assigns a color set to each place;
7. G : T → EXPRX is a guard function that assigns a guard to each tran-

sition t such that Type[G(t)] = Bool;
8. E : A → EXPRX is an arc expression function that assigns a guard to

each arc a such that Type[E(a)] = C(p)MS , where p is the place connected
to the arc a;

9. I : P → EXPR∅ is an initialization function that assigns an initialization
expression to each place p such that Type[I(p)] = C(p)MS .

A distribution of tokens over the places of a net is called a marking. Given two
markings m and m′, we say that m leads to m′ by a set U of transitions, and
denote this by m[U〉m′.

5 Mobile Membranes as Colored Petri Nets

We denote by Π = (M0, R) a system of mobile membranes with a set R of
rules having an initial membrane configuration M0 = (w0

1 , . . . , w
0
n, µ), where w0

i

denotes the initial multisets of objects placed on membrane i, and µ the ini-
tial membrane structure. We consider that a well-defined system has at any
point of evolution at most k > 2 membranes. Given such a system of mo-
bile membranes, the corresponding colored Petri net is denoted by CPNΠ =
(P, T,A,Σ,X,C,G,E, I), where the components are defined as follows:

◦ P = {1, . . . , k} ∪ {structure}, where structure is a place that contains the
structure of the corresponding membrane system, namely the pairs (i, j).

◦ T =
⋃

1 ≤k≤s

tk, where each tk represents a distinct transition for a rule of R;

since the rules over mobile membranes contains no explicit label for mem-
branes, it means that:

• a pino rule can be instantiated at most k times in each step;

• a phago rule can be instantiated at most
k!

2!(k − 2)!
times in each step;

• an exo rule can be instantiated at most
k!

2!(k − 2)!
times in each step;

2 represents the number of membranes from the left hand side of an exo

rule, and
k!

2!(k − 2)!
represents all the possible combinations of mem-

branes.
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Thus, s = s1 ∗ k + s2 ∗ k!

2!(k − 2)!
+ s3 ∗ k!

2!(k − 2)!
, where s1, s2 and s3

represent the numbers of pino, phago and exo rules from R.

◦ A contains input arcs (P × T ) and output arcs (T × P ); for a rule r and its
associated transition t, we build the arcs as follows:

• the input arcs are both from the places that represent the membranes
appearing in the left hand side of the evolution rule r and from the place
structure to the transition t;

• the output arcs are from the transition t to both the places that represent
the membranes appearing in the right hand side of the evolution rule r
and to the place structure.

◦ Σ = U ∪ L, where U represents tokens (color) set containing all the ob-
jects from O, and L = {1, . . . , k} × {1, . . . , k} is a color set containing the
membrane structure.

◦ X = {x, y, z, . . .} is a set of variables used when modifying the content of
place structure.

◦ C(p) =

{
U, if p ∈ {1, . . . , k}
L, if p = structure.

◦ G(t) =





[x = y], if t is a transition corresponding to a phago rule; it checks if

both membranes from the left hand side of a phago rule

have the same parent;

true, otherwise.

◦ For a rule r and its associated transition t, we build E as follows:
• we place the multiset of objects u on an input arc from a place that

represents a membrane appearing in the left hand side of the evolution
rule r (being marked with a multiset of objects u) to the transition t;

• we place all the pairs (i, j) describing the membrane structure appearing
in the left hand side rule r on the input arc from the place structure to
the transition t;

• we place the multiset of objects v on an output arc from a transition t
to a place that represents a membrane appearing in the right hand side
of the evolution rule r (being marked with a multiset of objects v);

• we place all the pairs (i, j) describing the membrane structure appearing
in the right hand side rule r on the output arc from the transition t to
the place structure.

◦ I(p) =

{
w0

p, if p ∈ {1, . . . , k}
{(i, j) | i, j ∈ {1, . . . , k}, (i, j) ∈ µ}.

We prove formally the relationship between the dynamics of the mobile mem-
brane Π and that of the corresponding colored Petri net CPNΠ .

Theorem 1. If M and M ′ are two membrane configurations of Π, then

M
R′
⇒ M ′ if and only if φ(M) [ψ(R′)〉φ(M ′),

where
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φ(M)(i) =

{
wi, for all places i ∈ P ;

µ, i=structure.
, and

ψ(R) =
⋃

ri∈R

ψ(ri) with ψ(ri) = ti.

Proof. The function φ represents a bijection between the multisets of objects
of Π and the markings of CPNΠ based on the corresponding links between ob-
jects and tokens, and between membranes and places, respectively. Let (w1, . . . ,
wk, µ) be the multisets of objects from the membrane configuration M , together
with its structure µ. Similarly, for a set of rules R′ = {r1, . . . , ri} of Π , the
function ψ is a bijection constructing the set ψ(R′) = {t1, . . . , ti} of transitions
of CPNΠ from the set R of rules.

A membrane configurationM1 can evolve to a membrane configurationM2 by
applying an evolution rule r from R′ if and only if, given the marking φ(M1), one
obtains the marking φ(M2) by firing a transition t in CPNΠ , where ψ(R′)(t) = r.
Overall, this is a direct consequence of the fact that ψ and φ are bijections. ⊓⊔

From the construction above, it results that the initial configuration of Π
corresponds through φ to the initial marking of CPNΠ . Moreover, according to
Theorem 1, it results that the computation of Π coincides with the computation
of the CPNΠ .

6 Simulating LDL Degradation by Using CPN Tools

Now the LDL degradation pathway description by using mobile membranes could
be encoded in colored Petri nets. Such an encoding is provided to allow the use
of a complex software tool able to verify automatically some important behav-
ioral properties. Some decidability results for behavioral properties of membrane
systems with peripheral proteins are presented in [5], but they cannot be proven
automatically. For colored Petri nets is available a complex software called CPN
Tools in which simulations can be performed, and certain behavioral proper-
ties can be checked automatically: reachability, boundedness, deadlock, liveness,
fairness. CPN Tools (www/cs/au.dk/CPNTools) is a tool for editing, simulating,
state space analysis, and performance analysis of systems described as colored
Petri nets.

In what follows we show how the rules of mobile membranes used to model
the LDL degradation pathway can be simulated using the CPN Tools. To make
easier to observe how the evolution takes place using CPN Tools, we simplify
the system and use only the transitions that eventually occur.

A CPN model is always created in CPN Tools as a graphical drawing. Figure 3
describes the LDL degradation pathway model, namely the membrane configu-
ration M1 from Section 3. The diagram contains eight places, four substitution
transitions (drawn as double-rectangular boxes), a number of directed arcs con-
necting places and transitions, and finally some textual inscriptions next to the
places, transitions and arcs. The arc expressions are built from variables, con-
stants, operators, and functions. When all variables in an expression are bound
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to values of the correct type, the expression can be evaluated. In general, arc
expressions may evaluate to a multiset of token colors. Next to each place is
an inscription which determines the set of token colors (data values) that the
tokens on that place are allowed to have. The set of possible token colors is
specified by means of a type (as known from programming languages) which is
called the color set of the place. By convention, the color set is written below
the place. The place structure1 has the color set P , while all the others have
the color set U ; the color set P is used to model the structure of a membrane
configuration (pairs of numbers of the form (i, j)), while the color set U is used
to model the set of objects from a mobile membranes.

Fig. 3. LDL Degradation Pathway in CPN Tools

Color sets are defined using the CPN keyword colset:

colset I = int;

colset P = product I ∗ I;
colset U = with cho | apoB | lyso | late | aux | aux1 | aux2 | aux3 | aux4 |

aux5 | recep | recep1 | recep2 | recep3 | recep4 | recep5;

The inscription on the upper side of a place specifies the initial marking of
that place. The inscription of the place late endosome(4) is 1‘late + +1‘aux
specifying that the initial marking of this place consists of two tokens with the
values late and aux. The symbols ‘ and ++ are operators used to construct
a multiset of tokens. The infix operator ‘ takes a positive integer as its left
argument, specifying the number of appearances of the element provided as
the right argument. The operator ++ takes two multisets as arguments and
returns their union (sum of their multiplicities). The absence of an inscription
specifying the initial marking means that the place initially contains no tokens.
The marking of each place is indicated next to the place. The number of tokens
on the place is shown in a small circle, and the detailed token colors are indicated
in a box positioned next to the small circle.
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The four transitions drawn as rectangles represent the events that can take
place in the system. The names of the transitions are written inside the rect-
angles; these names have no formal meaning, but they are important for the
readability of the model. In Figure 3 the names of the transitions are step2,
step3, step4 and step5 indicating that each of these transitions simulates the
corresponding steps of the LDL degradation pathway described in Figure 1.

A transition with double-line border is a substitution transition; each of them
has a substitution tag positioned next to it. The substitution tag contains the
name of a submodule which is related to the substitution transition. Intuitively,
this means that the submodule presents a more detailed view of the behavior
represented by the substitution transition, and it is particularly useful when
modeling large systems. The input places of substitution transitions are called
input sockets, while the output places are called output sockets. The socket places
of a substitution transition constitute the interface of the substitution transition.
To obtain a complete hierarchical model, it must be specified how the interface
of each submodule is related to the interface of its substitution transition. This
is done by means of a port-socket relation which links the port places of the
submodule to the socket places of the substitution transition. Input ports are
related to input sockets, output ports to output sockets, and input/output ports
to input/output sockets.

Fig. 4. Step 4 Transition

For instance, behind the substitution transition step4 is another colored Petri
net presented in Figure 4. The substitution transitions appearing in this colored
Petri net are:

• the substitution transition phago1-step4 simulates the mobile membrane
rule 5 from the description of the LDL degradation pathway;

• the substitution transition exo1-step4 simulates the mobile membrane rule 6
from the description of the LDL degradation pathway;

• the substitution transition pino-step4 simulates the mobile membrane rule 7
from the description of the LDL degradation pathway;
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• the substitution transition exo2-step4 simulates the mobile membrane rule 8
from the description of the LDL degradation pathway;

• the substitution transition exo3-step4 simulates the mobile membrane rule 9
from the description of the LDL degradation pathway.

We may observe that the marking of places appearing in Figure 4 are similar
with the one of the corresponding places of Figure 3. The substitution transition
exo1-step4 is replaced by the Petri net presented in Figure 5.

Fig. 5. Exo1 Step 4 Transition

In Figure 6, the enabled transition is phagostep2 which is surrounded by a
green shadow. It removes a token apoB from place apoB protein(2), a token
recep from place cell(5), and two tokens (0, 2) and (0, 5) from place structure.
The arc expression of the input arc from the place structure are (x, 2) and (y, 5),
and so they are tested using the test expression [x=0, y=0]. The test is performed
in order to see that the simulated membranes 2 and 5 have the same parent 0.

Fig. 6. Phago Step 2 Transition

After firing the transition, a token recep is added to the place aux1(6), a token
apoB is added to the place apoB protein(2), and three tokens (0, 5), (6, 2) and
(5, 6) are added to the place structure1.
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A state space is a directed graph where there is a node for each reachable
marking, and an arc for each occurring transition. The state space of a CPN
model can be computed fully automatically, and this makes it possible to auto-
matically analyze and verify several properties concerning the behavior of the
model: the minimum and maximum numbers of tokens in a place, reachability,
boundedness, etc. When working with Petri nets, some behavioral properties
(e.g., reachability, boundedness, liveness, fairness) are easier to study once a
state space is calculated; a good survey for known decidability issues for Petri
nets is given in [7].

We can define now similar properties for mobile membranes with objects
on surface. Given a mobile membrane with object on surface Π with initial
configuration M0, we say that a configuration M is reachable in Π if there
exist the sets of transitions U1, . . . , Un such that M0[U1〉 . . . [Un〉Mn = M . A
home configuration is a configuration which can be reached from any reachable
configuration. We say that a membrane system is bounded if the set of reachable
configurations is finite. A membrane system has the liveness property if each
rule can be applied again in another evolution step, and it is fair if no infinite
execution sequence contains some configurations which occur only finitely. By
considering a colored Petri net CPNΠ obtained from a mobile membrane Π , we
have the following decidability result.

Proposition 1. If the reachability problem is decidable for CPNΠ , then the
reachability problem is also decidable for Π.

Proof (Sketch). The initial marking of CPNΠ is the same as the initial configu-
ration ofΠ according to the construction presented in Section 4, and each step of
the Petri nets corresponds to an evolution of the mobile membranes with objects
on surface (according to Theorem 1). Thus the reachability problem becomes de-
cidable for mobile membranes with objects on surface as soon it is decidable for
colored Petri nets.

In a similar way, we can prove several properties for mobile membranes with
objects on surface as soon they hold for their corresponding colored Petri nets.

Proposition 2.

• If CPNΠ is bounded, then Π is bounded.
• If CPNΠ has the liveness property, then Π has the liveness property.
• If CPNΠ is fair, then Π is fair.

Since the properties of reachability, boundedness, liveness and fairness can be
derived automatically by using CPN Tools, these results are of great help when
studying similar properties for mobile membranes with objects on surface. For
instance, using the CPN Tools and the model for the LDL degradation pathway,
we can check whether we can reach the configuration in which the membrane
marked by apoB is inside the membrane marked by lyso, for instance.

Using CPN Tools for the LDL degradation pathway model, we obtain the
following output file:
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Home Markings: [24] Dead Markings: [24];

Dead Transition Instances: None Live Transition Instances: None

Fairness Properties: No infinite occurrence sequences,

meaning that we always reach configuration M24 (home marking), the com-
putation stops here (dead marking), and that there are no infinite occurrence
sequences.

The simulation of LDL degradation pathway is not entirely correct from a
biological point of view, because a cell is able to process more than one LDL
molecule. An arbitrary number of LDL molecules cannot be simulated by using
mobile membranes, but it can be simulated in colored Petri nets by adding a
new transition input and a new place applied as in Figure 7.

Fig. 7. LDL Degradation Pathway with input transition

In Figure 8 we show how the transition input is build, namely what are the
input arcs and output arcs together with their inscriptions.

Fig. 8. Input transition

This transition works as follows: if the cell has the initial structure less the
initial LDL molecule, then a new LDL molecule is added to the system in order

Mobile membranes with objects on surface as colored Petri nets

139



to reiterate the entire process. Applying CPN Tools on this extended system, we
obtain the following output file:

Home Markings: All Dead Markings: None;
Dead Transition Instances: None Live Transition Instances: All
Fairness Properties: All,

meaning that from any reachable configuration Mi we can always reach any
configuration Mj (home marking), the computation never stops (dead marking),
and so there are infinite occurrence sequences.

7 Conclusion

In this paper we continue the research line started in [4], and present a new
connection between the systems of mobile membranes and colored Petri nets.
The novelty of this formal translation, with respect to the one presented in [4],
is that the number of membranes in the system could change during evolution.
The systems of mobile membranes with objects on surface used in this translation
are bounded to a given number of membranes.

The structure of the parallel computations of the mobile membranes is faith-
fully reflected by the parallel semantics of the corresponding colored Petri nets.
In mobile membranes, the parallel way of using the rules means that in each
step we apply a maximal set of rules, namely a set of rules such that no further
rule can be added to this set. Since we deal with mobility, each object and each
membrane can be used only once in the rules applied in a step.

We have considered the low-density lipoprotein degradation pathway, and
described this biological process by using the mobile membranes with objects
on membranes. The translation of mobile membranes into colored Petri nets
allows to obtain a description of the biological process into colored Petri net, and
then use a software called CPN Tools in analyzing several behavioral properties:
reachability, boundedness, liveness, fairness. By encoding biological systems in
this way, many interesting biological questions can get precise answers. Using
CPN Tools, several (potentially infinite) behaviors can be investigated, a fact
that is interesting from a biological point of view. Finally, we have provided a
new link between biology, membrane systems and Petri nets which is, hopefully,
useful for all these areas.
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Abstract. We investigate the relationship between Petri nets and Spik-
ing Neural P (SNP) systems. In particular, we consider a special kind
of Petri nets such that (1) all places and transitions shall be connected
on path from the input place to the output place, (2) every place and
transition should contribute in the processing of tokens, (3) for any case,
the procedure will halt, and when it halts token is only in output place
and all the other places are empty, and (4) there should be no dead
place/transition. Using the building blocks of this special type of Petri
nets we construct an SNP system that simulates this special net. We
observed that the structural and behavioral properties of these nets are
carried over to the SNP that simulates it. Certain routing types such as
AND-split and OR-join are natural in SNP systems, but AND-joins ans
especially OR-splits turn out to be more complex. Finally our results
suggested the possibility of analysing workflow.

Key words: Spiking Neural P systems, routing, joins, splits, Petri nets, simu-
lations

1 Introduction

SNP systems, first introduced in 2006 in [9], are inspired by the way biological
spiking neurons compute: neurons are abstracted by treating them as mono-
membranar cells placed on nodes of a directed graph, where synapses or connec-
tions between neurons are the directed arcs. Indistinct signals in the neurons,
called action potential or simply spike in biology, are modeled using only the
symbol a. Information is encoded not in the symbol or spike itself but in the
time interval when spikes are produced or in the spike multiplicity. Time is not
just a resource in SNP systems but a way to represent information. Since the
introduction of SNP systems they have been used mostly as computing devices
with universality results in [9,3], as well as solving NP-complete problems as in
[16]. Petri nets however, since their introduction in 1962, have enjoyed an exten-
sive theory on Petri net behavior and structure. Petri nets are bipartite directed
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graphs that move tokens using two types of nodes: places and transitions. The
theory of Petri nets includes numerous works on the use of Petri nets for mod-
eling, analysis, and verification in business process modeling [19], in industrial
control, distributed systems, concurrent processes et al. See [15] for a compre-
hensive list. Since a possible connection between SNP systems and Petri nets was
mentioned in [18], several works have been produced in transforming SNP sys-
tems to Petri nets (including extensions of both models). Early works connecting
membrane systems and Petri nets include [11] and [22]. The transformations in
works such as [12][13][14] mostly deal with transforming a given SNP system to
a Petri net in order to check for certain properties or to “simulate” operations
of the SNP system. In [12] methods for transforming SNP systems to Petri nets
(and limited types of Petri nets to SNP systems) were introduced. An intuitive
simulation of SNP systems and Petri nets was presented, mostly focusing on
the correspondence between places and neurons, rules and transitions. In [14]
another transformation of SNP systems to Petri nets was introduced, as well as
some notes on Petri net behavioral properties such as liveness and boundedness
as applied to SNP systems. A mapping of the configurations of SNP systems
and Petri nets, by using synchronizing places, was also presented in [14]. This
mapping is similar to the idea of simulation presented in [7] between the set of
configurations of a simulating system and the set of configurations of a different,
simulated system. SNP systems with delays were modeled using timed Petri nets
in [13].

In this work we are motivated with the idea of using SNP systems to model
certain processes or phenomena, aside from the usual computability results.
Works on using SNP systems for modeling exist as in [10] and [8], however few.
Before we even begin to use SNP systems for modeling (hopefully in the near
future), we start by investigating structural and behavioral properties of SNP
systems that will prove useful for modeling processes. Several works highlight
the usefulness of Petri nets in modeling workflow processes as in [6][20][19] and
a comprehensive list and exposition in [21]. Workflow processes handle business
or organizational processes such as ordering a product, claiming insurance, and
so on, and identifying resources, defining tasks, and the order of task execution
[21]. Routing is of fundamental importance to workflow processes, and Petri nets
have been shown to be able to not only model these processes, but also to verify
the correctness of workflow process definitions and their executions. Inspired by
token routing in Petri nets, we investigate the routing of spikes in SNP systems

From our results we can answer questions about SNP systems such as: how
can spikes be routed (split or joined) in an SNP system? How “complex” do
routing of spikes turn out to be? Given structural and behavioral properties of
Petri nets related to routing, what do these properties imply to SNP systems?
Our results then indicate a possible use for SNP systems in modeling workflow
processes as an alternative to Petri nets, among other processes.

This paper is organized as follows: Section 2 provides some preliminaries for
this work, including definitions and properties of Petri nets and SNP systems.
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Section 3 provides the main results of this work. Finally, we provide concluding
remarks as well as directions for future work in Section 4.

2 Preliminaries

It is assumed that the readers are familiar with the basics of Membrane Com-
puting (a good introduction is [17] with recent results and information in the
P systems webpage [24]) and formal language theory. We only briefly mention
notions and notations which will be useful throughout the paper, as was done in
[9]. Let V be an alphabet, V ∗ is the free monoid over V with respect to concate-
nation and the identity element λ (the empty string). The set of all non-empty
strings over V is denoted as V + so V + = V ∗ − {λ}. We call V a singleton if
V = {a} and simply write a∗ and a+ instead of {a∗} and {a+}. The length of
a string w ∈ V ∗ is denoted by |w|. If a is a symbol in V , a0 = λ. A language
L ⊆ V ∗ is regular if there is a regular expression E over V such that L(E) = L.
A regular expression over an alphabet V is constructed starting from λ and the
symbols of V using the operations union, concatenation, and +, using paren-
theses when necessary to specify the order of operations. Specifically, (i) λ and
each a ∈ V are regular expressions, (ii) if E1 and E2 are regular expressions
over V then (E1 ∪E2), E1E2, and E+

1 are regular expressions over V , and (iii)
nothing else is a regular expression over V . With each expression E we associate
a language L(E) defined in the following way: (i) L(λ) = {λ} and L(a) = {a}
for all a ∈ V , (ii) L(E1 ∪ E2) = L(E1) ∪ L(E2), L(E1E2) = L(E1)L(E2), and
L(E+

1 ) = L(E1)+, for all regular expressions E1, E2 over V . Unnecessary paren-
theses are omitted when writing regular expressions, and E+ ∪{λ} is written as
E∗.

Now we define Petri nets and their mechanisms, slightly modified from [15]
and [19].

Definition 1 (Petri nets). A Petri net is a construct of the form

N = (P, T,A,M0)

where

1. P = {p1, p2, . . . , pm} is a finite set of places,
2. T = {t1, t2, . . . , tn} is a finite set of transitions such that P ∩ T = ∅,
3. A ⊆ (P × T ) ∪ (T × P ) is a set of arcs,
4. M0 : P → {0, 1, 2, 3, . . .} is the initial marking defined over each place p ∈ P .

A Petri net with a given initial marking is denoted by (N,M0). Markings
denote the distribution of tokens among places in a Petri net. In this manner,
the idea of a marking being defined over a place and as a vector containing
every marking of every place in N are interchangeable, so that we have M0 =
〈M0(p1),M0(p2), . . . ,M0(pm)〉. Places are represented as circles, transitions as
rectangles, and tokens as black dots in places. Given two nodes p and t the
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weight of arc (p, t) is equal to 1. Petri nets where the arc weight is always 1 are
known as ordinary Petri nets. Note that ordinary and nonordinary Petri nets
(i.e. arc weights greater than or equal to 1) have the same modeling power [15].
We use the notation •p to denote the set of input transitions of place p, and the
notation •t as the set of input places of transition t. Similarly we use p• and t•
to denote the sets of output transitions and places of p and t respectively. Tokens
are indistinct, and a place without an input transition is called a source place
(•p = ∅) while a place without an output transition is a sink place (p• = ∅).
We assume that there is no place p or transition t such that •p = p• = ∅ or
•t = t• = ∅. A marking of a place p is denoted as M(p). A marking of a place is
always a non-negative integer.

A transition t is enabled iff for every p ∈ •t, p has at least one token. An
enabled transition t is fired when t removes one token from every p, and deposits
one token to every place p′ ∈ t•. When |p • | ≥ 1 and there exists another
transition t′ ∈ p•, then p has to nondeterministically choose (also known as a
decision point, choice, or conflict in literature e.g. [4,15]) which among t and t′

will be enabled. If p′, p′′ ∈ t• then if t fires, t deposits one token each to p′ and p′′.
Parallelism in Petri nets comes from the fact that both p′ and p′′ receive tokens
at the same time after t is fired, thus allowing the firing and marking of possibly
more succeeding transitions and places, respectively. A marking Mn is reachable
from a marking M if there is a sequence of enabled transitions 〈t1t2 . . . tn〉 that
leads from M to Mn. The set of all reachable markings from M0 given a net N

is denoted as R(N,M0) or simply R(M0) assuming there is no confusion on the
referred net. Now we provide some properties of Petri nets as well additional
classes from literature.

Definition 2 (Liveness, Boundedness, Safeness (Petri nets) [15,21]). A
Petri net (N,M0) is live iff for every M ′ ∈ R(M0) and every t ∈ T , there exists
a state M ′′ reachable from M ′ which enables t. (N,M0) is bounded iff for each
p ∈ P there exists a positive integer k, such that for each M ∈ R(M0), M(p) ≤ k
(the net is k-bounded). The net is safe iff for each reachable state M(p) does
not exceed 1.

Definition 2 provides some behavioral properties of Petri nets. A condition known
as a deadlock occurs when a transition t is unable to fire given a certain marking
(see Fig. 2). If N is a live net then it is considered deadlock-free. A class of
Petri nets known as workflow nets or WF-nets were introduced in [19] and were
used to model workflows. A WF-net is a special type of Petri net that has
two special places, the only source place i (•i = ∅) and the only sink place o
(o• = ∅). A net N is a good WF-net, a net that models correct workflow process
definitions, if N satisfied the following conditions: (i) N is a live net, (ii) The
initial configuration is where only M(i) = 1 and all other places are unmarked
(iii) N halts only in a configuration where M(o) = 1 and all other places are
unmarked. These properties as outlined in [21] all make sure that a process
executes correctly i.e. no tasks (modeled by transitions) were left undone and
all resources or states reached (modeled by marked places) have been used to
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reach the end goal, corresponding to (iv) or a proper termination of a workflow
process.

Fig. 1. Routing types: (a) sequential, (b) conditional, (c) parallel, (d) iteration.

As mentioned earlier, the routing of tokens are fundamental to WF-nets, and
[21] identifies four types: sequential, parallel, conditional, and iteration (See Fig.
1). In order to perform these routing types, building blocks in Petri net semantics
are used. These building blocks are (again referring to Fig. 1): AND-split is the
sending of a token by transition D (from p5) to two or more output places of t
in parallel, in this case p6 and p7. An AND-join is the removal, in parallel, of a
token from every input place of E (in this case p6 and p7) in order to fire E. An
OR-split is a nondeterministic routing of a token in p3 to only one among many
output transitions of p3 (in this case firing either B or C). An OR-join is the
sending of a token from B (or C) to p4, among several input transitions of p4.

From [19] we have the following: For Petri net N, a path H from node x0
to node xk is a sequence 〈x0, x1, . . . , xk−1, xk〉 where (xi, xi+1) ∈ A, for 1 ≤
i ≤ k − 1. The alphabet of H denoted as alph(H) = {x0, x1, ..., xk−1, xk}. H
is elementary if for any nodes xi and xk in H, i 6= k implies xi 6= xk. An
elementary path H implies that H must have unique nodes in path. Using paths
and alphabets we have the following definition.

Definition 3 (Well-handled, Free-Choice (Petri nets) [19]). A Petri net
N is well-handled iff for any pair of nodes x and y such that one of the nodes
is a place and the other a transition, and for any pair of elementary paths H1

and H2 leading from x to y, alph(H1) ∩ alph(H2) = {x, y} implies H1 = H2.
N is free-choice iff for every two transitions t1 and t2, •t1 ∩ •t2 6= ∅ implies
•t1 = •t2.

Definition 3 provides structural properties of Petri nets. The well-handled prop-
erty makes sure that a token that is split using parallel routing (AND-split) is
synchronized or terminated with an AND-join. The property also assures that
a conditionally routed token (OR-split) is synchronized with an OR-join. If an
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OR-split is synchronized by an AND-join, it is possible to have a deadlock. The
free-choice property also avoids the possibility of deadlocks (see Fig. 2) and has
been studied extensively in literature. See for example [5] and [21,19] to name a
few. These nets are also known as extended free-choice nets in [15] and [4]. Next

Fig. 2. (a) A net that is not well-handled. (b) A non-free-choice net.

we provide the definition of an SNP system, slightly modified from [18].

Definition 4 (SNP system). An SNP system without delay of a finite degree
m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike).
2. σ1, . . . , σm are neurons of the form σi = (αi, Ri), 1 ≤ i ≤ m,

where:
(a) αi ≥ 0 is the number of spikes in σi
(b) Ri is a finite set of rules of the general form

E/ac → ab

where E is a regular expression over O, c ≥ 1, b ≥ 0, with c ≥ b.
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, (i, i) /∈ syn for 1 ≤ i ≤ m, are synapses

between neurons.
4. out ∈ {1, 2, . . . ,m} is the index of the output neuron.

A spiking rule is a rule E/ac → ab where b ≥ 1. A forgetting rule is a rule
where b = 0 is written as E/ac → λ. If L(E) = {ac} then spiking and forgetting
rules are simply written as ac → ab and ac → λ, respectively. Applications of
rules are as follows: if neuron σi contains k spikes, ak ∈ L(E) and k ≥ c, then the
rule E/ac → ab ∈ Ri is enabled and the rule can be fired or applied. If b ≥ 1, the
application of this rule removes c spikes from σi, so that only k−c spikes remain
in σi. The neuron fires b number of spikes to every σj such that (i, j) ∈ syn. If
b = 0 then no spikes are produced. SNP systems assume a global clock, so the
application of rules and the sending of spikes by neurons are all synchronized.
The nondeterminism in SNP systems occurs when, given two rules E1/a

c1 → ab1

and E2/a
c2 → ab2 , it is possible to have L(E1) ∩ L(E2) 6= ∅. In this situation,
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only one rule will be nondeterministically chosen and applied. The parallelism
is global for SNP systems, since neurons operate in parallel.

Given a neuron ordering of 1, . . . ,m we can define an initial system config-
uration as a vector C0 = 〈α10, α20, . . . , αm0〉. A computation is a sequence of
transitions from an initial configuration. A computation may halt (no more rules
can be applied for a given configuration) or not. One way to obtain a result is
to take the time difference between the first spike of the output neuron to the
environment and the output neuron’s second spike e.g. if σout first spikes at
time t and spikes for the second time at time t + k then we say the number
(t + k) − t = k is “computed” by the system.Another way to obtain results is
to take the time difference between t and every other successive spiking time of
σout.

3 Main Results

Now we move to routing in SNP systems i.e. routing of spikes. First, we provide
our results in order to simulate routing in Petri nets using SNP systems. The
simulation as mentioned earlier is relation from a set of configurations of a sim-
ulated system and a set of configurations of a simulating system as in [7]. The
simulated and simulating systems in this work can either be Petri nets or SNP
systems i.e. our results allow the simulation of routing (either tokens or spikes)
between Petri nets and SNP systems. In contrast to [12], our results include
Petri nets with transitions having more than one incoming arc, and without us-
ing synchronizing places as was done in [14]. On one hand, simulations of SNP
systems to Petri nets seem to be relatively straightforward (e.g. initially in [12]
and [13] with some modifications in [14]). On the other hand, simulations of
even ordinary Petri nets to SNP systems seem to be straightforward, although
we show in this section it is not quite so (at the least for certain routing types).
In this work we focus on ordinary Petri nets (as defined in Definition 1) for
the following reasons: (i) numerous analysis tools and techniques developed for
ordinary Petri nets since Petri nets were introduced, including linear algebraic
methods, structural and behavioral properties, etc. (ii) ordinary Petri nets have
been used extensively in literature to model processes and phenomena, (iii) or-
dinary Petri nets are sufficient in order to model workflows (WF-nets) See for
example [21], [19], [4], and (especially) [15] just to name a few sources. For our
following results we refer to ordinary Petri nets unless otherwise stated. We
introduce similar routing blocks to SNP systems as was done with Petri nets:
parallel (AND-joins and splits) and conditional (OR-joins and splits). Sequential
and iteration routing also follow. The functioning of the blocks should be the
same for Petri nets and SNP systems i.e. if an AND-join Petri net combines
tokens from one or more input places in parallel, then an AND-join SNP system
should combine spikes from two or more input neurons, and so on. First, we
perform (easy) sequential routing.

Lemma 1. Given a Petri net N that performs sequential routing of a token,
there exists an SNP system ΠN simulating N that performs sequential routing of
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a spike. Similarly, given an SNP system Π that performs sequential routing of a
spike, there exists a Petri net NΠ simulating Π that performs sequential routing
of a token.

Proof. (An illustration of the proof can be seen in Fig. 3.) Given a Petri net N

with places p, q and a transition t, we have p ∈ •t and t ∈ •q. Given a marking
M(p) over p, N can be simulated by an SNP system ΠN having neurons σx, σy
where Rx = {a+/a → a}, αx = M(p), and (x, y) ∈ syn such that t is fired
iff σx applies rule a+/a → a. M(p) serves as the number of spikes in σx. Rule
Rx in σx is of the form a+/a → a: Rx consumes one spike whenever αx ≥ 1,
and produces one spike. Note that variable overloading is performed because of
the use of Rx to mean the set of rules in σx and to mean the only rule in σx.
Transition t is fired if there is at least one token in p. The firing of transition t
sends one token to output place q. Similarly, rule Rx is applied if neuron σt has
at least one spike. The neuron sends a spike to its output neuron σy after Rx is
applied. For N, if M0 = (1, 0) (i.e. only p is marked) and the final configuration
is (0, 1), ΠN similarly has C0 = 〈1, 0〉 and a final configuration of 〈0, 1〉.

The reverse can be shown in a similar manner i.e. given an SNP system Π
that routes a spike sequentially, there exists a Petri net NΠ that can simulate
Π: a forgetting rule is a transition with an outgoing arc weight of zero so no
token is ever produced, and the environment is a sink place. For spiking rules,
the regular expression E is an additional condition before a transition t in a
Petri net is fired: if place p ∈ •t, then t is enabled iff aM(p) ∈ L(E) i.e. when
rule Rx is applied then transition t is also fired. ut

Fig. 3. The “basic” transformation idea from a Petri net performing sequential
routing to an SNP system (and back).

Lemma 2. Given Petri net N that performs AND-split (AND-join) routing of
a token, there exists an SNP system ΠN simulating N that performs AND-split
(AND-join) routing of a spike.

Proof. (An illustration of the proof can be seen in Fig. 4.) The proof follows
from Lemma 1 and the following constructions: Given an AND-split Petri net N
with places i, j, k, transition t, such that i ∈ •t and j, k ∈ t•, the AND-split SNP
system ΠN that simulates N has neurons σx, σy, σz where Rx = {a+/a → a},
with (t, j), (t, k) ∈ syn. For N we have M0 = (1, 0, 0) i.e. only i is marked, with
a final marking of (0, 1, 1) after the firing of t. N performs an AND-split, sending
one token each to j and k. For ΠN we have C0 = 〈1, 0, 0〉 and the firing of σt
sends one spike each to σj and σk. The final configuration is 〈0, 1, 1〉, thus ΠN

performs an AND-split.
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If N is an AND-join net such that i, j ∈ •t and k ∈ t•, then ΠN has neurons
σt, σi, σj , σk with synapses (i, t), (j, t), (t, k) and Rt = {(a+)v → a} for v = | • t|
(in the example figure, v = 2). Given M0 = (1, 1, 0) for N i.e. only k has no
marking, the final marking after the firing of t will be (0, 0, 1) since N is an
AND-split net, combining the tokens from i and j and producing one token
to k. Similarly for ΠN there is C0 = 〈1, 1, 0, 0〉 and the final configuration is
〈0, 0, 0, 1〉. The rule in σt combines the spikes from σi and σj and produces one
spike to σk. However if M0 = 〈0, 1, 0〉 then t cannot fire. Similarly σx will not
spike given C0 = 〈0, 1, 0, 0〉. Therefore ΠN also performs an AND-join. ut

Fig. 4. SNP system (a) AND-join, and (b) AND-split.

Observation 1 If N is a nonsafe Petri net that performs an AND-join, using
the construction for Lemma 2, SNP system ΠN does not perform an AND-join.

An example of Observation 1 is shown in Fig. 5: the SNP system does not
perform an AND-join since the joining neuron σt still spikes once accumulating
two spikes from its top input neuron σj (and from the other spike from σi ). In
the Petri net however, transition t is never fired (a deadlock) since k is never
marked, and j is a nonsafe place.

Lemma 3. Given a Petri net N that performs an OR-split (OR-join) of a token,
there exists an SNP system ΠN that performs an OR-split (OR-join) of a spike
simulating N.

Fig. 5. A nonsafe AND-join Petri net and the “bad” AND-join SNP system
simulating the net.
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Fig. 6. OR-join Petri net and OR-join SNP system that simulates the net.

Fig. 7. A 3-way OR-split Petri net N (a), the 3-way OR-split SNP system ΠN

simulating N (b). In (c) and (d) we see how ΠN, directly transformed from ΠN

using Lemma 1 and 3, can be transformed back to the original net N.

Proof. (An illustration of the proof can be seen in Fig. 6 for OR-join and Fig.
7. (a) and (b) for OR-split) The proof follows from Lemma 1 and the following
construction: Given Petri net N that performs an OR-split with places i, x, y,
transitions s, t, where t, s ∈ i•, t ∈ •x, s ∈ •y, the OR-split SNP system ΠN

simulating N has neurons σi, σi′ , σm, σn, σs, σt, with (i,m), (i, n), (m, i′),
(n, i′), (i′, s), (i′, t) as synapses, Ri′ = {r1, . . . , rk} for k = |i • | and each rule
in Ri′ is of the form ak → aj , 1 ≤ j ≤ k. For some ordering O = 〈σ1, . . . , σk〉
of every neuron σw so that (i′, w) ∈ syn, ruj is the jth rule of Ru in σu, where
1 ≤ u ≤ k, such that ruj is of the form:

aj →
{
a, if j = u
λ, if j 6= u

If an initial marking for N is M0 = (1, 0, 0) i.e. only i is marked, due to nonde-
terminism a final marking could either be (0, 1, 0) (only x is marked) or (0, 0, 1)
(only y is marked). For ΠN we have C0 = 〈1, 0, 0, 0, 0, 0〉 i.e. only σi has a spike
initially. An AND-split is performed by σi which sends one spike each to σm and
σn, giving C1 = 〈0, 1, 1, 0, 0, 0〉. Both σm and σn fire one spike each to σi′ (the
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purpose of the previous step was to create 2 spikes for this step) so σi′ accumu-
lates 2 spikes giving C2 = 〈0, 0, 2, 0, 0, 0〉. Due to the construction of ΠN (and
thus the rules in σi′) and due to nondeterminism, the final configuration could
either be 〈0, 0, 0, 0, 1, 0〉 (only σs fires) or 〈0, 0, 0, 0, 0, 2〉 (only σt fires). Therefore
N and ΠN both perform an OR-split.

If N performs an OR-join having places i, j, k, transitions s, t, such that i ∈ •t, j ∈
•s, t, s ∈ •k, the OR-join SNP system ΠN that simulates N has neurons σs, σt, σk
with synapses (k, s), (k, t). An initial marking of M0 = (1, 1, 0) for N results in
a final marking of (0, 0, 2) after t and s fire. For ΠN we have C0 = 〈1, 1, 0〉 and
a final configuration of 〈0, 0, 2〉 after σt and σs fire and each send one spike to
σk. An OR-join is therefore performed by N and ΠN . ut

Lemma 2 assumes a safe Petri net so that no place is marked by more than one
token. SNP systems by nature split spikes in an AND-split manner. Referring to
Lemma 3, an OR-split is a nondeterministic decision point where a token in place
i is routed only to a single transition t, among the other transitions in i•, and is
eventually deposited to a place j. Recall that in SNP systems, nondeterminism
is in the form of rule selection. To capture this nondeterministic target selection,
neuron σi uses its only rule a+/a → a to create k spikes, where k = |i • |.
Each output neuron of σi (in this case, σm and σn) receives one spike each,
which they then use by applying their rule a → a. The k neurons each send a
spike to their output neuron σi′ . This intermediary stage involving the first k
parallel neurons is responsible for the creation of k spikes needed to make the
nondeterministic rule selection in the second stage. The second stage (involving
the next k parallel neurons) is an AND-join SNP system involving neuron σi′
which nondeterministically chooses one rule to apply among its k rules. At this
point σi′ has received k spikes from its k input neurons in the intermediary stage.

For the left hand side of the k number of rules of σi′ , all rules have a regular
expression E equal to ak and all consume k spikes (now that αi′ = k, σi′ has
to nondeterministically choose which rule to apply). For the right hand side of
the rules, a rule rj in σi′ produces one less spike than the succeeding rule rj+1,
1 ≤ j ≤ k. This increase in produced spikes per rule in σi′ permits the routing
of spikes to a unique output neuron σu, (i

′, u) ∈ syn, among the other output
neurons of σi′ , because each unique av on the right-hand side of every rj is
“mapped” to exactly one σu. By mapping we mean that for every rj of σi′ , only
one σu is able to use the spikes produced by σi′ , while the remaining k−1 output
neurons forget the spikes they received. Therefore, an OR-split is performed and
a spike is routed nondeterministically.

In order to return the resulting OR-split SNP system ΠN back to the original
OR-split Petri net N, two reduction techniques (see e.g. in [4] and [15]) are used in
the following order: (i) The fusion of parallel places, resulting from transforming
the k neurons in the second stage to k parallel places (Fig. 7(c)) ; (ii) the
reduction of sequential places, resulting from the fused sequential places in (i)
(Fig. 7(d)). An OR-join net is where two or more transitions depositing a token
to a common output place i. In an SNP system an OR-join is simply two or more

On structures and behaviors of spiking neural P systems and Petri nets

153



Fig. 8. Routing types using SNP systems: (a) sequential, (b) conditional, (c)
parallel, (d) iteration.

neurons sending a spike to a common output neuron. Joins in SNP systems are
by nature OR-joins. The following corollary follows from Lemma 3.

Corollary 1. Given a k-way OR-split net where the deciding (origin) place is p
(i.e. |p • | = k), then the simulating OR-split SNP system has additional 2k + 1
neurons.

Corollary 1 is evident from Fig. 7. Before moving on, we provide definitions
of free-choice and well-handled SNP systems as follows.

Definition 5 (Well-handled, free-choice (SNP system)). Given an SNP
system Π, Π is well-handled if a spike that is split with an AND-split (OR-
split) is synchronized or terminated with an AND-join (OR-join). Let in Π exist
neurons σx, σy and σw. Π is free-choice whenever (w, x), (w, y) ∈ syn, this
implies every neuron σz such that (z, x) ∈ syn then (z, y) ∈ syn as well.

The definition of the well-handled and free-choice properties in Definition 5
follow the idea of the same properties for Petri nets (Definition 3). From the
previous definitions and lemmas we have the following theorems.

Theorem 1. Given a safe ordinary Petri net N that performs one or a combi-
nation of the following routing types: sequential, parallel, conditional, and itera-
tive, then there exists an SNP system ΠN that can simulate N.

Proof. Proof for sequential routing follows from Lemma 1, from Lemma 3 for
conditional, and Lemma 2 for parallel routing. For iterative routing, this is simply
a synapse from one neuron to another, different neuron in ΠN. ut
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Fig. 9. Not well-handled (a) and (b), and well-handled (c) and (d) Petri nets
and SNP systems.

The routing types using SNP systems are shown in Fig. 8. The proofs for
Theorems 2 and 3 below follow from Theorem 1, Lemma 2, and Lemma 3.

Theorem 2. If a Petri net N is free-choice then the SNP system ΠN that sim-
ulates N is free-choice. If N is non-free-choice then ΠN is non-free-choice. ut

Theorem 3. If a Petri net N is well-handled then the SNP system ΠN that
simulates N is well-handled. If N is not well-handled then ΠN is not well-handled.

ut

Observation 2 Transforming an SNP system Π using the construction for
Lemma 1 not necessarily produce an ordinary Petri net N.

A neuron in Π with a rule a2 → a requires and consumes 2 spikes, which in N

means an arc for such a rule must have a weight equal to 2. Since AND-joins and
OR-splits in particular can be quite complex to visualize for SNP systems, we
introduce “shorthand” illustrations seen in Fig. 10. An AND-split neuron simply
has a thicker border or membrane, meaning it will only spike once enough spikes
are sent to the neuron. An OR-split neuron simply has thicker synapses or arcs,
indicating that only one of the output neurons will get to fire a spike. After the
structural properties in Definition 5 we present next some behavioral properties
of SNP systems from Petri nets.

Definition 6 (Live, Bounded, Safe (SNP system)). An SNP system Π
is live iff for every reachable configuration Ck from C0 and every rule r in Π
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Fig. 10. Shorthand illustrations for an AND-join (a) and an OR-split (b) neuron.

Fig. 11. (a) A safe, nonlive Petri net N1 (from [15]), (b) A nonlive, k = 2
bounded (nonsafe) SNP system ΠN1

, simulating N1.

there exists a configuration Cj reachable from Ck wherein rule r is applied. Π is
bounded iff for every configuration each neuron has at most n spikes, where n
is a finite positive integer. If n = 1 then we say Π is safe.

In [14], properties such as liveness, boundedness, deadlock-free, and termi-
nating properties were introduced. A similar presentation with [14] is an earlier
work on P systems and Petri nets in [22]. In our work the definition for liveness
and boundedness are similar to those in [14], although our liveness definition
is identified by rule application and not by configurations. From the previous
results and the properties in Definition 6, we have the following corollary.

Corollary 2. If a safe Petri net N is is simulated by an SNP system ΠN, the
bound k for ΠN is given by the AND-join transition t in N such that k = | • t|
is maximum in N.

As seen in Fig. 11 and using the shorthand illustrations from Fig. 10, ΠN1

is 2-bounded, even though N1 is a safe net, since transitions | • t3| = | • t4| = 2.

4 Final Remarks

In this work we have added additional relationships between certain classes (e.g.
safe, ordinary) of Petri nets to SNP systems without delays. In particular we
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focused on some structural properties of Petri nets that is fundamental to routing
tokens: the AND- and OR-splits and joins. As it turns out, even the relatively
simple mechanism of conditional routing in Petri nets, the OR-split, can be quite
complex in terms of SNP systems (an additional 2k+ 1 neurons to route a spike
among k output neurons). It seems that, at least for “standard” SNP systems (as
defined in this work) without delays, the routing of spikes to specific or targeted
neurons is quite “unnatural” (again recall that splits in SNP systems are by
nature AND-splits). Perhaps a similarly complex structure is required in order
to perform AND-joins for nonsafe and nonordinary (i.e. generalized) Petri nets.

If SNP systems are to be used for modeling processes and phenomena (aside
from the more usual computability results) then results on structural and be-
havioral properties are certainly desirable. Since Petri nets enjoy a rich theory
on both kinds of properties, it seems reasonable to further link Petri nets to SNP
systems, as several previous works have already done. For our part, this work
can be seen as a precursor to using SNP systems to be used in modeling pro-
cesses. Even biological processes perhaps, after further theoretical developments
are pursued, as mentioned by Păun at the beginning of [17]. Some of these pro-
cesses or phenomena might include multi or distributed processors and workflow
processes just to name a few. Many of these have been modeled and analyzed
using Petri nets such as in [15] and [21], among others.

Additionally, other classes of Petri nets such as colored and stochastic nets
(see for example [15]) just to name a few, could be simulated by SNP systems.
Other variants of SNP systems such as those with neuron budding and division
as in [16] can also be transformed and simulated by Petri nets. Such investiga-
tions will most likely yield interesting and useful theoretical and even applicative
results for both models.

Lastly, Petri nets and their behaviors can be represented as matrix equations,
and using these equations several tools have been produced for Petri nets (see
[15] and [21]). Similarly, the behavior of SNP systems have been represented as
matrices in [23] which was used in the creation of an SNP system simulator in
[1] and [2]. One desirable feature of the various Petri net tools is their utility for
analyses and modeling of processes. It is also the hope of further realizing and
opening up connections between Petri nets and SNP systems that motivates this
work.
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Abstract. We continue the investigation of P colonies introduced in [4],
a class of abstract computing devices composed of independent agents,
acting and evolving in a shared environment. We are introducing 2D P
colonies with a 2D environment where the agents are located. Agents
have limited information about the contents of the environment where
they can move in four directions. To present computations of 2D P
colonies we construct a simulation environment.

1 Introduction

P colonies were introduced in the paper [4] as formal models of computing devices
inspired by membrane systems and formal grammars called colonies. This model
is inspired by the structure and the behaviour of communities of living organisms
in a shared environment. The independent organisms living in a P colony are
called agents. Each agent is represented by a pair of objects embedded in a mem-
brane. The number of objects inside each agent is the same and constant during
computation. For agents the environment is their communication channel and
storage place for objects. At any moment all agents ”know” about all the objects
in the environment and they can access any object immediately. More reading
about P colonies the reader can find in [3, 1]. P colonies are one of types of
P systems. They were introduced in 2000 in [5] by Gheorghe Păun as a formal
model inspired by the structure and the behaviour of cells.

With each agent a set of programs is associated. The program, which de-
termines the activity of an agent, is very simple and depends on the contents
of agents and on a multiset of objects placed in the environment. An agent can
change the contents of the environment through programs and it can affect the
behavior of other agents through the environment.

This influence between agents is a key factor in the functioning of the P colony.
At any moment each object inside every agent is affected by the execution of
the program.

For more information about P systems see [7, 6] or [8].
In the real world (as well as the cyber-world) the concentration of substances

varies from place to place and living ones do not know what is ”over the horizon”.
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These considerations have inspired us to introduce a new model of P colonies
that are placed inside a 2D grid of square cells. The agents are located in this
grid and their view is limited to the cells that immediately surround them. Based
on the contents of these cells, the agents decide their future locations.

In formulating the rules we draw upon the original model of the P colonies.
The agents will use the rewriting - evolution - rules and the communication
rules. A communication rule will be applied at a place where the agent using it
is located.

The new rule we add is a movement rule. The condition for the movement of
an agent is finding specific objects in specific locations in the environment. This
is specified by a matrix with elements - objects. The agent is looking for at most
one object in every surrounding cell. If the condition is fulfilled then the agent
moves one cell up, down, left or right.

According to the original model we assemble the rules into programs. Be-
cause every agent contains two objects the programs are formed from two rules.
The program can contain at most one movement rule. To achieve the greatest
simplicity in agent behavior, we set another condition. If the agent will move, it
cannot communicate with the environment. So if the program contains a move-
ment rule, then the second rule is the rewriting rule.

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics
of the formal language theory.

We use NRE to denote the family of the recursively enumerable sets of
natural numbers. Let Σ be the alphabet. Let Σ∗ be the set of all words over Σ
(including the empty word ε). We denote the length of the word w ∈ Σ∗ by |w|
and the number of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns
to each object in V its multiplicity in M . The set of all multisets with the set
of objects V is denoted by V ◦. The set V ′ is called the support of M and is
denoted by supp(M) if for all x ∈ V ′ f(x) 6= 0 holds. The cardinality of M ,
denoted by |M |, is defined by |M | =

∑
a∈V f(a). Each multiset of objects M

with the set of objects V ′ = {a1, . . . an} can be represented as a string w over
alphabet V ′, where |w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from
w by permuting the letters represent the same multiset M . The ε represents the
empty multiset.

3 2D P Colonies

We briefly summarize the notion of 2D P colonies. A P colony consists of agents
and an environment. Both the agents and the environment contain objects. With
each agent a set of programs is associated. There are two types of rules in the pro-
grams.
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The first rule type, called the evolution rule, is of the form a → b. It means
that the object a inside the agent is rewritten (evolved) to the object b. The sec-
ond rule type, called the communication rule, is of the form c ↔ d. When the
communication rule is performed, the object c inside the agent and the object
d outside the agent swap their places. Thus, after the execution of the rule, the
object d appears inside the agent and the object c is placed outside the agent.

The third rule type, called motion rule, is of the form matrix 3× 3→ move
direction. Based on the contents of the neighboring cells, an agent can move one
step to the left, right, up or down.

A program can contain at most one motion rule. When there is a motion rule
inside a program, there can be no communication rule inside the same program.

Definition 1. The 2D P colony is a construct
Π = (A, e,Env,B1, . . . , Bk, f), k ≥ 1, where

– A is an alphabet of the colony, its elements are called objects,
– e ∈ A is the basic environmental object of the colony,
– Env is a pair (m × n,wE), where m × n,m, n ∈ N is the size of the envi-

ronment and wE is the initial contents of environment, it is a matrix of size
m× n of multisets of objects over A− {e}.

– Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (Oi, Pi, [k, l]),
where
• Oi is a multiset over A, it determines the initial state (contents) of the

agent, |Oi| = 2,
• Pi = {pi,1, . . . , pi,li} , l ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where

each program contains exactly 2 rules, which are in one of the following
forms each:
∗ a→ b, called the evolution rule,
∗ c↔ d, called the communication rule,
∗ [ai,j ]→ s, 0 ≤ i, j ≤ 3, s ∈ {⇐,⇒,⇑,⇓}, called the motion rule;

– f ∈ A is the final object of the colony.

A configuration of the 2D P colony is given by the state of the environment -
matrix of type m×n with multisets of objects over A−{e} as its elements, and
by the state of all agents - pairs of objects from alphabet A and the coordinates
of the agents. An initial configuration is given by the definition of the 2D P
colony.

A computational step consists of three parts. The first part lies in determining
the applicable set of programs according to the actual configuration of the P
colony. There are programs belonging to all agents in this set of programs. In
the second part we have to choose one program corresponding to each agent from
the set of applicable programs. There is no collision between the communication
rules belonging to different programs. The third part is the execution of the
chosen programs.

A change of the configuration is triggered by the execution of programs and
it involves changing the state of the environment, contents and placement of the
agents.
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A computation is nondeterministic and maximally parallel. The computation
ends by halting when no agent has an applicable program.

The result of the computation is the number of copies of the final object
placed in the environment at the end of the computation.

Another way to determine the result of the computation is to take into
account not only the number of objects but also their location. The result
could then be a grayscale image, a character string or a number that is de-
pendent on both the number and placement of the objects (for example, g =∑n−1

j=0

(∑m−1
i=0 f(i, j)

)
· ni, where f(i, j) is the number of copies of object f in

the [i, j]-cell).
The reason for the introduction of 2D P colonies is not the study of their

computational power but monitoring of their behaviour during the computation.
We can define some measures to assess the dynamics of the computation:

– the number of moves of agents
– the number of visited cells (or not visited cells)
– the number of copies of a certain object in the home cell or throughout the

environment.

These measures can be observed both for the individual steps of the computation
and the computation as a whole.

4 Examples

In this section we show some examples of 2D P colonies. The first 2D P colony
can be called a runner on bs.

Example 1. Let Π1 be 2D P colony defined as follows: Π1 = (A, e,Env,B1, f),
where

– A = {e, f, a, b},
– e ∈ A is the basic environmental object of the colony,
– Env = (5× 5, wE),

– wE =




a a a a a
a b b b a
a b a b a
a b b b a
a a a a a




,

– B1 = (aa, P1, [1, 1]),

– P1 = {
〈

∗ b ∗
∗ b ∗
∗ ∗ ∗


→ ⇑; a→ a

〉
;

〈

∗ ∗ ∗
∗ b ∗
∗ b ∗


 → ⇓; a→ a

〉
;

〈

∗ ∗ ∗
b b ∗
∗ ∗ ∗


→ ⇐; a→ a

〉
;

〈

∗ ∗ ∗
∗ b b
∗ ∗ ∗


→ ⇒; a→ a

〉
}

The star on the matrix means that the agent does not care about the contents
of the corresponding cell.
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– f ∈ A is the final object of the colony.

The agent is placed inside the cell in the second row and the second column
of the environment. Based on the movement rules the agent moves towards a
randomly selected b in the surrounding cells. The agent makes a move at every
step of the computation. The environment and its contents remain unchanged.
The initial configuration is shown in figure 1.

The second example of 2D P colonies is motivated by Conway’s Game of
Life([2]). It is a cellular automaton devised by the British mathematician John
Horton Conway in 1970. It is the best-known example of a cellular automaton.
The universe of the Game of Life is an infinite two-dimensional orthogonal grid
of square automata, each of which is in one of two possible states, alive or dead.
Every automaton interacts with its eight neighbours, which are the automata
that are directly horizontally, vertically, or diagonally adjacent.

Fig. 1. The initial configuration of Π1

Example 2. LetΠ2 be 2D P colony defined as follows:Π2 = (A, e,Env,B1, . . . , B16, f),
where

– A = {e, f,D, S, Z,M,O,L,N},
– e ∈ A is the basic environmental object of the colony,
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– Env = (6× 6, wE),

– wE =




D D D D D D
D S S D D D
D S S D D D
D D D S S D
D D D S S D
D D D D D D




,

– B1 = (ee, P1, [1, 1]), B2 = (ee, P2, [1, 2]),. . . , B16 = (ee, P16, [4, 4]),
– f ∈ A is the final object of the colony.

The states of the automata are stored inside the cells ( D - dead automaton,
S - live automaton ). There is only one kind of agent in this 2D P colony, so there
are sixteen identical agents located in the matrix 4× 4 of inner cells (see fig.2).
The sets of their programs are defined according to the rules of the automata:

– Any live automaton with fewer than two live neighbours dies, due to under-
population.

– Any live automaton with more than three live neighbours dies, due to over-
crowding.

– Any live automaton with two or three live neighbours lives, unchanged, to
the next generation.

– Any dead automaton with exactly three live neighbouring automata will
come to life.

The first program is to initialize the agent 〈e↔ e; e→ Z〉;
We sort the programs using the number of copies of object S in the condition

of the movement rule.

1. when neighbouring automata are dead - a single program for both dead as

well as live automaton

〈

D D D
D e D
D D D


→ ⇑; Z →M

〉
.

2. when there is one live neighbouring automaton - there are eight possible

programs for dead as well as live automata

〈

S D D
D e D
D D D


→ ⇑; Z →M

〉

and seven other combinations.
3. when there are two live neighbouring automata - twenty-eight programs for

live automata

〈

S S D
D S D
D D D


→ ⇑; Z → O

〉
and other twenty-seven combi-

nations.
4. when there are two live neighbouring automata - twenty-eight programs for

dead automata

〈

S S D
D D D
D D D


→ ⇑; Z →M

〉
and other twenty-seven com-

binations.
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5. when there are three live neighbouring automata - fifty-six eight possible

programs for dead as well as live automata

〈

S S S
D e D
D D D


→ ⇑; Z → O

〉
and

other fifty-five combinations.
6. when there are four live neighbouring automata - eight possible programs

for dead as well as live automata

〈

S S S
S e D
D D D


→ ⇑; Z →M

〉
and other

sixty-nine combinations.
7. when there are at least five live neighbouring automata - fifty- eight possible

programs for dead as well as live automata

〈

S S S
S e S
∗ ∗ ∗


→ ⇑; Z →M

〉
and

other fifty-five combinations.

After the execution of one of the above programs, all agents move one step
forward and rewrite one of their objects e to object M (automaton will be dead)
or to objectO (automaton will be live). The following programs are for downward
movement and for refreshing the state of an automaton - i.e., the replacement
of the object in the cell for an object in the agent to change the state of the
automaton.〈


∗ ∗ ∗
∗ e ∗
∗ ∗ ∗


→ ⇓; O → S

〉
;

〈

∗ ∗ ∗
∗ e ∗
∗ ∗ ∗


→ ⇓; M → D

〉
;

〈e→ L; S ↔ S〉 ; 〈e→ N ; D ↔ S〉 ; 〈S → e; L→ e〉 ; 〈S → e; N → e〉 ;
〈e→ L; S ↔ D〉 ; 〈e→ N ; D ↔ D〉 ; 〈D → e; L→ e〉 ; 〈D → e; N → e〉 .

It is easy to see that in such a way we can simulate every classical cellular
automaton.

In the third example we discuss the problem of ants.

Example 3. The aim is to construct a 2D P colony that will simulate the move-
ment of ants in searching for food. The agents - ants - are placed in the home
cell from which they are looking for food. Their search is nondeterministic until
they encounter food or a track. If they find food, they take one piece (one object)
and return by the shortest route to the home cell. They mark this route using a
specific object. If they find the track, they follow it.

Agents in this 2D P colony have so many programs that to list and describe them
takes more than a single sheet of paper. One agent has fifty-seven programs.

We have compiled an agent-ant that was using fifty-seven programs. An agent
explores the environment. If it finds food, it carries one object of food to the
home cell. On the way back it places the object-tag into each cell on the path.
Then, after returning to the food source, the agent carries it to the home cell
again. The configuration with four agents and two paths is shown on the figure
3. When the food source is exhausted, the agent stops If we added an agent
program which would enable it to return to the home cell, follow its marks and
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Fig. 2. The initial configuration of Π2

find another food source, the agent would be ”forgetting” the non-empty food
source it had already found, and it would start searching again.

This situation can be solved by adding a new agent to the 2D P colony. This
new agent is not an explorer. Its programs allow it to unblock the agents which
had stopped next to an empty food source. An alternative solution is to add
priorities to the program. We associate every program with a natural number.
During the computational step the program with the highest priority is chosen
to be executed.

5 Implementation of 2D P Colony Simulator

The simulation environment has been written in Java and it allows us to load,
save and create simulations using XML markup language. The simulation file is
loaded using XML parser and it creates a tree structure of objects using DOM
and JAXP. These objects represent parameters of the simulation, which contain
a description of the environment and agents in this environment. The informa-
tion describing the environment includes parameters such as speed of simulation,
the size and the contents of the environment. The speed of the simulation deter-
mines the time interval between the steps of the simulation. The environment
and its contents are represented by a two-dimensional array of objects which is
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Fig. 3. The configuration of Π2 with four ants and two paths from food to home cell

displayed as a 2D grid to the user. The agent is located in this grid and has the
ability to move or influence the contents of the environment by using rewriting
rules. The environment may contain a special object #, which represents an ob-
stacle or a position that is inaccessible for agents. The agent in the environment
activates one of its applicable programs in each simulation step. Each program
has an assigned priority and the selection of applicable programs is based on
this priority. If there is a state when several programs can be activated with the
same priority, we use pseudo-random selection to choose only one of these pro-
grams. Multiple agents can be located on different or identical positions in the
simulation environment. Collisions may occur in simulations of several agents in
a common shared environment which can cause simulation errors. To avoid these
problems, agents need to synchronize their access to the environment and again
using a pseudo-random selection to decide the order in which the agents will
be on the same positions to activate their programs. Environment changes are
stored in the stack from which they are projected into the environment. In this
way we can avoid the situation when one agent in the simulation step will affect
the neighbourhood of another agent or objects in the position where there are
more agents. In these cases it could lead to the use of previously unusable agent
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programs. However, in one simulation step this is not acceptable. Our simulation
tool uses the Swing library for creating graphical user interfaces. It is possible
to use change the graphics of the environment, the agents and the obstacles and
customize the simulation environment and visualization according to user needs.
Users now have an interesting tool for the implementation of the simulation of
P colonies with the ability to edit the simulation directly from the simulation
environment or from any text editor.

6 Conclusion

In this paper we introduce a new kind of P colonies that would be suitable for
simulating real-world situations. We created a 2D environment where agents are
located. The agents have limited information about the contents of their environ-
ment, which better reflects the reality. In order to solve the simulation problems
in the example of stigmergy and ants we proposed the introduction of priority
of programs. The activities of agents become more natural, because in real-life
situations ants prefer to perform certain activities over others. To present and
inspect the computation of 2D P colonies we have created a simulation envi-
ronment. We plan to extend the simulator to use statistical tools and dynamic
environment in the future.

Remark 1. This work was supported by the European Regional Development
Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).
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Abstract. We present two new synchronous distributed message-based
depth-first search (DFS) based algorithms, Algorithms C and D, to
compute a maximum cardinality set of edge-disjoint paths, between a
source node and a target node in a digraph. We compare these new al-
gorithms with our previous implementation of the classical algorithm,
Algorithm A, and our previous improvement, Algorithm B [12]. Algo-
rithm B improved the search speed by discarding “dead” (useless) cells
found on failed search branches. Using a different idea, Algorithm C
discards “dead” cells found on both successful and failed branches. To
asses the merits of this idea, we also propose a restricted version of Algo-
rithm C, called Algorithm C∗, which intentionally discards “dead” cells
found on successful branches only. Interestingly, Algorithm C∗ detects
all dead cells detected by Algorithm B and a few more, but is not able to
prune all of them in real time (it will prune all, if allowed to run longer).
Thus, there are cases when one of these two algorithms is more appro-
priate than the other. We further propose Algorithm D, which combines
best features of Algorithms B and C. Conceptually, all our algorithms
run in O(nd) distributed synchronous steps, where n is the number of
nodes and d is the outdegree of the source node. Empirical results show
that, on a set of random digraphs, our algorithms are faster than the
classical Algorithm A: B by 41.0%, C by 41.8%, C∗ by 38.0% and D
by 42.1%. All these improved algorithms have been inspired and guided
by a P system modelling exercise, but are suitable for any distributed
implementation. To achieve the maximum theoretical performance, our
P systems specification uses high-level generic rules applied in matrix
grammar mode.

Keywords: edge-disjoint paths, depth-first search, network flow, dis-
tributed systems, P systems, generic rules, matrix grammars

1 Introduction

The edge-disjoint paths problem finds a maximum cardinality set of edge-disjoint
paths between a source node and a target node in a digraph [9]. Alternative
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paths between two nodes are important in many fields. They are fundamen-
tal in biological remodelling, e.g., of nervous or vascular systems [5]. Multipath
routing provides effective bandwidth in networks [17]. Disjoint paths are sought
in streaming multi-core applications to avoid sharing communication links be-
tween processors [15]. The maximum matching problem in a bipartite graph
can be transformed to the disjoint paths problem [9]. For non-complete graphs,
Byzantine agreement requires at least 2k + 1 node-disjoint paths, between each
pair of nodes to ensure that a distributed consensus can occur, with up to k
failures [10].

All distributed algorithms discussed in this paper are distributed, totally
message-based (no shared memory) and work synchronously: for brevity, we call
them distributed, implicitly assuming their other characteristics. In this paper,
Algorithm A is a distributed version of the classical edge-disjoint algorithm,
based on Ford-Fulkerson’s maximum flow algorithm [6] and the classical dis-
tributed DFS [16]. Algorithm A∗ is its slightly improved version, proposed by
Dinneen et al. [3].

Recently, we proposed an improved distributed algorithm [12], here called
Algorithm B. Algorithm B improved Algorithms A and A∗ by (a) using Cidon’s
distributed DFS [2, 16], which avoids revisiting cells in the same round, and (b)
a novel idea, discarding “dead” cells detected during failed rounds, i.e. cells that
will never appear in a successful search.

In this paper, we present two new distributed algorithms: (1) Algorithm C,
which, using a different idea, discards “dead” cells identified in both successful
and failed rounds, and (2) Algorithm D, which combines the benefits of Algo-
rithms B and C.

Briefly, in all our algorithms, B, C, and D, search rounds explore unvis-
ited cells and arcs. Cells and arcs encountered during the search are tentatively
marked as temporarily visited. Temporarily visited cells and arcs which are de-
tected “dead” are marked as permanently visited and ignored in the next search
round. At the end of each search round, remaining temporarily visited cells and
arcs revert to the unvisited status and can be revisited by next search round.

Our algorithms differ (1) in the rules used to detect “dead” cells and (2) in
the process used to discard these “dead” cells for the next rounds. Our previous
Algorithm B detects “dead” cells at the end of failed search rounds (only) and
discards them in “real-time”, on shortest paths. Our new Algorithm C can detect
“dead” cells during any kind of search round (regardless if it is failed or success-
ful) but discards these on the current search path trace, which is typically longer
than the shortest path possible (especially in digraphs). In contrast, classical
algorithms, such as Algorithms A and A∗, do not discard any cell, and reset all
cells as unvisited, at each search round end.

We also consider a restricted version of Algorithm C, called Algorithm C∗,
where we intentionally omit to discard “dead” cells found in failed rounds: in
this sense, Algorithm C∗ is the opposite of Algorithm B. We can thus better
assess the power of the main new idea behind Algorithm C: even its restricted
version, C∗, still detects a superset of all “dead” cells detected by Algorithm B.
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However, due to digraphs propagation delays, Algorithms C and C∗ are not
always able to prune all detected cells in “real-time”: they could prune all, if
allowed to run longer. Thus, there are scenarios when one of Algorithms B and C
is more suitable than the other. Algorithm D achieves maximum performance:
it runs fast and detects and prunes all “dead” cells that can be detected by the
combination of Algorithms B and C.

All these improved algorithms have been inspired and guided by a P system
modelling exercise, but are suitable for any distributed implementation. A P sys-
tem is a parallel and distributed computational model inspired by the structure
and interactions of living cell, introduced by Păun [13]; for a recent overview of
the domain, see Păun et al.’s recent monograph [14]. Essentially, a P system is
specified by its membrane structure, symbols and rules. The underlying struc-
ture is a digraph or a more specialized version, such as a directed acyclic graph
(dag) or a tree (which seems the most studied case). Each cell transforms its con-
tent symbols and sends messages to its neighbours using formal rules inspired
by rewriting systems. Rules of the same cell can be applied in parallel (where
possible) and all cells work in parallel, traditionally in the synchronous mode.

In this paper, we also assess P systems as directly executable formal specifi-
cations of synchronous distributed algorithms. Thus, we aim to construct P algo-
rithms that compare favourably with high-level non-executable pseudocode: (1)
first, in runtime complexity and (2) if possible, in program readability and size
(which is independent of the problem size). Toward these goals, we use high-level
generic P rules, applied using a new proposed semantics, inspired from matrix
grammars. Our previous algorithms have used a related, but less powerful, ap-
plication mode, the so-called weak priority mode. The weak priority mode seems
adequate for simple algorithms, but the novel matrix-inspired semantics is more
suitable for more sophisticated algorithms, such as our new algorithms presented
here.

2 Edge-disjoint Paths in Digraphs

We consider a digraph, G = (V,E), where V is a finite set of nodes, V =
{σ1, σ2, . . . , σn}, and E is a set of arcs. For consistency with the P system termi-
nologies, the nodes of V are also called cells. Digraph arcs define (parent, child)
relationships, e.g., arc (σi, σj) ∈ E defines σj as σi’s child and σi as σj ’s parent;
with alternate notations, σj ∈ E(σi), σi ∈ E−1(σj). A path is a finite ordered
set of nodes successively connected by arcs. A simple path is a path with no
repeated nodes. Clearly, any path can be “streamlined” to a simple path, by
removing repeated nodes. Given a path, π, we define: π ⊆ E, as the set of its
arcs and its reversal, π−1 = {(σj , σi) | (σi, σj) ∈ π} ⊆ E−1.

Given a source node, s ∈ V , and a target node, t ∈ V , the edge-disjoint
problem looks for a maximum cardinality set of edge-disjoint s-to-t paths. A
set of paths are edge-disjoint if they have no common arc. If the edge-disjoint
paths are not simple, we can always simplify them at the end. The edge-disjoint
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problem can be transformed to a maximum flow problem, by assigning unit
capacity to each arc [9].

Given a set of edge-disjoint paths P , we define P as the set of their arcs,
P = ∪π∈P π, and we define the residual digraph GP = (V,EP ), where EP =

(E \ P ) ∪ P−1. Briefly, the residual digraph is constructed by reversing arcs in
P .

Given a set of edge-disjoint paths, P , an augmenting path, α, is an s-to-t
path in GP . Augmenting paths are used to extend an already established set of
edge-disjoint paths. An augmenting path arc is either (1) an arc in E\P or (2) an

arc in P
−1

, i.e. it reverses an existing arc in P . Case (2) is known as a push-back
operation: when it occurs, the arc in P and its reversal in α “cancel” each other
and are discarded. The remaining path fragments are relinked to construct an

extended set of edge-disjoint paths, P ′, where P ′ = (P \ α−1) ∪ (α \ P−1). This
process is repeated, starting with the new and larger set of edge-disjoint paths,
P ′, until no more augmenting paths are found [6].

Figure 1 shows how to find an augmenting path in a residual digraph: (a)
shows the initial digraph, G, with two edge-disjoint paths, P = {σ0.σ1.σ4.σ7,
σ0.σ2.σ5.σ7}; (b) shows the residual digraph, GP , formed by reversing edge-
disjoint path arcs; (c) shows an augmenting path, α = σ0.σ3.σ5.σ2.σ6.σ7, which
uses a reverse arc, (σ5, σ2); (d) discards the cancelling arcs, (σ2, σ5) and (σ5, σ2);
(e) relinks the remaining path fragments, σ0.σ1.σ4.σ7, σ0.σ2, σ5.σ7, σ0.σ3.σ5
and σ2.σ6.σ7, resulting in an incremented set of three edge-disjoint paths, P ′ =
{σ0.σ1.σ4.σ7, σ0.σ2.σ6.σ7, σ0.σ3.σ5.σ7} and (f) shows the new residual digraph,
GP ′ .
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Fig. 1. Finding an augmenting path in a residual digraph. Thin arcs: original arcs;
thick arcs: disjoint or augmenting path arcs; dotted arcs: reversed path arcs.

Augmenting paths can be repeatedly searched using a DFS algorithm on
residual digraphs [6], which dynamically builds DFS trees. A search path, τ , is
a path, which starts from the source and “tries” to reach the target. A search
path explores as far as possible before backtracking. At any given time, a search
path is, either (1) a branch in the DFS tree or a prefix of it or (2) a branch in
the DFS tree followed by one more arc, which, in a failed attempt, visits another
node of the same branch or of another branch.
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Our algorithms use a synchronous version of Cidon’s distributed DFS [2, 16],
which avoids case (2) above. When a node is first visited, it immediately marks all
incoming arcs as visited, by sending visited notifications to its digraph parents.
These notifications run in parallel with the main search, without delaying it. All
parents are thus timely notified and, if they become visited, will not send the
visiting token to this already visited node. For example, in Figure 2 (a), search
path σ0.σ1.σ2.σ3.σ4.σ6 does not revisit cell σ3. This is a powerful optimisation,
which reduces the DFS complexity from O(m) to O(n); we use it, but this is not
intrinsically related to our novel proposal.

When τ cannot explore further, it backtracks. The search is successful when
the search path reaches the target. A successful search path becomes a new
augmenting path and is used to increase the number of edge-disjoint paths:
while conceptually a distinct operation, the new edge-disjoint paths are typi-
cally formed while the successful search path returns on its steps, back to the
source (this successful return is distinct from the backtrack).

Given a current search path arc, (σi, σj), σi is a search path predecessor (sp-
predecessor) of σj , and σj is a search path successor (sp-successor) of σi. Given a
previous search path arc, (σi, σj), σi is a search tree predecessor (st-predecessor)
of σj , and σj is a search tree successor (st-successor) of σi. Until the end of
current search round, these arcs are considered temporary visited. At the end of
the round, for the next search round, these arcs may become permanently visited
or revert to unvisited.

In this paper, we propose a novel procedure to detect “dead” nodes, based
on two numerical search-specific attributes: the (known) node depth and a new
attribute which we call reach-number. A node’s depth, σi.depth, is the number
of hops from the source to itself in the search tree. A node’s reach-number is
the minimum of its depth and all its st-successors’ reach-numbers: σi.reach =
min({σi.depth} ∪ {σj .reach | (σi, σj) ∈ E′}), where E′ is the current residual
arcs set and assuming that unvisited nodes and discarded nodes have infinite
reach-numbers.

As algorithmically determined, depths and reach-numbers start as infinite
and are further dynamically adjusted during the search process:

1. When the search path first visits a node:

(a) both its depth and reach-number are set to the current hop count.

2. When the search path backtracks to a node:

(a) its reach-number can decrease;
(b) its st-successors, which have finite reach-numbers greater than this node’s

depth, can be discarded.

3. When a node is discarded :

(a) its own reach-number becomes infinite and
(b) its parents’ reach-numbers can increase.

4. When a node’s reach-number is increased, without being discarded (because
one or more of its st-successors have increased their own reach-numbers):

(a) its parents’ reach-numbers can also increase and
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(b) its st-successors, which have finite reach-numbers greater than this node’s
depth, can be discarded.

Note that, if finite, a node’s reach-number is never greater than its own
depth, i.e. σi.reach ≤ σi.depth. Note also the two both cases where a node can
be discarded, (2.b) and (4.b), require a similar additional condition: this node’s
reach-number is changed to a finite number greater than all its parent’s depths.

While items (1.a), (2.a) and (3.a) can be easily incorporated in any search, in
a message-based distributed algorithm, items (2.b), (3.b), (4.a) and (4.b) must
be recursively propagated by notification messages, over existing arcs. However,
this is a residual digraph, where some residual arcs are inverted original arcs,
some residual parents are original children and some residual children are orig-
inal parents. The actual algorithm needs additional housekeeping to properly
send such notifications, only to all concerned neighbours. Note that unvisited or
discarded cells do not need these notifications.

These notification messages travel in parallel with the main search activi-
ties, without affecting the overall performance. However, these notifications only
travel along search paths traces, which, in digraphs, are not the shortest possible
paths. Therefore, as we will see in a later example, not all cells can be effectively
notified in “real-time”, and may be reached by the next search process before
they get their due discard or update notifications. Briefly, in a digraph based
system, we have a pruning propagation delay, which may negatively affect its
performance.

As we see in Section 3, in Algorithm C, cases (2.b) and (4.b) trigger discard
notifications, which are propagated by the function Discard and cases (3.b) and
(4.a) trigger update notifications, propagated by the function Update.

Figure 2 illustrates how the depth and reach-numbers are initially set during
forward moves and dynamically adjusted (decreased) during backtrack moves.
In (a), σ0.σ1.σ2.σ3.σ4.σ5.σ3 is a search path attempting to visit the already vis-
ited node σ3 (if we use Cidon’s optimisation, it will not actually visit σ3). At
this step, the reach-number of each node on the search path is still the same
as its depth, σi.reach = σi.depth = i, i ∈ [0, 5]. A few steps later, in (b),
the search path, σ0.σ1.σ2.σ3, has backtracked to σ3. Cells to which we have
backtracked, σ5, σ4 and σ3, have updated their reach-numbers: σ5.reach =
min(σ5.depth, σ3.reach) = 3; σ4.reach = min(σ4.depth, σ6.reach) = 3 and
σ3.reach = min(σ3.depth, σ4.reach) = 3. After one more step, in (c), the
search path, σ0.σ1.σ2.σ3.σ6, moves forward to σ6. At this step, σ6.reach =
σ6.depth = 4. After one more step, in (d), the search path, σ0.σ1.σ2.σ3, back-
tracks again to σ3 and σ3.reach = min(σ3.depth, σ4.reach, σ6.reach) = 3 (un-
changed). At this stage, we discard σ6, because σ6.reach = 4 > σ3.depth = 3.
One step later, in (e), the search path, σ0.σ1.σ2, has backtracked to σ2, and
σ2.reach = min(σ2.depth, σ3.reach) = 2 (unchanged). We can now discard σ3,
σ4 and σ5, because their reach-numbers are greater than σ2.depth = 2.

Another step later, the search will succeed, the search path, σ0.σ1.σ2.σ7,
will reach σ7 and become an augmenting path. The discarded cells, σ3, σ4, σ5
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and σ6, can remain permanently visited and need not be further reconsidered.
Conceptually, subsequent searches will use a trimmed digraph, which will speed
up the algorithm. Our previous Algorithm B [12] does not discard these cells,
because it uses a different idea, which only detects “dead” cells in failed searches.
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Fig. 2. Thin arcs: original arcs; thick arcs: search path arcs; (depth, reach) pairs beside
each node indicate the node’s depth and reach-number; gray cells have been discarded.

3 High-level Pseudocode

Algorithm A is a distributed version of the classical Ford-Fulkerson based edge-
disjoint paths algorithm [6]. To find augmenting paths, it uses the classical DFS
algorithm [16]. This algorithm uses a repeat-until loop, repeatedly probing all
unvisited children (both previously unprobed children and previously probed
but failed children), resetting all visited nodes and arcs as unvisited after each
new augmenting path, until no more augmenting paths are found. Pseudocode 1
shows its high-level description, after unrolling its first DFS call.

To improve the readability, the pseudocode of this distributed algorithm and
of all other discussed algorithms are presented in sequentialized versions. Each

boxed area wraps code which is essential in a parallel run, but is omitted in the
sequential mode. The fork keyword indicates the start of a parallel execution.

Algorithm A is described by Pseudocodes 1 and 2, which use the following
variables: G = (V,E) is the underlying digraph; σs ∈ V is the source cell;
σt ∈ V is the target cell; r is the current round number; Pr−1 is the set of edge-
disjoint paths available at the start of round #r; Gr−1 = (V,Er−1) is the residual
digraph available at the start of round #r. Algorithm A starts with an empty
set of edge-disjoint paths, P0 = ∅ and the trivial residual graph, G0 = (V,E0),
where E0 = E (i.e. G0 = G).

Pseudocode 1: Algorithm A

1 Input : a digraph G = (V,E), a source cell, σs ∈ V ,
2 and a target cell, σt ∈ V
3 r = 0, P0 = ∅, G0 = G
4 repeat
5 α = null
6 β = null
7 while there is an unvisited arc (σs, σq) ∈ Er−1 and β = null
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8 r = r + 1
9 set σs and (σs, σq) as visited

10 β = DFS(σq, σt, Gr−1) // see Pseudocode 2
11 i f β = null then // failed round
12 Gr = Gr−1

13 endif
14 endwhile
15 i f β 6= null then // successful round
16 α = σs.β

17 Pr = (Pr−1 \ α−1) ∪ (α \ Pr−1
−1

)

18 Gr = (V,Er), where Er = (E \ Pr) ∪ Pr
−1

19 reset all visited cells and arcs to unvisited
20 endif
21 until α = null
22 Output :Pr, which is a maximum cardinality set of edge-disjoint paths

Pseudocode 2: Classical DFS, for residual digraph Gr−1 = (V,Er−1)

1 DFS(σi, σt, Gr−1)
2 Input : the current cell, σi ∈ V , the target cell, σt ∈ V
3 and the residual digraph, Gr−1

4 i f σi = σt then return σt

5 i f σi is visited then return null
6 set σi as visited
7 foreach unvisited (σi, σk) ∈ Er−1

8 set (σi, σk) as visited
9 β = DFS(σk, σt, Gr−1)

10 i f β 6= null return σi.β
11 endfor
12 return null
13 Output : a σi-to-σt path, if any; otherwise, null

Our new Algorithm C is described by Pseudocodes 3–6 and uses the same
variables as Algorithm A; additionally, this algorithm works in d successive
search rounds, defined by successive iterations of its for loop (line 3.8), where d
is the outdegree of σs. Without loss of generality, we assume that σs’s children
are represented by the set {σs1, σs2, . . . , σsd}.
Pseudocode 3: Algorithm C

1 Input : a digraph G = (V,E), a source cell, σs ∈ V ,
2 and a target cell, σt ∈ V
3 P0 = ∅, G0 = G
4 set σs as permanently visited
5 foreach unvisited arc (σj , σs) ∈ E
6 set (σj , σs) as permanently visited
7 endfor
8 for r = 1 to d
9 i f σsr is permanently visited then continue

10 set (σs, σsr) as permanently visited
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11 β = NW DFS(σsr, σt, Gr−1, 1) // see Pseudocode 4
12 i f β = null then // failed round

13 fork Discard(σsr, Gr−1)

14 Gr = Gr−1

15 reset all temporarily visited cells and arcs to unvisited
16 else // successful round
17 α = σs.β

18 Pr = (Pr−1 \ α−1) ∪ (α \ Pr−1
−1

)

19 Gr = (V,Er), where Er = (E \ Pr) ∪ Pr
−1

20 reset all temporarily visited cells and arcs to unvisited
21 endif
22 endfor
23 Output :Pr, which is a maximum cardinality set of edge-disjoint paths

Pseudocode 4: NW-DFS, adapted for Gr−1 = (V,Er−1)

1 NW DFS(σi, σt, Gr−1, depth)
2 Input : the current cell, σi ∈ V , the target cell, σt ∈ V ,
3 the residual digraph, Gr−1, and σi’s depth, depth
4 i f σi = σt then return σt

5 if σi is visited then return null

6 set σi as temporarily visited
7 σi.reach = σi.depth = depth
8 foreach unvisited arc (σj , σi) ∈ Er−1 // see Cidon’s DFS
9 set (σj , σi) as temporarily visited

10 endfor
11 foreach arc (σi, σk) ∈ Er−1

12 i f (σi, σk) is permanently visited then continue
13 e l s e i f (σi, σk) is temporarily visited then
14 σi.reach = min(σi.reach, σk.reach)
15 else // unvisited
16 set (σi, σk) as temporarily visited
17 β = NW DFS(σk, σt, Gr−1, depth+ 1)
18 i f β = null then
19 σi.reach = min(σi.reach, σk.reach)

20 i f σk.reach > σi.depth then fork Discard(σk, Gr−1) // see PC 5

21 else
22 return σi.β
23 endif
24 endif
25 endfor
26 return null
27 Output : a σi-to-σt path, if any; otherwise, null
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Pseudocode 5: Discard, adapted for Gr−1 = (V,Er−1)

1 Discard(σi, Gr−1)
2 Input : a cell to discard, σi ∈ V , and the residual digraph, Gr−1

3 i f σi is permanently visited then return
4 set σi as permanently visited
5 ioldreach = σi.reach
6 σi.reach =∞
7 foreach arc (σj , σi) ∈ Er−1

8 i f (σj , σi) is temporarily visited then

9 fork Update(σj , Gr−1, ioldreach, σi) // see Pseudocode 6

10 endif
11 set (σj , σi) as permanently visited
12 endfor
13 foreach temporarily visited arc (σi, σk)

14 fork Discard(σk, Gr−1)

15 endfor

Pseudocode 6: Update, adapted for Gr−1 = (V,Er−1)

1 Update(σj , Gr−1, ioldreach, σi)
2 Input : a cell, σj ∈ V , the residual digraph, Gr−1, a reach-number, ioldreach,
3 and a cell, σi ∈ V
4 i f σj .reach = ioldreach then
5 newreach = σj .depth
6 foreach temporarily visited arc (σj , σk) ∈ Er−1

7 newreach = min(newreach, σk.reach)
8 endfor
9 i f newreach > σj .reach then

10 joldreach = σj .reach
11 σj .reach = newreach

12 foreach temporarily visited arc (σk, σj) ∈ Er−1

fork Update(σk, Gr−1, joldreach, σj)
endfor

13 endif

14 if σi.reach > σj .depth then
fork Discard(σi, Gr−1)

endif

15 endif

Search round #r starts when cell σs sends the forward token, together with
a depth indication of one (lines 3.8–11), to unvisited cell σsr. When an unvisited
cell becomes visited, it becomes the new frontier cell, it marks itself as tem-
porarily visited (line 4.6), records its depth and reach-number as the received
depth (line 4.7), sends visited notification to all its neighbours (line 4.8–10). A
current frontier cell sends the forward token over an arbitrarily selected unvis-
ited arc, together with an incremented depth (lines 4.15–17). An unvisited cell
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accepts this token, becoming the new frontier. The visited notification house-
keeping is performed in parallel with the main search. A frontier cell, which does
not have any (more) unvisited arc, sends back a backtrack token to its search
path predecessor, to return the frontier.

There are two cases of backtrack: (1) because Algorithm C avoids revisiting
the already visited cells, if σi has any temporarily visited child, σk, we consider
this is a backtrack from σk (as in the classical DFS); (2) σi receives a backtrack
token from σk. In both cases, σi computes its reach-number as the minimum of
its depth (line 4.7) and its st-successors’ reach-numbers (lines 4.13–15, 4.18–19).
If σi decreases its reach-number, it records and sends its new reach-number to
all its neighbours, which is performed in parallel with the main search. Further-
more, if σk’s reach-number is greater than σi’s depth, then σi sends a discarding
notification to σk (line 4.20).

On receiving a discarding notification, cell σi sets itself as permanently visited
and sets its reach-number as infinite (lines 5.4, 5.6). Also, it sends a permanently
visited notification and an update to all its temporarily visited parents (lines 5.7–
5.12), σj ’s. On receiving an update from σi, cell σj computes its reach-number
(lines 6.4–11). If σj increases its reach-number, it records and sends an update
to all its temporarily visited parents (line 6.12). If σi’s reach-number is greater
than σj ’s depth, then σj sends a discarding notification to σi (line 6.14).

Once cell σi is discarded, it also notifies all its st-successors to discard them-
selves (lines 5.13–15). This pruning propagation is performed in parallel with the
main search. However, this propagation travels along search path traces, which
is not the shortest possible path. If the pruning propagation does not finish when
the round ends, we let the delayed pruning propagation discard cells in the next
round.

We now consider two race conditions: (1) a cell can be visited before it is
discarded by the current pruning propagation, which has not arrived yet; (2)
a cell can be visited before it is discarded by the delayed pruning propagation,
which has not arrived yet. To solve these problems, we use the same strategy.
Once discarded, the cell immediately backtracks (line 4.5) and sends an update
to all its temporarily visited parents (lines 5.7–12).

If the search path reaches the target cell, σt (line 4.4), then round #r suc-
ceeds: an augmenting path, αr, is found and σt sends a path confirmation back
to σs. A successful round #r increments the set of edge-disjoint paths: while
moving towards σs, the confirmation reshapes the existing edge-disjoint paths
and the newly found augmenting path, αr, building a larger set of edge-disjoint
paths, and a new residual digraph. Thus, lines 3.17–19 of Pseudocode 3 are ac-
tually done within Pseudocode 4, during the return from a successful search.
After receiving the path confirmation, σs initiates a global reset, which changes
all temporarily visited cells and arcs to unvisited (line 3.20). This end-of-round
reset runs two steps ahead and in parallel with the next round, without affecting
it.

If the search path cannot reach σt, the source, σs, receives a backtrack token
from σsr and the round fails (line 3.12). Then σs sends a discarding notification
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to σsr (line 3.13) and initiates a global reset, to change all temporarily visited
cells and arcs to unvisited (line 3.15). A failed round does not change the current
set of edge-disjoint paths or the current residual digraph (line 3.14).

Although not explicit in the pseudocode, after probing all its children, the
source cell, σs, initiates a global broadcast, carried by a finalise token. This
finalisation is not strictly necessary, but informs all cells that the algorithm has
terminated.

Algorithm D combines Algorithms B and C, which discards all “dead” cells
that are detected by B and C. Its Pseudocode 7 is the same as Pseudocode 3, ex-
cept changing line 15 to “set all temporarily visited cells and arcs to permanently
visited”.

Algorithm D uses two end-of-round resets, as in Algorithm B: (1) after-
success reset, which resets all temporarily visited cells and arcs to unvisited,
and (2) after-failure reset, which sets all temporarily visited cells and arcs as
permanently visited (to be discarded). Thus, Algorithm D discards the union of
the “dead” cells discarded in Algorithms B and C.

Pseudocode 7: Algorithm D

Same as Pseudocode 3, except line 15 is changed as follows:

15 set all temporarily visited cells and arcs to permanently visited

4 P Systems

We use a version of the simple P module, as defined in [4], where all cells share the
same state and rule sets, extended with generic rules using complex symbols [11]
and matrix organized rules (proposed here).

Definition 1 (Simple P module). A simple P module with duplex channels
is a system Π = (V,E,Q,O,R), where V is a finite set of cells; E is a set of
structural parent-child digraph arcs between cells (functioning as duplex chan-
nels); Q is a finite set of states; O is a finite non-empty alphabet of symbols;
and R is a finite set of multiset rewriting rules (further organized, as described
below, in a matrix format).

In this paper, all components of a P module, i.e. V , E, Q, O and R, are
immutable. Each cell, σi ∈ V , has the initial configuration (Si0, wi0), and the
current configuration (Si, wi), where Si0 ∈ Q is the initial state; Si ∈ Q is the
current state; wi0 ∈ O∗ is the initial multiset of symbols; and wi ∈ O∗ is the
current multiset of symbols. The general form of a rule in R is:

S x→α S
′ x′ (y)βγ . . . | z ¬ z′,

where: S, S′ ∈ Q, x, x′, y, z, z′ ∈ O∗, α ∈ {min, max}, β ∈ {↑, ↓, l}, γ ∈ V ∪ {∀}
and ellipses (. . . ) indicate possible repetitions of the last parenthesized item;
state S is known as the rule’s starting state and state S′ as its target state.
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For cell σi in configuration (Si, wi), a rule S x→α S
′ x′ (y)βγ . . . | z ¬ z′ ∈ R

is applicable if S = Si, xz ⊆ wi, z
′ ∩ wi = ∅ and either (a) no other rule

was previously applied, in the same step, or (b) all rules previously applied,
in the same step, have indicated the same target state, S′. When applied, this
rule consumes multiset x and fixes, if not already fixed, the target state to
S′. Multiset x′, also known as the “here” multiset, remains in the same cell;
in our matrix inspired formalism, x′ becomes immediately available to other
rules subsequently applied in the same step. Multiset y is a message queued and
sent, at the end of the current step, as indicated by the transfer operator βγ .
β’s arrow indicates the transfer direction: ↑—to parents; ↓—to children; l—in
both directions. γ indicates the distribution form: ∀—a broadcast; a structural
neighbour, σj ∈ V—a unicast (to this neighbour). Multiset z is a promoter and
z′ is an inhibitor, which enables and disables the rule, respectively, without being
consumed [14]. Operator α describes the rewriting mode. In the minimal mode,
an applicable rule is applied once. In the maximal mode, an applicable rule is
applied as many times as possible.

Matrix structured rulesets: We use matrix structured rulesets, which
are inspired by matrix grammars with appearance checking [7]. Ruleset R is
organized as a matrix, i.e. a list of vectors: R = (R1, . . . Rm), 1 ≤ m, where
vectors are listed from high-to-low priorities; all rules in a vector share the same
starting state. Each vector Ri is a sequence of rules, Ri = (Ri,1, . . . , Ri,mi

),
1 ≤ mi, where rules are listed from high-to-low priorities. The matrix semantics
combines a strong priority for vectors and a version of weak priority for rules
inside a vector.

A vector is applicable if at least one of its rules is applicable. In a given vector,
Ri, rules are considered for application according to their (weak-like) priority
order: (a) if applicable, a higher priority rule is applied before considering the
next lower priority rule; (b) otherwise (if not applicable), a higher priority rule
is silently ignored and the next priority rule is considered.

Consider a rule of the general form S x →α S
′ x′ (y)βγ . . . | z ¬ z′. After

this rule is applied, multiset x′ becomes immediately available for the next rule
(in the same vector), while messages, y . . . , are queued until the end of the step
(until all rules in the vector are considered). This is the difference between this
semantics and the classical weak priority rule, where generated multisets, such
as x′, do not become available until the end of the step, thus cannot be used by
the next priority rule.

Vectors are considered for application in their (strong) priority order: (a) if
applicable, a higher priority vector is applied and all lower priority vectors are
ignored (for the current step); (b) otherwise (if not applicable), a higher priority
vector is silently ignored and the next priority vector is considered. A step ends
(1) after the application of the highest priority applicable vector, if any (this is
an active step) or (2) when no vector is applicable (this is an idle step).

As a special case, the cell stops when it enters a state with no associated
vectors, also known as a final state. Under this convention, a P system algorithm
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terminates after all cells enter a final state. Pseudocode 8 shows how ruleset R
is applied.

Pseudocode 8: Matrix structured ruleset application

1 Input : a P module, Π = (V,E,Q,O,R)
2 R = (R1, . . . Rm), 1 ≤ m, and Ri = (Ri,1, . . . , Ri,mi), 1 ≤ mi

3 applied = fa l se
4 for i = 1 to m
5 for j = 1 to mi

6 i f Ri,j is applicable then
7 apply Ri,j : “here” symbols become immediately available
8 outgoing messages are queued
9 applied = true

10 endif
11 endfor
12 i f applied then
13 send all queued messages
14 break
15 endif
16 endfor

For example, consider the following vector, R1 = (R1,1, R1,2, R1,3), in a sys-
tem where cell σ1 contains one symbol, a, and has one child cell, σ2.

R1,1: S0 a →min S0 c (f)↓2
R1,2: S0 b →min S1 d (g)↓2
R1,3: S0 c →min S0 e (h)l2

For σ1, this vector is applied in one step. First, rule R1,1 is applied: one c
becomes immediately available and message f is queued for transfer to σ2. Next,
the lower-priority rule R1,2 is not applicable, for two distinct reasons: (1) there
is no b in the current contents and (2) it indicates a target state, S1, different
from the one already selected, S0.

Finally, rule R1,3 is applied: one e becomes available and message h is further
queued for transfer to σ2. At the end of the step, σ1 contains one e and the queued
symbols, f and h, are transferred to σ2.

Complex symbols: While atomic symbols seem sufficient for many theo-
retical studies (such as computational completeness), complex algorithms need
adequate complex data structures. We enhance our initial vocabulary, by re-
cursive composition of elementary symbols from O into complex symbols, which
are compound terms of the form: t(i, . . . ), where (1) t is an elementary symbol
representing the functor; (2) i can be (a) an elementary symbol, (b) another
complex symbol, (c) a free variable (open to be bound, according to the cell’s
current configuration), (d) a multiset of elementary and complex symbols and
free variables.

We often abbreviate complex symbols by using subscripts for term argu-
ments. The following are examples of complex symbols, where a, b, c, d, e, f are
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elementary symbols and i, j,X are free variables (assuming that these are not
listed among elementary symbols): b(2) = b2, c(i) = ci, d(i, j) = di,j , e(a

2b3),
f(j, c5) = fj(c

5), f(j,Xc) = fj(Xc).
Besides modelling complex data structures, such as lists, stacks, trees and

dictionaries, or emulating procedure calls, complex symbols are useful for rep-
resenting and processing any number of cell IDs with a fixed vocabulary. Thus,
complex symbols allow the design of fixed-size P system algorithms, i.e. algo-
rithms having a fixed number of rules, which does not depend on the number of
cells in the underlying P systems.

Here we assume that each cell σi is “blessed” with a unique complex cell
ID symbol, ι(i), typically abbreviated as ιi, which is exclusively used as an
immutable promoter.

Generic rules: To process complex symbols, we use high-level generic rules,
which are instantiated using free variable matching [1]. A generic rule is identified
by an extended version of the classical rewriting mode, in fact, a combined
instantiation.rewriting mode, where (1) the instantiation mode is one of {min,
max, dyn} and (2) the rewriting mode in one of {min, max}.

The instantiation mode indicates how many instance rules are conceptually
generated: (a) the mode min indicates that the generic rules is nondeterminis-
tically instantiated only once, if possible; (b) the mode max indicates that the
generic rule is instantiated as many times as possible, without superfluous in-
stances (i.e. without duplicates or instances which are not applicable); (c) the
newly proposed mode dyn indicates a dynamic instantiation mode, which will
be described later. The rewriting mode indicates how each instantiated rule is
applied (as in the classical framework).

As an example, consider a system where cell σ7 contains multiset f2f3
2v, and

the generic rule ρα, where α ∈ {min.min, min.max, max.min, max.max} and i and
j are free variables:

(ρα) S20 fj →α S20 (bi)lj | v ιi

1. ρmin.min nondeterministically generates one of the following rule instances:

S20 f2 →min S20 (b7)l2
S20 f3 →min S20 (b7)l3

2. ρmin.max nondeterministically generates one of the following rule instances:

S20 f2 →max S20 (b7)l2
S20 f3 →max S20 (b7)l3

3. ρmax.min generates both following rule instances:

S20 f2 →min S20 (b7)l2
S20 f3 →min S20 (b7)l3
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4. ρmax.max generates both following rule instances:

S20 f2 →max S20 (b7)l2
S20 f3 →max S20 (b7)l3

In a matrix organized ruleset, if a generic rule using the max instantiation
mode generates more than one simple rule, then all generated rules take the
generic rule’s place in the vector, in some nondeterministic order.

We now explain the new dyn instantiation mode. Like max, dyn has the
potential to generate any number of rules (depending on the actual cell contents).
Like min, dyn starts by generating one possible instance. However, after the
generated rule is applied, dyn repeats the generation process, until either no
new rules can be generated or a specified bound has been reached (by default,
we use the cell’s degree).

As an example, consider a cell containing the following list of complex sym-
bols: m(ci0), a1(ci1), a2(ci2), . . . , an(cin), representing the values i0, i1, i2, . . . ,
in, respectively (where n ≥ 0). The following generic rule, µ, determines the
minimum over this sequence of values, in one single step:

(µ)S0 m(XY )→dyn.min S0 m(X) | aj(X)

Assume the particular scenario when n = 3, i0 = 4, i1 = 7, i2 = 2, i3 = 3,
i.e. our cell contains m(c4), a1(c7), a2(c2), a3(c3). First, µ instantiates one of
the following rules, µ′ or µ′′:

(µ′) S0 m(c2c2)→min S0 m(c2) | a2(c2)

(µ′′) S0 m(c3c) →min S0 m(c3) | a3(c3)

If generated, rule µ′ transforms m(c4) into m(c2), which indicates the re-
quired minimum, 2 = min(4, 7, 2, 3). Otherwise, rule µ′′ transforms m(c4) into
m(c3) and them the dyn mode instantiates another rule, µ′′′, which determines
the required minimum:

(µ′′′) S0 m(c2c) →min S0 m(c2) | a2(c2)

The matrix organised rulesets and the dyn instantiation have been specifically
designed to level the playing field between P systems and the usual frameworks
used in distributed algorithms. Typically, distributed algorithms steps only count
messaging rounds, ignoring local computations; therefore, a node in a distributed
algorithm can determine the minimum over an arbitrary long local sequence in
one single step.
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The instantiation of generic rules is only conceptual : it explains their high-
level semantics by mapping it to a simpler lower-level semantics. Moreover, this
instantiation is also ephemeral : the generated lower-level rules are not supposed
to exist past the end of the step. An actual P system implementation does not
need to effectively use rule instantiation, as long as it can support the same
high-level semantics by other means.

5 P System Specification

In this section, we present a directly executable P system specification of Algo-
rithm D, having the same distributed runtime complexity. We omit Algorithm-C,
which is contained in its extension, Algorithm D.

The input digraph is given by the P system structure itself and the system is
fully distributed, i.e. there is no central node and only local messaging channels
(between structural neighbours) are allowed. Moreover, we consider that cells
start without any kind of network topology awareness: cells do not know the
identities of their children, not even their numbers.

The P specification has a challenging task: to fully formalize the informal de-
scription given by the high-level pseudocodes, completing all important details
ignored by these, all this without increasing the time complexity. The specifica-
tion needs to indicate how to build local digraph neighbourhood awareness, how
to build and navigate over virtual residual digraphs, how to transform augment-
ing paths into edge-disjoint paths, how to discard “dead” cells, how to manage
concurrent notification processes.

In particular, our pseudocodes use structural and virtual arcs between cells:
in the corresponding P system specification, parent and child cells record their
corresponding arc end-points, building a simple form of distributed routing tables
(such as used in networking).

P Specification 1: Algorithm D

Input: All cells start with the same set of rules and without any topological
awareness (they do not even know their local neighbours or even their numbers).
All cells start in the same initial state, S0. Initially, each cell, σi, contains an
immutable cell ID symbol, ιi. Additionally, the source cell, σs, and the target
cell, σt, are decorated with symbols, s and t, respectively.

Output: All cells end in the same final state, S60. On completion, all cells are
empty, with the following exceptions: (1) The source cell, σs, and the target cell,
σt, are still decorated with symbols, s and t, respectively; (2) The cells on edge-
disjoint paths contain path link symbols, for predecessors, d′j , and successors,
d′′k .

Table 1 shows the initial and final cells’ configurations for the P system
based on the digraph illustrated in Figure 1.

The matrix R of P Specification 1 consists of fifteen vectors, informally pre-
sented in five groups, according to their functionality and applicability. Each
vector implements an independent function, performed in one step. Symbols i, j
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Table 1. Initial and final configurations of P Specification 1, for Figure 1.

Cell σ0 σ1 σ2 σ3

Initial S0 ι0 s S0 ι1 S0 ι2 S0 ι3
Final S60 ι0 s d

′′
1 d
′′
2 d
′′
3 S60 ι1 d

′
0 d
′′
4 S60 ι2 d

′
0 d
′′
6 S60 ι3 d

′
0 d
′′
5

Cell σ4 σ5 σ6 σ7

Initial S0 ι4 S0 ι5 S0 ι6 S0 ι7 t

Final S60 ι4 d
′
1 d
′′
7 S60 ι5 d

′
3 d
′′
7 S60 ι6 d

′
2 d
′′
7 S60 ι7 t d

′
4 d
′
5 d
′
6

and k are free variables related to cell IDs, symbols X and Y are free variables
which match multisets; conventionally, we use i, j and k as subscripts and X
and Y as arguments.

0. Shared start (S0–S2)

0.1.

1. S0 n →min.min S1 (n)l∀ (n′′i )↑∀ (n′i)↓∀ | ιi
2. S0 →min S0 n | s

0.2.

1. S1 →min S2

0.3.

1. S2 n →max S3

2. S2 →min S3

1. Initial differentiation (S3): cf. Lines 3.4-7
1.1.

1. S3 →min S10 f ri(c) (wi vi)l∀ | ιi s
2. S3 →min S30 | t
3. S3 →min S20

2. Source cell (S10): cf. Lines 3.8-14, 7.15, 3.20-22
2.1.

1. S10 f →min.min S10 s
′′
k (fi ri(Xc))↓k | n′′k h(X) ιi ¬ wk vk

2. S10 a s
′′
k n
′′
k →min.min S40 p d

′′
k (p)l

3. S10 a →max S40

4. S10 bk s
′′
k n
′′
k →min.min S40 q (q)l

5. S10 bk →max.max S40

6. S10 f →min.min S50 (g)l

3. Intermediate cells (S20)

3.1. Finalisation: cf. Line 3.22

1. S20 g →min.min S50 (g)l
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3.2. Frontier: cf. Lines 4.5-26

1. S20 →min.min S20 ri(X) (ri(X))l∀ | fj h(X) ιi ¬ v
2. S20 fj →min.min S20 v s

′
j (vi)l∀ f | ιi ¬ v

3. S20 fj →min.min S20 (bi)lj | v ιi
4. S20 rk(X) r′k(Y ) →min.min S20 rk(Y ) | bk
5. S20 →min.min S20 (x)lk | h(X) rk(XY ) bk ιi ¬ wk

6. S20 bk s
′′
k →min.min S20 f z

′′
k

7. S20 bk →max.max S20

8. S20 →min.min S20 n(X) | h(X) f ιi
9. S20 n(XY ) →dyn.min S20 n(X) | rj(X) n′′j vj f ιi

10. S20 n(XY ) →dyn.min S20 n(X) | rj(X) d′j vj f ιi
11. S20 n(X) ri(XY ) →min.min S20 ri(X) (r′i(X))l∀ | ιi
12. S20 f →min.min S20 vk s

′′
k (fi h(Xc))↓k | ιi n′′k h(X) ¬ vk d′k d′′k

13. S20 f →min.min S20 vk s
′′
k (fi h(Xc))↑k | ιi d′k h(X) ¬ vk

14. S20 f s
′
j →min.min S20 (bi)lj | ιi

15. S20 n(X) →min.min S20

3.3. Path confirmation: cf. Lines 3.16-19

1. S20 a s
′
j s
′′
k →min.min S20 d

′
j d
′′
k (a)lj

2. S20 a →max S20

3. S20 d
′′
k d
′
k →min.min S20

3.4. End-of-round resets: cf. Lines 7.15, 3.20

1. S20 →min S21 (q)l∀ | q
2. S20 →min S21 w | q v ¬ w
3. S20 →max.min S21 wk | q vk ¬ wk

4. S20 z
′′
k →min S21 | q

5. S20 →min S21 (p)l∀ | p
6. S20 v →min S21 | p ¬ w
7. S20 vk →max.min S21 | p ¬ wk

3.5. Transit to the end of a search round

1. S21 →min S40

3.6. Update: cf. Lines 6.4-15

1. S20 rj(X) →max.max S20 | rj(X)
2. S20 r

′
j(X) →max.max S20 | r′j(X)

3. S20 rj(X) r′j(Y ) →min.min S20 rj(Y )
4. S20 →min.min S20 n(X) | h(X) uk ιi
5. S20 n(XY ) →dyn.min S20 n(X) | rj(X) n′′j vj uk ιi
6. S20 n(XY ) →dyn.min S20 n(X) | rj(X) d′j vj uk ιi
7. S20 n(XY ) ri(X) →min.min S20 ri(XY ) (r′i(XY ) ui)l∀ | uk n

′′
k vk ιi ¬ w

8. S20 n(XY ) ri(X) →min.min S20 ri(XY ) (r′i(XY ) ui)l∀ | uk d
′
k vk ιi ¬ w

9. S20 n(X) →min.min S20

10. S20 uk →min.min S20 (x)lk | h(X) rk(XY ) ιi ¬ wk w
11. S20 uk →max.max S20

3.7. Discard: cf. Lines 5.3-15

1. S20 z
′′
k →max.min S20 (x)lk | x ιi ¬ wk

2. S20 x →min.min S20 w ri(∞) (wi r
′
i(∞) ui)l∀ | ιi ¬ w

3. S20 z
′′
k →max.max S20 | w

4. S20 s
′
j s
′′
k →min.min S20 (bi)lj | ri(X) w ιi
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4. Target cell (S30): cf. Line 4.4

4.1.

1. S30 g →min.min S40 (g)l
2. S30 fj →min.min S30 d

′
j (a)↓j

3. S30 →min S40 | q
4. S30 →min S40 | p

5. All cells (S40, S50)

5.1. End of each search round

1. S40 vk →max.max S40 | s
2. S40 vk →max.max S40 | t
3. S40 uj →max.max S40

4. S40 cl →max.max S40

5. S40 rj(X) →max.max S40

6. S40 r
′
j(X) →max.max S40

7. S40 a →max S40

8. S40 q →max S40

9. S40 p →max S40

10. S40 →min S3

5.2. End of the algorithm

1. S50 g →max S50

2. S50 n
′
j →max.min S50

3. S50 n
′′
k →max.min S50

4. S50 wk →max.min S50

5. S50 vk →max.min S50

6. S50 z
′′
k →max.min S50

7. S50 w →max S50

8. S50 v →max S50

9. S50 →min S60

Cell σi uses the following symbols to record its relationships with its neigh-
bouring cells, σj and σk: n′j indicates a structural parent; n′′k indicates a struc-
tural child; d′j indicates an edge-disjoint path predecessor (dp-predecessor); d′′k
indicates an edge-disjoint path successor (dp-successor); s′j indicates a current
sp-predecessor; s′′k indicates a current sp-successor; z′′k indicates a st-successor;
rj(c

m) records σj ’s reach-number, m (note that here j may indicate the current
cell, i, or one of its neighbours).

Additionally, cell σi uses the following symbols to record its state: h(cm)
records its depth, m; n(cm) is used to evaluate the minimum over its own depth
and the reach-numbers of its temporarily visited structural children; v indicates
that it is temporarily visited; w indicates that it is permanently visited; f indi-
cates that it is the frontier cell.

Cell σi sends out messages consisting of the following symbols: fi is the
forward token; bi is the backtrack token; vi is the visited notification; wi is the
permanently visited notification; r′i(c

m) is its updated reach-number, m; x is the
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discarding notification; a is the path confirmation; q is the after-success reset; p
is the after-failure reset; g is the finalise token.

Here we explain a small snippet, vector 3.2, which contains several critical
rules for an intermediate cell, σi.

Note that (as indicated above), we use two distinct symbols to represent the
visit token: a forward token and backtrack token. Each token carries the sender
ID: fi is the forward token sent by cell σi and bi is the backtrack token sent by
σi.

Rules 3.2.1–2 process an incoming forward token, fj , from cell σj . If it is
unvisited, ¬ v, then cell σi (a) initialises its reach-number, ri(X), as the received
depth, h(X); (b) becomes visited, v; (c) records σj as its current sp-predecessor,
s′j ; (d) broadcasts its visited notification, vi, to all its neighbours, l∀; and (e)
becomes the search frontier, f .

Rules 3.2.4–7 process an incoming backtrack token, bk, from cell σk. Cell
σi (a) updates its record for σk’s reach-number, rk(X); (b) sends a discarding
notification to σk, if σk’s reach-number is greater than σi’s depth; (c) transforms
its current sp-successor, s′′k , into a st-successor, z′′k ; and (d) becomes the search
frontier, f .

Rules 3.2.8–14 specify the behaviour of cell σi, after it becomes the search
frontier, f .

Rules 3.2.8–10 compute σi’s reach-number as the minimum of its depth,
h(X), and the reach-numbers of its temporarily visited residual digraph children,
i.e. temporarily visited structural children (n′′k and vk) or temporarily visited dp-
predecessors (d′k and vk). Rule 3.2.11 updates and broadcasts σi’s reach-number,
r′i(X), if this value decreases.

According to rule 3.2.12, if σk is an unvisited structural child, n′′k ¬ vk, that
is not on an existing disjoint path, ¬ d′k d′′k , then σi (a) records σk as visited, vk;
(b) records σk as its current sp-successor, s′′k ; and (c) sends its forward token,
fi, with an incremented depth, h(Xc), to σk, over an outgoing structural arc, ↓k
(i.e. over a direct arc).

If the conditions of rule 3.2.12 are not met (rules are applied in the weak
priority order), then rule 3.2.13 is considered. According to rule 3.2.14, if σk is
an unvisited dp-predecessor, ¬ vk and d′k, then σi (a) records σk as visited, vk;
(b) records σk as its current sp-successor, s′′k ; and (c) sends its forward token,
fi, to σk, with an incremented depth, h(Xc), over an incoming structural arc,
↑k (over a reverse arc).

If the conditions of rules 3.2.12–13 are not met, then rule 3.2.14 is considered.
According to rule 3.2.14, if σj is the current sp-predecessor, s′j , then σi (a)
removes s′j , i.e. the existing record of σj as its current sp-predecessor; and (b)
sends its backtrack token, bi, to σj , over an outgoing or incoming structural arc,
lj (over a direct or reverse arc).
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6 Runtime Performance

Consider a digraph with n cells and m arcs, where d is the outdegree of the source
cell and f is the maximum number of edge-disjoint paths in a given scenario. In
our Algorithms B, C, C∗ and D, the source cell starts d search rounds. In each
round, using a Cidon-type DFS, visited cells notify their neighbours, so the search
does not revisit cells which were visited in the same round and thus completes
in at most n steps. As earlier mentioned, all other housekeeping operations are
performed in parallel with the main search, thus Algorithms B, C, C∗ and D all
run in O(nd) steps. In fact, because they discard all cells visited in failed rounds
(which do not find augmenting paths), Algorithms B and D run in O(nf) steps.
We conjecture that a similar upperbound can also be found for Algorithms C
and C∗.

Proposition 2. Algorithms C and C∗ run in O(nd) steps; Algorithms B and D
run in O(nf) steps.

Table 2 compares the asymptotic complexity of our new Algorithms C, C∗

and D against our previous Algorithm B and the two other previous DFS-based
algorithms used in this paper.

Table 2. Asymptotic worst-case complexity of several distributed DFS-based algo-
rithms.

Algorithm Runtime Complexity

Algorithm A (Ford-Fulkerson/DFS [6]) O(mf) steps

Algorithm A∗ (Dinneen et al. [3]) O(mf) steps

Algorithm B (our previous improvement [12]) O(nf) steps

Algorithm C (here) O(nd) steps (?)

Algorithm C∗ (here) O(nd) steps (?)

Algorithm D (here) O(nf) steps

However, this theoretical estimation does not fully account for the detection
and discarding of “dead” (permanently visited) cells. Therefore, using their exe-
cutable P specifications, we experimentally compare Algorithms A, B, C, C∗ and
D, on thirty digraphs with 100 cells and 300 arcs, generated using NetworkX [8].
Algorithm C∗ is a restricted version of Algorithm C, which, using our novel
idea, only discards “dead” cells detected during successful rounds, intentionally
refraining from discarding any “dead” cells detected during failed rounds. This
way, Algorithm C∗ is the opposite of our previous Algorithm B, which, using a
different idea, only discards “dead” cells detected during failed rounds.

Table 3 details our experimental results and observed speed-up gains. Fig-
ure 3 summarizes the speed-up gains of Algorithms B, C, C∗ and D over A for
our thirty test cases.

The results show that, on average: (1) Algorithm B is 41.0% faster than Al-
gorithm A; (2) Algorithm C is 41.8% faster than Algorithm A; (3) Algorithm C∗

H. ElGindy, R. Nicolescu, H. Wu

192



0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Speed-up 
gains 

Test case 

A* over A

B over A

C over A

C* over A

D over A

Fig. 3. Speed-up gains of Algorithms A∗, B, C, C∗ and D over A for thirty test cases.

is 38.0% faster than Algorithm A; (4) Algorithm D is 42.1% faster than Algo-
rithm A.

Analysing results (1–3), we found that the “dead” cells detected by Algo-
rithms C and C∗ do cover all “dead” cells detected by Algorithm B, and even
a few more. However, not all detected “dead” cells can be effectively discarded
in “real-time”, unless we allow these two algorithms to run longer (which we do
not want). Thus, we can find (1) scenarios, such as shown in Figure 2, where
Algorithms C and C∗ (and, of course, Algorithm D) outperform Algorithm B,
and (2) scenarios, such as shown in Figure 4, where Algorithm B runs faster
than Algorithms C and C∗ (but not than D).

0 1

3 4 5

6789

2 10

Fig. 4. An example, in which Algorithm B performs better than Algorithm C.

In Figure 4, Algorithm C does detect all “dead” cells detected by Algo-
rithm B, but, because of pruning propagating delays, does not effectively discard
them in “real-time”; briefly, it does not show the same runtime performance.

For Algorithm C, when round #1 search path τ = σ0.σ1.σ3.σ4.σ5.σ6.σ7.σ8.σ9,
backtracks to the source cell, σ0, cells σi, i ∈ {1}∪[3, 9] can be discarded, because
their reach-numbers are greater than σ0.depth = 0. Cell σ0 triggers a discarding
notification, which follows the same path as the backtracked search τ . In round
#2, the new search path τ ′, τ ′ = σ0.σ2 visits σ6 before this cell receives its
due discarding notification and then continues to σ7 and further. Later, cell σ6
receives its due discarding notification (started in round #1), discards itself and
sends an overdue backtrack token to σ2, which starts looking for other directions
to continue path τ ′. However, several steps have been lost exploring “dead” nodes
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(which were not aware of this). Finally, after this mentioned delay, the search
path τ ′ reaches σ10, τ ′ = σ0.σ2.σ10, and becomes a new augmenting path.

For Algorithm B, the round #1 search path, τ , follows the same route as in
Algorithm C. When τ backtracks to σ0, Algorithm B initiates an after-failure
reset, which is propagated as a broadcast, travelling on shortest paths, reaching
σ6 on path σ0.σ2.σ6. When the immediately following round #2 search path τ ′

reaches σ2, τ ′ = σ0.σ2, it avoids σ6, which is already discarded. In the next step,
the search path τ ′ reaches σ10, τ ′ = σ0.σ2.σ10, and becomes a new augmenting
path, faster than in Algorithm C.

In this example, due to its pruning propagating delay, Algorithm C shows
worse performance than Algorithm B: in their executable P specification, Algo-
rithm C requires 46 steps, while Algorithm B takes only 41 steps.

In Figure 2, Algorithm C outperforms Algorithm B. For Algorithm C, when
the round #1 search path, τ , backtracks to σ3 (see (d)), cell σ6 can be discarded
and is sent a discarding notification. Later, when τ backtracks to σ2 (see (e)),
cells σ3, σ4 and σ5 can be discarded and are sent discarding notifications. All
these discarding notifications reach their targets before the start of the next
round. Thus, a round #2 search path, τ ′, will not (needlessly) probe σ4 and its
descendants.

In contrast, Algorithm B, which uses a different idea, cannot detect “dead”
cells during successful rounds. Its round #1 search path, τ , follows the same
route as in Algorithm C; however, without triggering any discarding notification.
Therefore, a round #2 search path, τ ′, will needlessly visit again cells σ4, σ5, σ3
and σ6. In their executable P specification, Algorithm C takes 30 steps, while
Algorithm B takes 43 steps.

7 Conclusions

We presented two new distributed DFS-based algorithms, Algorithms C and
D, for solving the edge-disjoint path problem in digraphs. Using a novel idea,
Algorithm C discards “dead” cells detected during both successful and failed
search branches. By combining Algorithm C and our previous Algorithm B [12],
which discards “dead” cells detected during failed rounds, Algorithm D discards
all “dead” cells that are detected by both B and C.

We first described our distributed algorithms using an informal high-level
pseudocode and then we provided an equivalent directly executable formal P spec-
ification. Our P systems use high-level generic rules organised in a newly pro-
posed matrix-like structure and with a new dyn instantiation mode. The resulting
P systems have a reasonably fixed-sized ruleset, i.e. the number of rules does not
depend on the number of cells, and achieve the same runtime complexity as the
corresponding distributed algorithms.

Experimentally, on a series of random digraphs, all our algorithms seem to
show very significant speed-up over the classical Algorithm A and its improved
version, Algorithm A∗. Interestingly, despite using a different idea, our new al-
gorithms seem to have a similar performance with our previous Algorithm B;
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in fact, on purely random digraphs, Algorithms C and D seem to be marginally
faster than Algorithm B.

On the other side, one can construct many sample scenarios where Algo-
rithms C and D vastly outperform Algorithm B and also many sample scenarios
where Algorithm B outperforms Algorithm C (but not Algorithm D).

Several interesting questions remain open. Can these results be extrapolated
to digraphs with different characteristics, such a size, average node degree, node
degree distribution? Will these results remain valid for symmetric digraphs, i.e.,
undirected graphs? Can we find improved versions of these algorithms for solving
the undirected graph problem? How relevant are these algorithms and results
for real-life networks, such as transportation networks or other networks which
show some kind of clustering? Are there well defined practical (non-random)
scenarios where one could recommend one of the algorithm over another? Can
we apply similar optimisations to BFS-based algorithms for solving the edge-
disjoint paths problem? What are practical strengths and limits of P systems
based on our matrix structured generic rules?
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Table 3. Experimental runtime comparison of Algorithms A, B, C, C∗ and D on 30
random digraphs, with n = 100 cells, m = 300 arcs.

Test f Algorithm A Algorithm B Algorithm C Algorithm C∗ Algorithm D
case steps steps gain% steps gain% steps gain% steps gain%

over A over A over A over A

1 1 135 97 28 97 28 97 28 97 28

2 0 13 13 0 13 0 13 0 13 0

3 2 1198 513 57 499 58 658 45 492 59

4 3 1372 616 55 541 61 590 57 540 61

5 3 671 359 46 351 48 351 48 351 48

6 1 383 193 50 193 50 193 50 193 50

7 4 1458 677 54 669 54 838 43 666 54

8 1 641 269 58 267 58 267 58 265 59

9 3 147 123 16 123 16 123 16 123 16

10 2 225 173 23 171 24 171 24 171 24

11 2 1020 435 57 445 56 610 40 436 57

12 4 333 213 36 207 38 209 37 207 38

13 1 274 156 43 149 46 156 43 149 46

14 1 160 108 33 108 33 108 33 108 33

15 1 821 340 59 357 57 509 38 335 59

16 2 960 451 53 470 51 616 36 440 54

17 1 822 334 59 329 60 328 60 328 60

18 4 1388 606 56 570 59 590 57 570 59

19 2 1302 553 58 508 61 726 44 508 61

20 2 194 146 25 146 25 146 25 146 25

21 2 566 294 48 290 49 290 49 290 49

22 2 1420 566 60 548 61 556 61 547 61

23 1 134 98 27 98 27 98 27 98 27

24 4 1093 525 52 509 53 511 53 509 53

25 1 27 27 0 27 0 27 0 27 0

26 3 1151 504 56 478 58 647 44 475 59

27 3 385 259 33 253 34 253 34 253 34

28 0 13 13 0 13 0 13 0 13 0

29 2 660 326 51 319 52 320 52 319 52

30 3 391 247 37 243 38 243 38 243 38
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Abstract. This article introduces a general formalism/framework flexi-
ble enough to cover descriptions of different variants of P systems having
a dynamic membrane structure. This framework can be useful for the
precise definition of new variants of P systems with dynamic structure,
for the comparison of existing definitions as well as for their extension.
We give a detailed definition of the formalism and show how existing
variants of P systems with dynamic structure can be translated to it.

1 Introduction

This article is an attempt to fulfill the goal of defining a formal framework
that captures the essential properties of P systems with dynamic structure. This
framework can be seen as a kind of meta-language that permits to describe
a P system and its evolution. Our main goal is to provide a simple tool for
the analysis of different models of P systems with dynamic structure. There
are numerous possible applications of the results of such an analysis, as, for
example, the comparison and the extension of existing models and the creation
of new models of P systems with a dynamic structure.

The article extends the approach used in [3] for P systems with static struc-
ture. We recall that the framework for the static P systems is mainly composed of
five ingredients: the definition of the configuration of the system, the definition of
rules, the definition of the applicability and of the application of a rule/multiset
of rules, transition mode and halting condition. The configuration is a list of mul-
tisets corresponding to the contents of membranes of a P system and the rules
generalize most kind of rules used in the P systems area. Based on this general

13th International Conference on Membrane Computing, CMC13,

Budapest, Hungary, August 28 - 31, 2012. Proceedings, pages 199 - 210.

199



form of rules, the applicability and the application of a (group of) rule(s) are
defined using an algorithm. This permits to compute the set of all applicable
multisets of rules for a concrete configuration C (Applicable(Π,C)). Then this
set is restricted according to the transition mode δ (Applicable(Π,C, δ)). For
the transition, one of the multisets from this last set is non-deterministically
chosen and applied, yielding a new configuration. The result of the computa-
tion is collected when the system halts according to the halting condition, which
corresponds to a predicate that depends on the configuration and the set of rules.

In the case of P systems with dynamic structure the first three ingredients
are to be changed in order to accommodate with the fact that the structure of
the system can change. Informally, a configuration is a list of triples (i, h, w),
where i is the unique identifier of a cell/membrane, h is its label and w is its
contents. A configuration also contains the description of the structure of the
system, which is given by a binary relation ρ on cell identifiers.

We assume that the set of rules is fixed (does not change in time). Rule
actions are expressed in terms of “virtual” cells (membranes). These virtual
cells are identified by labels. The process of the application of rules first makes a
correspondence between the current configuration and the virtual cells described
in a rule, i.e. it tries to “match” the constraints of virtual cells (labels, relation,
contents, etc.) against the current configuration. When a subset of cells from
the current configuration (say I) matches the constraints of a rule, we say that
a rule can be instantiated by the instance I. The instantiation of r by I is the
couple (r, I), denoted by r〈I〉, and it can then be treated as a rule that could
be applied like in the static case. The rules also contain additional ingredients
that permit to modify the structure (the relation ρ).

Instances of rules can further be used to compute the applicable set of multi-
sets of rules and we provide an algorithm for this purpose. The transition modes
and halting conditions can easily be applied to this set exactly as in the static
case.

The article is organized as follows. Section 2 gives the definition of the frame-
work and presents the related algorithms. Section 3 presents a taxonomy that
permits to define shortcuts for the commonly used cases. Then in section 4 we
give examples of the translation of several well-known types of P systems with
dynamical structure. Finally, we discuss the perspectives of the presented ap-
proach.

2 Definitions

We assume that the reader is familiar with standard definitions in formal lan-
guage theory (for example, we refer to [8] for all details) and with standard
notions of P systems, as described in the books [5] and [6] (see also references
listed at the web page [7]).
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2.1 Graph Transformations

There exist several ways to define a graph transformation. We will define a
graph transducer using the formalism from [2]. This formalism defines the graph
transformation as a graph-controlled graph rewriting grammar with appearance
checking using the following operations:

– I(X): creation of a new node labeled by X;
– D(X): deletion of a node labeled by X;
– C(X,Y ): change the label of the node labeled by X to Y;
– I(l1, λ, l2; l′1, a, l

′
2): insert an edge labeled by a between two nodes labeled by

l1 and l2; after the insertion nodes are relabeled to l′1 and l′2 respectively;
– D(l1, a, l2; l′1, λ, l

′
2): delete the edge labeled by a between two nodes labeled

by l1 and l2; after the deletion nodes are relabeled to l′1 and l′2 respectively;
– C(l1, a, l2; l′1, a

′, l′2): rename to a′ the label of the edge labeled by a between
two nodes labeled by l1 and l2, After this operation nodes are relabeled to
l′1 and l′2 respectively.

It was proved in [2] that the above formalism is computationally complete.
In what follows we will use some particular graph transducers whose defini-

tion we give below:

– DELETE(x): C(x, x′), D(x′, a, y;x′, λ, y) (looping over a and y), D(x′)
– INSERT (x): I(x)
– INSERT − EDGE(x, y): I(x, λ, y;x, a, y)
– DELETE − EDGE(x, y): D(x, a, y;x, λ, y)

2.2 Definition of the Framework

We start by defining a configuration of a P system. Since we deal with P systems
with dynamic structure, it should be taken into account that the number of cells
(membranes) is not fixed (it is unbounded), and hence a list of variable length
will be used.

Definition 1 A basic configuration C (of size n) is a list (i1, w1) . . . (in, wn),
where each wj is a multiset (over O) and each ij ∈ N, ij 6= ik, for k 6= j,
1 ≤ j, k ≤ n.

Each element (ij , wj), 1 ≤ j ≤ n, of a configuration C is called a cell.

Remark 1 (Finiteness)

i) The set of all possible basic configurations of any size n > 0 is denoted by C.
We remark that we will consider only basic configurations of finite size and
we denote the size of C by size(C).

ii) If not stated otherwise, we suppose that all multisets of a basic configuration
are finite. If needed, the definitions that follow can be adapted to infinite
multisets by adding corresponding constraints to the rule definition, in a
similar way as it was done in [3].
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Remark 2 (Identification) Note that in the definition of a basic configuration,
each cell consists of a pair where the first component (ij) is called the id of the
cell and the second component (wj) is called the contents of the cell.

In what follows the id’s that will be used are natural numbers corresponding
to the position of each cell in the list. However, if needed, one could define a
function id over a basic configuration C, provided that this function is injective
( i.e. different cells must get different id’s).

Definition 2 A configuration C is a couple (L, ρ), where L is a list of “labeled
cells” (i1, l1, w1) . . . (in, ln, wn), with (ij , wj) corresponding to an element of a
basic configuration and lj ∈ Lab being the label of that cell, for 1 ≤ j ≤ n (Lab
is a set of labels). The second component ρ ⊆ N×N is a relation that represents
the connections between cells (the relation can be seen as a graph where the nodes
are the cells id’s).

Hence in a configuration each cell has an id which is unique and a label which
is not necessarily unique. We define the function lab(x) : N→ L that returns the
label of the cell having the id equal to x. We denote by Cm and Cρ the first and
the second components of the configuration C, respectively. We also denote by
C̄m ∈ C the projection of Cm erasing the labels (yielding a basic configuration).

The relation ρ is defined on id’s of cells being part of the configuration. In
cell-like P systems this corresponds to the parent relation, while in tissue P
systems this corresponds to the communication graph of the system.

The set of all possible configurations is denoted by C.

Now we will give the definition of a rule. A rule r is defined by the 11
components explained below. We remark that all of them are given in terms of
relative positions refereing to virtual cells, since the rules description has to be
independent of the actual id’s of cells in a configuration. The maximal number
of these virtual cells can be deduced from the first component of the rule.

A. Checking

1. Labels(r) ∈ Lab∗ (Labels(r) = (l1, . . . , lk)) is a list of cell labels. This list
identifies k (relative) positions labeled from 1 to k that we further call virtual
cells. Let Nk = {1, . . . , k} and K be a subset of C where for any cell x it
holds 1 ≤ id(x) ≤ k.

2. ρ(r) ⊆ Nk × Nk is the constraint imposed by the (parent) relation on the
virtual cells.

3. Perm(r) ⊆ K defines the permitting condition.

4. For(r) ⊆ K defines the forbidding condition.

B. Modification of existing configuration/structure

5. Rewrite(r) ∈ (K×K) is a general rewriting rule permitting to rewrite a finite
basic configuration to another one (e.g., (j, u)(i, v)→ (m,w)). By Bound(r)
we denote the first component (the left-hand-side) of this rewriting rule.

6. Label–Rename(r) ∈ (Nk × Lab)∗ renames the labels specified by the list.

7. Delete(r) ∈ N∗k gives the indexes of virtual cells to be deleted.
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8. Delete–and–Move(r) ∈ (Nk×Nk)∗ is a list of couples of indices (e.g., (j, k))
indicates that the virtual cell j should be deleted and its contents should be
moved to the virtual cell k).

C. Creation of new structures
9. Generate(r) ∈ (N′ × Lab × O◦)∗ is a list of triples consisting of a (primed)

index, a label, and a multiset (e.g. (j′, h, u)). This component introduces
new cells to be created by the application of the rule.

10. Generate–and–Copy(r) ∈ (N′ × Lab× N× R̄) -is a list of quadruplets con-
sisting of a (primed) index, a label, an index, and a rewriting rule (e.g.
(j′, h, i, u→ v)). This component specifies new cells to be created by dupli-
cating existing cells.
We denote the smallest multiset containing any left-hand side of rewriting
rules from Generate–and–Copy by DPerm(r).

D. Structure transformation
11. Change–Relation is a graph transducer that updates the relation ρ. This

transducer should be recursive and it can only add and remove edges (no
node creation/removal is allowed).

Now we define what the applicability of a rule means. Before giving the
algorithm, we define some additional notions related to relative positions.

An instance of size n is a vector of integers I = (i1, . . . , in), ij ∈ N, 1 ≤ j ≤ n.
By size(I) we denote the size of an instance I, and by I|k, 1 ≤ k ≤ n, the k-th
value of the vector I, i.e., ik.

For a basic configuration C ∈ C, C = (j1, w1) . . . (jk, wk), and for an instance
I we define the instantiation of C by I, denoted C〈I〉, as follows:

C〈I〉 = (I|j1 , w1) , . . . , (I|jk , wk) .

In the above formula we assume that the cells of configuration C do not nec-
essarily have their id in the range [1 . . . size(C)]. We also remark that size(C) ≤
size(I).

It is clear that if C is defined in terms of relative positions then C〈I〉 permits
to replace these relative positions by the corresponding values from I (a relative
position k is replaced by I|k which is ik).

For a rule r as defined above and for an instance I such that |Labels(r)| ≤
size(I) we obtain the instantiation of r by I, denoted by r〈I〉, by replacing all
relative positions k by I|k in Perm(r), For(r), Rewrite(r), Label–Rename(r),
Delete(r), Delete–and–Move(r) and Change–Relation(r).

Applicability of a Multiset of Rules

Now we define what means the applicability of a group of rules. First we define
the set of eligible instances for a rule r ∈ R in a configuration C. This set, denoted
by IC(r), is obtained by the following algorithm.

1. IC(r) is consistent with Labels(r):

ĪC(r) = {(i1, . . . , ik) | (l1, . . . , lk) = Labels(r) and lab(ij) = lj ,

1 ≤ ij ≤ size(C), 1 ≤ j ≤ k}.
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2. IC(r) is consistent with ρ:

IC(r) = {(i1, . . . , ik) ∈ ĪC(r) | (j,m) ∈ ρ(r)⇒ (ij , im) ∈ Cρ}.

For a multiset of rules R ∈ R◦ and a configuration C ∈ C we define the
set of multisets Applicable(R, C) ⊆ (R × N∗)◦ giving the set of multisets of
instantiated rules that can be computed based on R and the configuration C.
This set is computed as follows.

Let R = {r1, . . . , rn} (the rules are not necessarily different) and let IC(ri) =
(vi,1, . . . , viki), 1 ≤ i ≤ n. Consider an arbitrary vector of rule instances v =
(v1,j1 , . . . , vn,jn), 1 ≤ ji ≤ ki, 1 ≤ i ≤ n. The multiset {(r1, v1,j1), . . . , (rn, vn,jn)}
belongs to Applicable(R, C) if

– For all p ∈ Perm(ri) ∪DPerm(ri), p〈vi,ji〉 ⊆ C̄m, 1 ≤ i ≤ n.
– For all q ∈ For(ri), q〈vi,ji〉 6⊆ C̄m, 1 ≤ i ≤ n.
–
⋃n
i=1Bound(ri)〈vi,ji〉 ⊆ C̄m.

– ∀i, k, s if ((s, l1) ∈ Label–Rename(ri〈vi,ji〉) and
(s, l2) ∈ Label–Rename(rk〈vk,jk〉)) then l1 = l2.

– The consecutive application of graph transducers Change–Relation(ri) and
Change–Relation(rj) yields the same result regardless of the order of the
application, 1 ≤ i, j ≤ n.

For a P system Π having a set of rules R we define:

Applicable(Π, C) =
⋃

Applicable(R,C)6=∅
Applicable(R, C),

where R are multisets (of rules) over R. Note that this is a finite union, since the
size of the eligible multisets for which Applicable(R, C) is not empty is bounded.

Following [3] it is possible to define now the transition modes as a restriction
of this set. However, it should be noted that since the corresponding multi-
sets contain instantiated rules, additional restrictions based on instances can be
placed.

Application of a Multiset of Rules

Now we are ready to define the application of a multiset of rules R.
Let C = (L, ρ) be the current configuration and let RI ∈ Applicable(R, C),

RI = {(r1, v1), . . . , (rn, vn)} be a multiset of instantiated rules. We now define
the operation Apply(RI, C) ∈ C which is the result of the application of RI to
C.

Before giving the algorithm we remark that a rule is composed from three
parts: the rewriting of objects and the label change (R), the membrane deletion
(D) and the membrane creation (G). The order of the application of these parts
is extremely important, e.g. doing the rewriting before the membrane creation
permits to copy the result of the rewriting to the new membranes. In this article
we consider that the application order is RGD, i.e. rewriting, creation and then
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deletion. This order corresponds to the actual state of art in the area of P
systems with active membranes. Other orders are also possible and this can be
an interesting topic for a further research.

The algorithm for the computation of Apply(RI, C) is the sequence consisting
of the following steps.

1. (rewriting application): L1 = {(i1, l1, w′1) . . . (in, ln, w
′
n)} where:

w′j = wj −
⋃

(rk,vk)∈RI
Uk|j +

⋃

(rk,vk)∈RI
Vk|j ,

for each j = 1 . . . n, where (Uk → Vk) = Rewrite(rk〈vk〉) and Uk|j (resp.
Vk|j) denotes the multiset associated with the cell from Uk (resp. from Vk)
whose id is j, or the empty multiset if none of the cells has j as id.

2. (label change): L2 = {(i1, l′1, w′1) . . . (in, l
′
n, w

′
n)} where:

3. (label change): L2 = {(i1, l′1, w′1) . . . (in, l
′
n, w

′
n)} where:

l′j =

{
es, if ∃(rk, vk) ∈ RI such that (j, es) ∈ Label–Rename(rk〈vk〉)
lj , otherwise.

4. (membrane creation): (m1 . . .mt+s are new ids). We define the lists of newly
created cells Lc and L′c:

Lc(rk) =(m1, h1, u1) . . . (mt, ht, ut), (rk, vk) ∈ RI and

Generate(rk) = {(1′, h1, u1) . . . (t′, ht, ut)}.
Lc =Lc(r1) · · · · · Lc(rn).

L′c(rk) = (mt+1, ht+1, w
′
n1
− u1 + v1) . . . (mt+s, ht+s, w

′
ns
− us + vs), where

(rk, vk) ∈ RI and

Generate–and–Copy(r) ={((t+ 1)′, ht+1, nt+1, ut+1 → vt+1) . . .

((t+ s)′, ht+s, nt+s, ut+s → vt+s)},
(ij , l

′
j , w

′
j) ∈ L2, 1 ≤ j ≤ n

L′c = L′c(r1) · · · · · L′c(rn).

By definition, we put vk|q′ = mq, 1 ≤ q ≤ t+ s.
We also consider a graph transducer CREATE–NODES that creates nodes
m1, . . . ,mt+s.
We put L3 = L2 ·Lc ·L′c (this is the Cm part of the result of the application
of R).

5. (membrane deletion):
Consider a vector P = (p1, . . . , pn) defined as follows:

pj =





∗, if there exists (rk, vk) ∈ RI such that s ∈ Delete(rk)

and vk|s = j,

vk|m, if there exists (rk, vk) ∈ RI such that

(s,m) ∈ Delete–and–Move(rk) and vk|s = j,

j, otherwise.
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The first two cases correspond to those ids j for which the corresponding
cells should be deleted. We remark that for any pk such that pk 6= ik, there
is a value z ∈ N∪{∗} such that there is a sequence x1, . . . , xm with x1 = pk,
xm = z, and xj = pxj−1 , 2 ≤ j ≤ m. We denote this by z = last(x). The
above affirmation follows from the fact that the Delete–and–Move relation
(considered as a parent relation) induces a forest on the ids of the cells that
should be deleted. The roots of the obtained trees are given by the function
last and they will collect the objects from all the cells in the tree (if they
are different from ∗).
Next we describe how the contents is moved:
L4 = {(i1, l′1, w′′1 ) . . . (in, l

′
n, w

′′
n)} where (ik, l

′
k, w

′
k) ∈ L3, 1 ≤ k ≤ n, and

w′′j = w′j +
⋃

last(k)=j

w′k.

The deletion of cells induces changes to the relation ρ. We collect these
modifications as a graph transducer DELETE–NODES that will be run
after the Change–Relation transducer. This transducer deletes all vertices
j such that pj 6= j as well as all edges that are incoming to these deleted
nodes.
We also remove the corresponding cells from L4:
L5 = (i1, l

′
1, w

′′
1 ) . . . (in1 , l

′
n1
, w′′n1

) where (ij , l
′
j , w

′′
j ) ∈ L4 and pj = ij .

6. (relation change) The new relation C′ρ is computed by running the graph
transducers CREATE–NODES, Change–Relation(r〈vk〉) and
DELETE–NODES for all (rk, vk) ∈ R on Cρ.

The output of the algorithm is the configuration Apply(RI, C) = (L5, C′ρ).

3 Taxonomy

In order to simplify the notation, instead of using a long tuple bringing every-
thing together we shall consider several variants of rule notation, adapted for
the following specific types of rules:

Simple rewriting rule (R-rule)
An R-rule is defined only by the following components:
r = (Labels(r), ρ(r), Rewrite(r))

Simple rewriting rule with label rename (LR-rule)
An LR-rule is defined only by the following components:
r = (Labels(r), ρ(r), Rewrite(r), Label–Rename(r))

Simple creation rule (C-rule)
A C-rule is defined by the following components:
r = (Labels(r), ρ(r), Generate(r), Generate–and–Copy(r),

Change–Relation(r))
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Simple creation rule with label rename (CL-rule)
A CL-rule is defined by the following components:
r = (Labels(r), ρ(r), Label–Rename(r), Generate(r),

Generate–and–Copy(r), Change–Relation(r))

Simple dissolution rule (D-rule)
A D-rule is defined by the following components:
r = (Labels(r), ρ(r), Delete(r), Delete–and–Move(r),

Change–Relation(r))

In the case of the parent relation (tree case), we can simplify the rules and
omit ρ(r) by supposing that Labels(r) is of size 2. In this case we implicitly
assume that (1, 2) ∈ ρ(r). The type of corresponding rules with parent relation
will additionally contain the letter P (e.g., PC-rule).

In a more general way, we can also consider combined types of rules, merging
the corresponding components: L – label rename, R – rewriting, C – membrane
creation, D – membrane deletion (and get RD rules for example).

Rules r having a non-empty Delete–and–Move(r) component can be simpli-
fied by reducing their Change–Relation(r) component in the case of the parent
relation.

In the above case we will assume that Change–Relation(r) contains the
transducer MOV E−CONNECTIONS described below. This transducer adds
the following edges to ρ: {(ax, by) | (x, y) ∈ Cρ and ax, by 6= ∗}, where (ax, by) is
defined as follows (im is the id of membrane m):

(ax, by) =

{
(last(x), y), (x, y) ∈ ρ and px 6= ix,
(y, last(x)), (y, x) ∈ ρ and px 6= ix.

The above transformations correspond to the deletion of cells and to the
movement of their contents according to Delete–and–Move relation.

4 Some Examples

4.1 Active Membranes

Let us start with the example of traditional active membrane rules (e.g., see
Section 11.2 from handbook [6]).

Polarization can be treated in two ways – as a special object inside a mem-
brane or like a special label; we here consider the latter case, i.e., the couple
(label,polarization) will be a new type of label.

Thus, a rule r : [a → v]eh will be treated as r : [a → v]〈e,h〉 and it can be
translated as the following PR-rule:

r : Labels(r) = (〈e, h〉),
Rewrite(r) = {(1, a→ v)}.

In the future we indicate e instead of 〈e, h〉.
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A rule a[]e1 → [b]e2 can be translated as the following group of PLR-rules
(∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (2, a)→ (1, b),

Label–Rename(r) = {(1, e2)}.

A rule [a]e1 → []e2b can be translated as the following group of PLR-rules
(∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (1, a)→ (2, b),

Label–Rename(r) = {(1, e2)}.

A rule [a]e → b can be translated as the following group of PD-rules (∀p ∈
Lab):

r : Labels(r) = (e, p),

Rewrite(r) = {(1, a)→ (1, b)},
Delete–and–Move(r) = {(1, 2)}.

A rule [a]e1 → [b]e2 [c]e3 can be translated as the following group of PCLR-
rules (∀p ∈ Lab):

r : Labels(r) = (e, p),

Rewrite(r) = (1, a)→ (1, b),

Label–Rename(r) = {(1, e2)},
Generate–and–Copy(r) = {(1′, e3, 1, b→ c)},
Change–Relation(r) = INSERT − EDGE(1′, 2).

4.2 Rules without Polarizations

(According to Section 11.4 from the handbook [6]). Since in our case the label
is a couple 〈e, h〉, there is no distinction with respect to the previous case.

4.3 Creation Rules

Consider creation rules like on p. 326 in handbook [6].
A rule [a→ [u]h1

]h2
can be translated as following PCR-rule:

r : Labels(r) = (h2),

Rewrite(r) = (1, a)→ (1, λ),

Generate(r) = {(1′, h1, u)},
Change–Relation(r) = INSERT − EDGE(1′, 1).
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4.4 Strong Division

A rule [[]h1
. . . []hk

[]hk+1
. . . []hn

]h → [[]h1
. . . []hk

]h[[]hk+1
. . . []hn

]h can be defined
as the following C-rule:

r : Labels(r) = (h1, . . . , hn, h),

ρ(r) = {(i, n+ 1) | 1 ≤ i ≤ n},
Rewrite(r) = ∅
Generate(r) = {(1′, h, λ)},

Generate–and–Copy(r) = ∅,
Change–Relation(r) = DELETE − EDGE(k, n+ 1), i+ 1 ≤ k ≤ n, and

INSERT − EDGE(k, 1′).

4.5 Division Based on Polarizations

Consider a rule of type []h → [+]h[−]h2[0]h3 that regroups all membranes with
the same polarization in three new membranes. This can be simulated with the
following C-rule:

r : Labels(r) = (h),

ρ(r) = ∅,
Rewrite(r) = ∅,
Generate(r) = {(1′, h1, λ), (2′, h2, λ)},

Generate–and–Copy(r) = ∅,

Change–Relation(r) =

DELETE–EDGE(k, 1), and INSERT–EDGE(k, 1′),

for all k such that lab(k) = −
DELETE–EDGE(k, 1), and INSERT–EDGE(k, 2′),

for all k such that lab(k) = 0

5 Conclusions

In this paper we presented a framework for P systems with dynamic structure.
The obtained meta-language has a precise semantics centered around 2 notions:
(1) the evolution of the objects and membrane labels and (2) the evolution of
the membrane structure (creation and deletion of nodes and edges). As a conse-
quence it permits to easily describe different features of existing P systems with
dynamical structure, which permits to provide an interesting tool for the compar-
ison of different variants of P systems (e.g. like in [4]). Moreover, the translation
to the framework allows for a better understanding of the corresponding P sys-
tem and provides ways to extend its definition by new features. We remark that
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in the case of the systems with a static structure a similar approach using the
framework from [3] permitted to define new variants of P systems and to better
express some existing ones [1, 4].

The introduced model works with an arbitrary (binary) relation between
membranes, so it could be interesting to consider relations different from the
parent relation widely used in P systems. As an interesting candidate we suggest
the brother/sister relation on a tree. It could also be interesting to consider a
generalization of the framework to an arbitrary n-ary relation. In this case the
relation ρ induces a hypergraph, so the components changing the structure of ρ
have to be adapted to work on hypergraphs.

Another direction for the development of the framework is to consider that
for a multiset of rules the order of the application of Change–Relation produces
different results. This implies that the order of rules is important, by consequence
the set Applicable(Π,C, δ) will contain vectors (or lists) of rules. This interesting
idea was not yet considered in the framework of P systems and we think that it
can lead to interesting results.

References

1. A. Alhazov, M. Oswald, R. Freund, S. Verlan, Partial Halting and Minimal Paral-
lelism Based on Arbitrary Rule Partitions, Fundamenta Informaticae 91(1), 2009,
17–34.

2. R. Freund, B. Haberstroh, Attributed Elementary Programmed Graph Grammars,
Proceedings 17th Intern. Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, Lecture Notes in Computer Science 570, Springer, 1991, 75–84.

3. R. Freund, S. Verlan, A Formal Framework for Static (Tissue) P Systems, Membrane
Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece, June
25-28, 2007 Revised Selected and Invited Papers, Lecture Notes in Computer Science
4860 , 271–284, Springer, 2007.

4. R. Freund, S. Verlan, (Tissue) P systems working in the k-restricted minimally or
maximally parallel transition mode, Natural Computing 10(2), 2011, 821–833.
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Abstract. In this paper we present a uniform family of P systems with
active membranes that can solve the satisfiability problem of proposi-
tional formulas in linear time in the number of propositional variables
occurring in the input formula. Our family of P systems is not polynomi-
ally uniform, but it does not use neither polarizations of the membranes
nor non-elementary membrane division.

Keywords: Membrane computing; P systems; SAT problem

1 Introduction

P systems with active membranes [7] are important variants of a class of bio-
logically inspired theoretical models, the membrane systems introduced in [6]
(for a comprehensive guide see e.g. [8]). In these systems the possibility of the
division of a membrane can be used to create exponential work space in lin-
ear time. This feature is commonly used in efficient solutions of NP complete
problems, e.g. in the solution of SAT. The satisfiability problem of propositional
formulas (SAT) is probably the best known NP-complete decision problem; the
question is whether a given propositional formula in conjunctive normal form
(CNF) is satisfiable. Many efficient solutions of this problem by P systems with
active membranes have been already proposed (see e.g. [1], [2], [4], [5], [7], and
[10]). These solutions differ, for example, in the types of the rules employed, the
number of possible polarizations of the membranes, and the derivation strategy
(maximal or minimal parallelism - this latter concept was introduced in [3]). On
the other hand, these solutions commonly work in a way where all possible truth
valuations of the input formula are created and then a satisfying one (if it exists)
is chosen.

It is essential in these works that the family of P systems is constructed in
a polynomially (semi-)uniform way (see e.g. [10]), i.e, by a deterministic Turing
machine in polynomial time in the size of the input formula. The size of the input
formula is usually described by the number n of distinct variables occurring in the
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formula and the number m of clauses of the formula. The P systems introduced
in the above works can solve SAT efficiently, usually in polynomial time in n+m.
The P systems described in [4] solve SAT in linear time in n, but there division of
nonelementary membranes is allowed, and the derivation strategy is minimally
parallel instead of the commonly used maximal parallel one.

In this paper we give a family of P systems that can solve SAT in linear time
in n. Our motivation was to give a solution where the number of the computation
steps does not depend on the number of the clauses in the input formula and the
system does not use non-elementary membrane division. However, our solution
can not be directly compared to other ones in this topic as the construction of
our family of P systems is not polynomially (semi-)uniform (i.e, our P systems
can not be constructed in polynomial time in n+m).

To see this, we briefly describe the method that we use in our solution. Let
ϕ be a formula in CNF over n variables. Then there is an equivalent formula
ϕ′ in CNF such that every clause of ϕ′ contains every variable of ϕ negated or
without negation. Such clauses are called complete clauses. It can be seen that ϕ′

is satisfiable if and only if it does not contain every possible complete clause over
n variables. We will show that our membrane systems can create ϕ′ from ϕ and
decide if ϕ′ contains every complete clauses over n variables in linear number of
steps. Clearly, the cardinality of the set of all complete clauses over n variables is
exponential in n. This implies that the cardinality of the object alphabet of our
P systems is also exponential in n. Thus our P systems can not be constructed in
polynomial time in n, even if the number m of the clauses in the input formula
is polynomial in n. (Note that, in general, m can be exponential in n as well.)

On the other hand, our P systems can be constructed in a uniform way, i.e.,
once we have constructed a P system Π(n), for a given number n, then we can
use Π(n) for every formula ϕ over n variables to decide the satisfiability of ϕ.
Moreover, the decision is done in linear number of steps in n and to achieve
this efficiency we do not have to use nonelementary membrane division or even
polarizations. Rather, we use separation rules that can change the labels of the
membranes involved.

We will discuss in Section 4 the possibility of solving SAT in linear time in
the number of the variables by a polynomially semi-uniform family of P systems
based on our P systems presented in this paper.

The paper is organised as follows. In Section 2 we give the necessary def-
initions and preliminary results. Sections 3 contains our family of P systems
described above and Section 4 presents some conclusions and remarks.

2 Definitions

Alphabets, words, multisets. An alphabet Σ is a nonempty and finite set of
symbols. The elements of Σ are called letters. Σ∗ denotes the set of all finite
words (or strings) over Σ, including the empty word ε. We will use multisets
of objects in the membranes of a P system. As usual, these multisets will be
represented by strings over the object alphabet of the P system.
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The SAT problem. Let X = {x1, x2, x3, . . .} be a recursively enumerable set
of propositional variables (variables, to be short), and, for every n ∈ N, where N
denotes the set of natural numbers, let Xn := {x1, . . . , xn}. An interpretation of
the variables in Xn (or just an interpretation if Xn is clear from the context) is
a function I : Xn → {true, false}.

The variables and their negations are called literals. A clause C is a disjunc-
tion of finitely many pairwise different literals satisfying the condition that there
is no x ∈ X such that both x and x̄ occur in C, where x̄ denotes the negation
of x. The set of all clauses over the variables in Xn is denoted by Cn. A formula
in conjunctive normal form (CNF) is a conjunction of finitely many clauses. We
will often treat formulas in CNF as finite sets of clauses, where the clauses are
finite sets of literals. A clause C ∈ Cn is called a complete clause if, for every
x ∈ Xn, x ∈ C or x̄ ∈ C.

Let ϕ be a formula in CNF over the variables in Xn (n ∈ N) and let I
be an interpretation for ϕ. We say that I satisfies ϕ, denoted by I |= ϕ, if ϕ
evaluates to true under the truth assignment defined by I. Note that I |= ϕ if
and only if, for every C ∈ ϕ, I |= C. We say that ϕ is satisfiable, if there is
an interpretation I such that I |= ϕ. The SAT problem (boolean satisfiability
problem of propositional formulas in CNF) can be defined as follows. Given
a formula ϕ in CNF, decide whether or not there is an interpretation I such
that I |= ϕ. Let ϕ1 and ϕ2 be two formulas in CNF over the variables in Xn

(n ∈ N). We say that ϕ1 and ϕ2 are equivalent, denoted by ϕ1 ∼ ϕ2, if, for every
interpretation I, I |= ϕ1 if and only if I |= ϕ2.

Let ϕ be a formula in CNF. The set of variables occurring in ϕ, denoted by
var(ϕ), is defined by var(ϕ) := {x ∈ X | ∃C ∈ ϕ : x ∈ C or x̄ ∈ C}. For a
clause C ∈ Cn and a set Y ⊆ Xn (n ∈ N) such that var(C) ∩ Y = ∅, let CY be
the following set of clauses. Assume that Y = {xi1 , . . . , xik} (k ≤ n, 1 ≤ i1 <
. . . < ik ≤ n). Then let CY := {C ∪ {l1, . . . , lk} | 1 ≤ j ≤ k : lj ∈ {xij , x̄ij}}.
For a formula ϕ = {C1, . . . , Cm} in CNF over the variables in Xn (m,n ∈ N),
let ϕ′ :=

⋃
C∈ϕ CY , where Y := Xn − var(C).

The correctness of the P systems that we are going to construct to solve SAT
is based on the following statement which can be proved by standard arguments
of propositional logic.

Proposition 1. For a formula ϕ = {C1, . . . , Cm} in CNF over the variables in
Xn (m,n ∈ N), ϕ′ contains every full clause in Cn if and only if ϕ is unsatisfiable.

Proof. Let ϕ := {C1, . . . , Cm} be a formula in CNF over the variables in Xn

(m,n ∈ N). We prove the above statement in two steps. First, we show that
ϕ ∼ ϕ′, then we show that ϕ′ is unsatisfiable if and only if it contains every full
clause in Cn.

To see that ϕ ∼ ϕ′ we show that, for every interpretation I, I |= ϕ if
and only if I |= ϕ′. Let I be an interpretation and assume first that I |= ϕ.
Let C ∈ ϕ. Then I |= C and, for every C ′ ∈ CY , where Y = Xn − var(C),
var(C) ⊆ var(C ′). This clearly implies that, for every C ′ ∈ CY , I |= C ′. It
follows then that I |= ϕ′ as well.
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Now assume that I |= ϕ′. We show that I |= C, for every C ∈ ϕ, which
clearly implies that I |= ϕ. Let C ∈ ϕ and Y := Xn − var(C). Assume that
Y = {xi1 , . . . , xik} (k ≤ n, 1 ≤ i1 < . . . < ik ≤ n). Let C ′ := C ∪ {li1 , . . . , lik}
be that clause in CY which satisfies the following property. For every 1 ≤ j ≤ k,
lij = x̄ij if I(xij ) = true, and lij = xij otherwise. Clearly, I |= C ′, but I 6|=
{li1 , . . . , lik}. This implies that I should satisfy C.

Next, we show that ϕ′ is unsatisfiable if and only if it contains every complete
clauses in Cn. Assume first ϕ′ contains every complete clauses in Cn and let I be
an arbitrary interpretation of the variables in Xn. Let C ′ = {l1, . . . , ln} be that
clause in Cn which satisfies the following property. For every 1 ≤ i ≤ n, li = x̄i
if I(xi) = true, and li = xi otherwise. Clearly I 6|= C ′ which, since C ′ ∈ ϕ′,
means that I 6|= ϕ′. Thus ϕ′ is unsatisfiable.

Assume now that ϕ′ does not contain every complete clauses and let C ′ :=
{l1, . . . , ln} be a clause that does not occur in ϕ′. Let I be the interpretation
defined as follows. For every 1 ≤ i ≤ n, let I(xi) := true if li = x̄i, and let
I(xi) := false otherwise. It can be seen that, for every C ∈ ϕ′, there is a literal
l ∈ C such that I(l) = true. It follows then that I satisfies every clause in ϕ′.
Thus ϕ′ is satisfiable which completes the proof.

Active membrane systems. We will use P systems with active membranes to
solve SAT. In particular, we will use a model where a certain kind of separation
rules is allowed. These separation rules have the possibility of changing the labels
of the membranes involved. On the other hand, we will not use the polarizations
of the membranes, thus we leave out this feature from the definition of these
systems. The following is the formal definition of the P systems we will use (see
also [8]).

A (polarizationless) P system with active membranes is a construct Π =
(O,H, µ,w1, . . . , wm, R), where:

– m ≥ 1 (the initial degree of the system);
– O is the alphabet of objects;
– H is a finite set of labels for membranes;
– µ is a membrane structure, consisting of m membranes, labelled (not neces-

sarily in a one-to-one manner) with elements of H;
– w1, . . . , wm are strings over O, describing the multisets of objects (every

symbol in a string representing one copy of the corresponding object) placed
in the m regions of µ;

– R is a finite set of developmental rules, of the following forms:
(a) [a→ v]h, for h ∈ H, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the
label of the membranes, but not directly involving the membranes, in the
sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b) a[ ]h → [b]h, for h ∈ H, a, b ∈ O
(communication rules, sending an object into a membrane; the label
cannot be modified);
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(c) [a]h → [ ]hb, for h ∈ H, a, b ∈ O
(communication rules; an object is sent out of the membrane, possibly
modified during this process; the label cannot be modified);

(d) [a]h → b, for h ∈ H, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e) [a]h → [b]h[c]h, for h ∈ H, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label; the
object a specified in the rule is replaced in the two new membranes by
(possibly new) objects b, c, and the remaining objects are duplicated);

(f) [ ]h1
→ [K]h2

[O −K]h3
, for h1, h2, h3 ∈ H, K ⊂ O

(2-separation rules for elementary membranes, with respect to a given
set of objects; the membrane is separated into two new membranes with
possibly different labels; the objects from each set of the partition of the
set O are placed in the corresponding membrane).

As usual, Π works in a maximal parallel manner: rules of type (a) are ex-
ecuted in parallel, while at most one rule out of all rules of types (b)-(f) can
be applied to the same membrane in a step of the system. We say that Π is a
recognizing P system if (1) Π has a designated input membrane i0, (2) a string
w, called the input of Π, can be added to the system by placing it into the region
i0 in the initial configuration, (3) O has two designated objects yes and no, and
(4) every computation of Π halts and sends out to the environment either yes
or no. Moreover, Π is called deterministic if, for every input w placed into i0,
there is only a single computation of Π.

Let Π := (Π(i))i∈N be a family of P systems. Π is uniform (by Turing
machines) if it can be constructed by a deterministic Turing machine. Moreover,
Π is polynomially uniform (by Turing machines) if, for every n ∈ N, Π(n) can
be constructed in polynomial time in n by a deterministic Turing machine (see
e.g. Section 12.2.1 in [9] for further details).

We say that Π solves SAT if, for every formula ϕ in CNF with size n, starting
Π(n) with a polynomial time encoding of ϕ, Π(n) sends out to the environment
yes if and only if ϕ is satisfiable. Finally, Π solves SAT in linear time if it is (1)
polynomially uniform and (2) the computation of Π(n) always halts in linear
number of steps in the size of the input formula. If only condition (2) holds, then
we say that Π solves SAT in weak linear time.

3 The Main Result

Encoding SAT instances. Here we describe how the input formulas are en-
coded in the input membrane of our SAT solver P system. In fact, we employ a
trivial encoding, using symbols that are in one-to-one correspondence with the
clauses in Cn (n ∈ N). For every n ∈ N, let On be an alphabet with a bijection
between Cn and On. For a symbol c ∈ On, we denote the corresponding clause
in Cn by ĉ. Thus, a formula ϕ = {C1, . . . , Cm} (m ∈ N) will be encoded in our
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membrane system by the string c1 . . . cm ∈ O∗n, where, for every 1 ≤ i ≤ m,
ĉi = Ci.

A P system deciding SAT. Now we define a family Π := (Π(i))i∈N of
recognizer P systems that solves SAT in weak linear time. For every n ∈ N, let
Π(n) := (O,H, µ,w1, . . . , w3, R), where:

– O := On ∪ {d1, . . . , dn+3, yes, no};
– H := {1, . . . , n+ 3};
– µ := [[[ ]3]2]1, where the input membrane is [ ]3;
– w1 := ε, w2 := d1 and w3 := ε;
– R is the set of the following rules (in some cases we also give explanations

of the presented rules):
(a) [c → c1c2]i+2, for every 1 ≤ i ≤ n and c, c1, c2 ∈ On with xi, x̄i 6∈ ĉ,

ĉ1 = ĉ ∪ {xi} and ĉ2 = ĉ ∪ {x̄i}
(for every 1 ≤ i ≤ n, these rules will replace those clauses in membrane
i + 2 that do not contain xi or x̄i by two other clauses, a clause that
additionally contains xi, and another one that contains x̄i);

(b) [ ]i+2 → [Ki]i+3[O − Ki]i+3, for every 1 ≤ i ≤ n and Ki = {c ∈ On |
xi ∈ ĉ}
(for every 1 ≤ i ≤ n, these rules will separate the objects in membranes
with label i+2 according to that whether the clauses represented by the
objects contain xi or not; the new membranes will have label i+ 3);

(c) [di → di+1]2, for every 1 ≤ i ≤ n+ 2;
(d) [c]n+3 → ε, for every c ∈ On such that ĉ is a complete clause in Cn;
(e) dn+2[ ]n+3 → [yes]n+3,

[yes]n+3 → [ ]n+3yes,
[yes]2 → [ ]2yes,
[yes]1 → [ ]1yes;

(f) [dn+2]2 → [dn+3]2[no]2,
[no]2 → [ ]2no,
[no]1 → [ ]1no.

Next we give an example to demonstrate how our P systems create new
clauses from the input and separate them into new membranes. We will refer to
this example also in Section 4, where we will discuss the possible improvements
of our P systems.

Example 1. We show the working of Π(3) on a formula with variables in X3.
For the better readability, we denote these variables by x, y and z, respectively.
Moreover, the objects in O3 are denoted by sequences of literals occurring in
the corresponding clauses of the formula, i.e., the symbols in O3 are now strings
over the set of literals.

Let the input formula be ϕ := {{x, y, z}, {¬x}, {¬y}, {¬z}}. Then Π(3) is
started with symbols xyz, x̄, ȳ, z̄ in the input membrane, thus at the beginning
the membrane with label 3 looks as follows: [xyz, x̄, ȳ, z̄]3. In the first step, the
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system creates xȳ and x̄ȳ from ȳ, and xz̄ and x̄z̄ from z̄. Moreover, two new
membranes with label 4 are created and the system puts xyz, xȳ and xz̄ into the
first new membrane and x̄, x̄ȳ and x̄z̄ into the second one. Thus, after the first
step the membrane with label 3 looks as follows: [[xyz, xȳ, xz̄]4, [x̄, x̄ȳ, x̄z̄]4]3.
Then, in the next step, the system creates the clauses xyz̄, xȳz̄ from xz̄, x̄y,
x̄ȳ from x̄, and x̄yz̄, x̄ȳz̄ from x̄z̄. Moreover, two new membranes with label 5
are created in each membranes with label 4, and the symbols are separated into
these new membranes as follows:

[[[xyz, xyz̄]5, [xȳ, xȳz̄]5]4, [[x̄y, x̄yz̄]5, [x̄ȳ, x̄ȳ, x̄ȳz̄]5]4]3.

Finally, after the next step, the membrane with label 3 looks as follows:

[[[[xyz]6, [xyz̄]6]5, [[xȳz]6, [xȳz̄, xȳz̄]6]5]4,

[[[x̄yz]6, [x̄yz̄, x̄yz̄]6]5, [[x̄ȳz, x̄ȳz]6, [x̄ȳz̄, x̄ȳz̄, x̄ȳz̄]6]5]4]3.

In general, the computation of Π(n) for some n ∈ N, when membrane with
label 3 contains the string c1 . . . cm that encodes the formula ϕ = {ĉ1, . . . , ĉm}
(m ∈ N) over Xn can be described as follows:

– At the first step, rules in (a) replace in membrane with label 3 every object c
with the property that ĉ do not contain x1 or x̄1 with two objects representing
the clauses ĉ∪{x1} and ĉ∪{x̄1}. In parallel to this step, a rule in (b) separates
the resulting objects into new membranes with label 4, according to that
whether the clauses represented by the objects contain x1 or not. Moreover,
in membrane with label 2, the object d1 evolves to d2 by the corresponding
rule in (c).

– After n steps, the membrane system contains 2n membranes with label n+3.
Each such membrane can contain an object in On corresponding to a com-
plete clause in Cn. At this point the computation can continue in two different
cases.

Case 1:
• If each of the membranes with label n + 3 contains at least one object
c ∈ On such that ĉ is a complete clause, then the system dissolves these
membranes in one step by using the rules in (d). In parallel, dn+1 evolves
to dn+2.
• In the next step, using the first rule in (f), the system divides the mem-

brane with label 2, and introduces the symbol no.
• In the last two steps, the symbol no goes out to the environment, and

the computation halts.
Case 2:
• If there is at least one membrane with label n+ 3 that does not contain

an object c ∈ On such that ĉ is a complete clause, then only the first
rule in (e) can be applied introducing the symbol yes (note that the
division rule in (f) cannot be applied as the membrane with label 2 is
not elementary in this case).
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• In the last three steps of the system, the symbol yes goes out to the
environment, and the computation halts.

It is not difficult to see that Π(n) works correctly. Indeed, Π(n) sends in
every computation to the environment either the symbol no or the symbol yes.
The symbol no can be introduced only in Case 1 above, but in this case ϕ′

should contain every complete clause in Cn, and it follows from Proposition 1
that in this case ϕ is not satisfiable. On the other hand, yes can be introduced
only in Case 2, but in this case there is a complete clause in Cn that does not
occur in ϕ′, which, again by Proposition 1 means that ϕ is satisfiable. Moreover,
for every formula ϕ in CNF over Xn, it is easy to see that Π(n) halts in n + 5
steps. Thus we have the following theorem.

Theorem 1. The SAT can be solved by a uniform family of a polarizationless
deterministic P systems with active membranes using separation rules in weak
linear time, where the size of an input formula is described by the number of
variables occurring in the formula.

4 Conclusions

We proposed a new approach for solving SAT by P systems with active mem-
branes. Although our family of P systems can not be constructed in polynomial
time, once a P system Π(n) for a given n ∈ N is constructed, for every formula
ϕ in CNF over the variables in Xn, Π(n) can decide whether ϕ is satisfiable
or not in linear steps in n. Our P systems use the standard rules of active
membrane systems and, in addition, separation rules that can change membrane
labels. Moreover, our P systems are polarizationless. It is an interesting ques-
tion, whether we could somehow get rid of membrane label changing in our P
systems. However, this seems to be difficult without using other types of rules
(for example, in Section 5 of [2], rules of type [[ ]i[ ]j ]k → [[ ]i]k[[ ]j ]k, where
i, j, and k are labels, were used to get a linear time solution of SAT without
polarizations and membrane label changing).

It should be also mentioned that the rules in (a), (c)-(f) in the definition
of Π(n) have constant size. Moreover, it is not difficult to see that during the
evolution of Π(n), membranes with label i (3 ≤ i ≤ n+ 3) have no more objects
than the number m of the clauses in the input formula. Thus the separation
rules in (b) always should act on membranes with no more than m objects.

Our P system Π(n) has exponential size in n, thus it is a reasonable question
whether a constant time solution of SAT exists based on our P systems. Since our
solution is uniform, i.e., the size of Π(n) depends only on n, and the encoding
of the input formula is computable in linear time, it seems that such a constant
time solution can not be easily given. On the other hand, one can see that slightly
modifying Π(n), a P system Π ′(n) could be easily given such that, for a formula
ϕ over Xn, Π ′(n) can create the complete clauses of ϕ′ only in one step. However,
it is not clear how could we ensure Π ′(n) to send out to the environment the
correct symbol yes or no using only constant number of steps.
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Clearly, the main issue with Π(n) is that it can not be constructed in poly-
nomial time in n. As we have mentioned, the reason of this is that Π(n) creates
complete clauses from the clauses of the input formula, and the number of these
complete clauses can be exponential in n. On the other hand, one can note that
the answer of Π(n) depends only on whether or not every membrane with label
n + 3 contains at least one object regardless of whether the set of these ob-
jects contains every complete clause or not. Thus, one way to turn Π(n) into
a polynomially (semi-)uniform solution of SAT might be to modify Π(n) such
that it reuses somehow the original clauses of the input formula in every step of
the computation. We demonstrate our idea that might be such a solution using
the P system Π(3) from Example 1. Let Π ′(3) be a slight modification of Π(3)
working as follows. Assume that Π ′(3) is started with the same input symbols
xyz, x̄, ȳ, z̄ as in Example 1. In the first step, Π ′(3) does not create new clauses
from ȳ and z̄, it only makes two copies of them, one marked with a prime, and
another one marked with a double prime, i.e., Π(3) creates ȳ′ and ȳ′′ from ȳ,
and z̄′ and z̄′′ from z̄. Then Π ′(3) separates the new copies into the two new
membranes according to that whether they are marked with a prime or with a
double prime. The remaining clauses are separated in the same way as it is done
in Π(3). Thus, after the first step the membrane with label 3 looks as follows:
[[xyz, ȳ′, z̄′]4, [x̄, ȳ′′, z̄′′]4]3. Then, in the next step, Π ′(3) creates the clauses z̄′

and z̄′′ from z̄′, x̄′ and x̄′′ from x̄, z̄′ and z̄′′ from z̄′′ (of course, here Π ′(3)
requires such rules also that can rewrite z̄′ and z̄′′ similarly as z̄ was rewritten
before). Moreover, both ȳ′ and ȳ′′ are rewritten to ȳ by two corresponding rules.
Then the symbols are separated into the new membranes as follows:

[[[xyz, z̄′]5, [ȳ, z̄
′′]5]4, [[x̄

′, z̄′]5, [x̄
′′, ȳ, z̄′′]5]4]3.

Finally, after the third step of Π ′(3), the membrane with label 3 looks as follows:

[[[[xyz]6, [z̄]6]5, [[ȳ
′]6, [ȳ

′′, z̄]6]5]4, [[[x̄
′]6, [x̄

′′, z̄]6]5, [[x̄
′, ȳ′]6, [x̄

′′, ȳ′′, z̄]6]5]4]3.

Now, since every membrane with label 6 contains at least one object, Π ′(3) can
continue the computation and send out the symbol no in the same way as Π(3)
does it.

If we generalise the above idea to Π ′(n) (n ∈ N), one can see that the
number of objects used in Π ′(n) is linear in n + m, where m is the number of
clauses of the input formula. Thus, it seems that we can construct a polynomially
semi-uniform family of P systems with active membranes that is based on the
P systems presented in this paper and solves SAT in linear time in n. Our
future plan is the exact definition of this family of P systems and showing its
correctness. Moreover, we are planning to implement these P systems on certain
systems using parallel hardware since we would like to see whether our new
approach can be utilized in practice as well.
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Abstract. Oscillatory signals turn out to be reliable carriers for efficient
processing and propagation of information in both spheres, life sciences
and engineering. Each living organism typically comprises a variety of in-
herent biological rhythms whose periodicities cover a widespread range of
scales like split seconds, minutes, or hours, and sometimes even months or
years. Due to different molecular principles of generation, those rhythms
seem to persist independently from each other. Their combination and
assembly in conjunction with recurrent environmental changes can lead
to astonishing capabilities and evolutionary advantages. Motivated by
the question on how populations of cicadas, an insect species living in
the soil, sustain a synchronous life cycle of 17 years away from any known
external stimulus of this duration, we aim at exploring potential under-
lying mechanisms by P system mediated assembly of a set of chemical
control units. To this end, we identify a collection of core oscillators re-
sponsible for sinusoidal, spiking, and plated waveforms along with pass
filters, switches, and modulators. Considering these units as genotypic
elementary components, we utilise P system control for selection and
(re-)assembly of units towards complex phenotypic systems. Two simu-
lation case studies demonstrate the potential of this approach following
the idea of artificial evolution. Our first study inspired by the cicadas con-
verts a chemical frequency divider model 1:17 into counterparts of 1:3,
1:5, and 1:6 just by exchange of single units. In the second study adopted
from the mammalian circadian clock system residing within the suprachi-
asmatic nucleus, we illustrate the stabilisation of the overall clock signal
by addition of auxiliary core oscillators which can significantly improve
the overall signal quality in comparison to individual clocks.

1 Introduction

When spectating at macroscopic as well as microscopic phenomena of life, it be-
comes obvious that periodically recurrent behavioural patterns are essential for
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all life forms known up to now. Molecular mechanisms responsible for creation
and maintenance of a phenotype based on genotypic information imply an itera-
tive nature of underlying translational and transcriptional processes. This is due
to compensate or counteract the degradation of chemical substances making an
organism to be alive. Resulting gene expressions typically oscillate over time, for
example consecutive activation peaks repeat within few hours for replacement of
rapidly dissociating substances and up to several days for robust proteins [22].
Even procaryotes, the simplest long-term surviving life forms on earth, regu-
larly reproduce themselves by intrinsically cycling processes, mostly by binary
fission or budding [18]. Regarding eucaryotic cells, the cell cycle as a more com-
plex mechanism assures periodical cell division by passing through a number of
dedicated phases [26]. Subject to distinct species, individual properties, and en-
vironmental conditions, the periods of cell cycling range from approximately six
hours in some fungi up to about 24 hours in some mammals [21]. For humans,
the duration of cell cycles typically varies between 19 and 20 hours according to
the specific cell type [17]. Most notably, the time span between two cell divisions
much more deviates in different tissues. While cells forming the inner surface of
the stomach renew in average every three days [7], more than ten years seem to
be enough for the osteocytic cellular skeleton of bones [7].

Beyond phenomena directly related with gene expression, we find a plethora
of oscillating processes spanning a much larger diversity of periodicities within
each individual organism. Let us consider humans for example. Firing neurons
are able to send spikes every 10 milliseconds with a peak time of 2 millisec-
onds [11]. Several hundred spikes passing a neural axon in a sequence induce a
high frequential oscillatory signal by mutual regulation of ion channels [11]. The
molecular oscillator residing in the sinu-atrial node commonly generates between
40 and almost 210 heart beats per minute [23]. The suprachiasmatic nucleus as
a part of the brain consistently provides the circadian rhythm with a period of
approximately one day [3]. Infradian rhythms include monthly cycles like the
menstruation. There is also some evidence for saisonally altering hormone con-
centrations indicating winter and summer [24]. Among other effects, this annual
cycle leads to a slight reduction of the average human body temperature within
a magnitude of 0.1◦C during winter [6].

All together, we are aware of a broad spectrum of frequencies caused by
biological rhythms. It appears that several molecular oscillators exist indepen-
dently from each other. They operate simultaneously by individual generation
of oscillatory signals, which in turn can act as periodical triggers for regula-
tion of subsequent processes or behavioural patterns. The coexistence of a large
number of molecular oscillators in living organisms is no surprise since a simple
cyclic reaction scheme comprising at least one feedback loop suffices for obtain-
ing a persistent oscillation. Probably, there are many evolutionary origins and
resulting mechanisms of molecular oscillators.

Envisioning a more holistic view, the question arises how those oscillators
interact in a way that their signal courses can interfere with each other. Down-
stream reaction systems can benefit from this richness by utilising a majority
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of those signals in parallel which enables astonishing capabilities and complex
response towards an evolutionary advantage.

A fascinating example in this context is given by cicadas, insects of the species
Magicicada. Populations in northern America share a synchronous life cycle of 17
years while those in central America prefer 13 years [20]. Most of its existence is
spent underground in a dormant state. Shortly before the end of the life cycle, all
the adults of a brood emerge at roughly the same time to reproduce for several
weeks. After laying their eggs, the adults die off and the cycle begins again.
What stands out is that 17 and 13 are prime numbers, which ensures that the
reproduction period does not coincide with the life cycles of potential predators.
The simultaneous mass awakening of a brood also ensures that predators are
overwhelmed by the number of cicadas so that a large number can survive. In
order to guarantee a concerted awakening of all members of a brood, the species
needs a precise molecular mechanism to measure the passage of the appropriate
amount of time. Since it seems that there is no external stimulus with a natural
period of 13 or 17 years, its exact estimation exclusively based on annual or even
shorter cycles becomes a complicated task [27]. Furthermore, it is worthwhile
to know whether or not a low number of slight evolutionary changes within
the molecular mechanism is sufficient to toggle the life cycle between a variety
of years. Having this feature at hand, it becomes plausible how a widespread
range of life times could emerge where those forming prime numbers resist the
evolutionary selection driven by predators.

Complementary to the frequency, also the waveform of oscillatory signals can
contain crucial information that might help organisms to optimise their response
or adaptation regarding relevant environmental stimuli. Most of the biological
rhythms studied so far are characterised by one out of three types of oscillatory
waveforms. Sinusoidal or almost sinusoidal signal courses enable a gradual and
smooth alteration such that the transfer between minimal and maximal signal
levels consumes a notable amount of time. Commonly, a sinusoidal oscillation
passes a stable limit cycle which acts as an attractor. This makes the oscillator
quite robust against perturbations affecting the signal course. In contrast, spiking
signals are a good choice to exhibit triggers. They can be outlined by an intensive
signal peak active for a short moment followed by a quiet course close to zero for
a much longer duration. The fast raise or fall of the signal value might be easy
to detect for subsequent processing units. Remarkably, the average signal value
can be kept low which might imply a reduced amount of energy necessary to
sustain the oscillation. Contrary to sinusoidal signals, addition of phase-shifted
isofrequential spiking oscillations can induce higher frequential overall oscilla-
tions in terms of an effective signal amplification. Furthermore, plated signal
courses reflect a more or less bistable oscillatory behaviour. Here, the waveform
over time resembles an almost rectangular shape similar to a binary clock signal.
Plated oscillations combine the advantage of fast toggling with the ability for a
balanced or weightable ratio between high-level and low-level signal values. To
each of all three waveform types, corresponding oscillators can be assigned just
by consideration of small or medium-sized chemical reaction networks together
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with appropriate reaction kinetics. From now on, we call them core oscillators.
They have in common that the chemical concentration course of one or more
dedicated species over time symbolises the oscillation. The reactions and kinetic
parameterisation forming a core oscillator are assumed to be fixed. This comes
along with the observation that the genetic template composing a core oscillator
is often highly conserved against mutations to keep its oscillatory function.

In addition to core oscillators, a collection of reaction network motifs has
been identified which allows a dedicated conversion, modification, and combina-
tion of oscillatory signals for postprocessing purposes. In this context, a simple
linear reaction cascade can act as a low-pass filter. At the same time, it is able
to convert spiking or plated oscillations into an almost sinusoidal shape. Vice
versa, a mutually entwined scheme of catalysed reactions whose products catal-
yse the reactions of the next stage embodies a binary signal separator. This unit
succeeds in conversion of sinusoidal or spiking signals into a plated oscillation.
A chemical differentiator employed on plated oscillations generates spikes while
an exponentiation of sinusoidal signals has the same effect. Finally, catalysts
operating in concert can emulate switches and logic gates [15].

Our recent studies on generators and processing units for oscillatory signals
in terms of biological computations led to a comprehensive collection of reac-
tion networks, each of them individually formalised using appropriate P systems
or ordinary differential equations, and analysed by means of simulation stud-
ies. What we intend to explore next is the interplay of those units towards new
or improved phenomena. Hence, we aim at an assembly of reaction units on
the fly. This objective has been flanked by the idea of an higher-level evolu-
tion which “plays” with different compositions of reaction units leaving intact
the units themselves. Individual units interact via shared species as described
in [16] using non-probabilistic P modules. The general concept of P systems
provides an excellent formalism to capture dynamical structures especially con-
cerning reaction networks. Thus, we are going to employ this framework to trace
the recombination as well as the exchange of reaction units towards more com-
plex behavioural patterns. To this end, we introduce a corresponding P meta
framework that compiles an evolutionary program by assembly and subsequent
exchange of reaction units taken from an initial pool.

In Section 2, we familiarise the reader with all denotational and formal pre-
requisites of our P meta framework for P system mediated assembly of non-
probabilistic P modules which in turn define core oscillators and selected post-
processing units. Section 3 is dedicated to our first application study inspired by
the synchronous life cycle of cicadas. It is based on a chemical reaction model of
a binary counter modulo 17. This initial model comprises three units: a spiking
core oscillator (Brusselator, [1, 28]), a binary signal separator, and a logical unit.
In its original form, the entire model acts as a frequency divider 1:17. In a first
scenario, we remove the binary signal separator. Afterwards, we just exchange
the Brusselator by the Goodwin oscillator (configurable to be plated or almost
sinusoidal, [12]) and by the Repressilator (configurable to be almost sinusoidal
or plated, [9]). Please note that we do not modify the logical unit. Interestingly,
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these slight modifications are sufficient to obtain frequency dividers 1:3, 1:5, and
1:6. Section 4 deals with a second application study. Here, we focus on the al-
most sinusoidal core oscillator found in the suprachiasmatic nucleus. We arrange
an initial setting of 12 core oscillator instances within four layers. Core oscilla-
tors placed in adjacent layers are unidirectionally coupled releasing their signals
downstream. In this scenario, we estimate the quality of synchronisation taken
in the final layer subject to the top level oscillator’s phase differences. Then, we
add two auxiliary core oscillators. It turns out that this action – just managed
by replication of two core oscillators and their connectivity – stabilizes the entire
system and contributes to an improved signal quality.

2 A P Meta Framework Capturing Assembly of
Non-probabilistic P Modules

In [16], we introduced the term of non-probabilistic P modules complementary
to other forms [25] and in accordance with the notion of modules in systems bi-
ology. Each non-probabilistic P module represents a container encapsulating an
explicite specification of the dynamical behaviour of a reaction unit based on a
deterministic scheme like discretised reaction kinetics or event-driven methods.
In addition to the inherent dynamical behaviour, a non-probabilistic P mod-
ule defines its interface by dedicated input and output species whose temporal
concentration or abundance courses reflect the data managed by the reaction
unit. Interacting non-probabilistic P modules communicate via shared molecu-
lar species. We define a non-probabilistic P module by a triple

π = (π↓, π↑, π�)

where π↓ = {I1, . . . , Ii} indicates a finite set of input signal identifiers, π↑ =
{O1, . . . , Oo} a finite set of output signal identifiers, and π� the underlying sys-
tem specification processing the input signals and producing the output signals
with or without usage of auxiliary inherent signals not mentioned in the inter-
face. Each signal is assumed to represent a real-valued temporal course, hence a
specific function σ : R≥0 −→ R (R≥0: non-negative real numbers).

A collection of prototypic specification examples subsumed by non-
probabilistic P modules might include:

– metabolic P systems, for instance of the form
M = (X, R, V, H, Φ, ν, μ, τ), cf. [4, 10, 19]

– P systems for cell signalling modules (CSM) of the form
ΠCSM = (V, V ′, R1, . . . , Rr, f1, . . . , fr, A, C, Δτ), cf. [14]

– P systems for cell signalling networks (CSN) of the form
ΠCSN = (V, V ′, E, M, n), cf. [13]

– ordinary differential equations (ODEs) in conjunction with an appropriate
numerical solver. The ODEs should be derived from reaction or diffusion
kinetics, cf. [8].
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– a transfer function on its own, either given explicitly or implicitly by a math-
ematical term or alternatively by a table of numeric values (characteristic
curve) along with an algorithm for interpolation, approximation, or regres-
sion, cf. [2]

Now, we can define our P meta framework that is able to describe a dynam-
ical assembly of non-probabilistic P modules towards more complex systems
following the idea of a controlled evolutionary program. Our P meta framework
is a construct

Ππ↑↓ = (M, P )

where M denotes a finite multiset of non-probabilistic P modules with finite
cardinality while the finite set P keeps the evolutionary program composed by
a number of instructions affecting the interplay of underlying modules in M .
The entirety of non-probabilistic P modules expressed by the support of M can
be interpreted as the genetic potential of highly conserved reaction units. The
multiplicities of modules reflect the limitation of resources available for module
composition. Having in mind that the gene expression capacity is restricted,
the number of modules maintained simultaneously should also be delimited.
Nevertheless, the individual multiplicities might vary among different modules.

When initiating Ππ↑↓, a corresponding directed graph

G = (V, E)

is created that formalises the current connectivity structure of interacting non-
probabilistic P modules. All available modules on their own instantiate the nodes
of G. There are no connections between them before executing the program P :

V := {m[i] | m ∈ supp(M) ∧ i ∈ {1, . . . , M(m)}}
E := ∅

The indexing of all instances (copies) m[i] constituted from a module m
allows a unique identification necessary for an appropriate matching of nodes
addressed by program instructions.

Directed edges between nodes of G symbolise the connectivity of module
instances. Let a = (a↓, a↑, a�) ∈ supp(M) and b = (b↓, b↑, b�) ∈ supp(M) be
two module instances derived from M . An edge (a, b, Ra→b) ∈ E denotes a
connection from a to b where dedicated output species of a act as input species
of b. To this end, each edge comes with a binary relation Ra→b ⊆ a↑ × b↓ in
which the mapping of a’s output species onto b’s input species is given. Ra→b

is handled in an injective manner since one output species is allowed to cover
several downstream input species, but each input species must be supplied by
at most one upstream output species. More formally, we require: ∀x, z ∈ X and
∀y ∈ Y : (x, y) ∈ R ∧ (z, y) ∈ R ⇒ x = z where R ⊆ X × Y stands for
Ra→b.

Attention must be paid to the composition of non-probabilistic P modules to
keep signal semantics and quantitative signal values along with signal identifiers
consistent when migrating from one module to another.
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The instructions of the evolutionary program P capture the dynamics of our
P meta framework Ππ↑↓ in (re-)assembly of its module instances. The underly-
ing graph G becomes updated whenever an instruction from P is executed. To
bring the individual instructions into a temporal order, we assume a global clock
whose progression is expressed by a non-negative real-valued variable t mark-
ing points in time. We arrange five types of instructions called ModuleConnect,
ModuleDisconnect, ModuleExchange, SpeciesShare, and SpeciesUnshare. A
time stamp t opens each instruction. Let a = (a↓, a↑, a�) ∈ supp(M) and
b = (b↓, b↑, b�) ∈ supp(M) be two module instances derived from M :

t : ModuleConnect(a → b, Ra→b) connects some or all of module a’s output species

to represent b’s input species by sharing species

identifiers according to the injective binary re-

lation Ra→b ⊆ a↑ × b↓. Edge update scheme:

E := E ∪ {(a, b, Ra→b)}

t : ModuleDisconnect(a ↔ b) completely disconnects modules a and b by an-

nihilating all cross-modular species sharings. This

comes along with removing Ra→b as well as Rb→a,

respectively. Edge update scheme:

E := E \ {(a, b, Ra→b)} \ {(b, a, Rb→a)}

t : ModuleExchange(a, b, R↓, R↑) replaces module a by module b iff both modules

comprise the same number of input species and

the same number of output species. Either bijec-

tive functions R↓ ⊆ a↓ × b↓ and R↑ ⊆ a↑ × b↑
formalise the renaming of species identifiers for

input (↓) and output (↑). Edge update scheme:

E := E ∪ {(b, x, R↑(Ra→x)) | (a, x, Ra→x)}
\ {(a, x, Ra→x)}
∪ {(x, b, R↓(Rx→a)) | (x, a, Rx→a)}
\ {(x, a, Rx→a)} ∀x ∈ V \ {a, b}

t : SpeciesShare(a → b, α = β) unifies the output species identifier α ∈ a↑ with

the input species identifier β ∈ b↓ if Ra→b remains

injective. The edge update scheme replaces Ra→b

within (a, b, Ra→b) by Ra→b ∪ {(α, β)}.

t : SpeciesUnshare(a → b, α � β) annihilates the cross-modular sharing of species

identifier α ∈ a↑ with the input species identifier

β ∈ b↓. The edge update scheme replaces Ra→b

within (a, b, Ra→b) by Ra→b \ {(α, β)}.

Several instructions in P might occur simultaneously if they are effectively inde-
pendent from each other. This is the case if and only if all resulting permutations
of sequences, in which instructions marked by the same time stamp t can be ex-
ecuted, lead to equivalent graphs G. Two application case studies demonstrate
the practicability of our P meta framework Ππ↑↓ = (M, P ).

Maintenance of chronobiological information by P system mediated assembly
of control units for oscillatory waveforms and frequency

227



3 Exploration of Chemical Frequency Dividers Inspired
by Periodical Cicada’s Life Cycles

In a first application study inspired by periodical cicada’s life cycles, we demon-
strate the practicability of our P meta framework Ππ↑↓ = (M, P ) for tracing and
experimental exploration of controlled module assembly towards new (i.e. more
or less unexpected) behavioural patterns of the resulting entire system. First, we
introduce in brief a pool of non-probabilistic P modules sufficient to interact as a
chemical frequency divider 1:17. To this end, we place a selection of different core
oscillators interpreted to be employed for generation of periodical trigger signals.
A binary signal separator complements the pool of modules by its capability of
binarisation which converts gradually or smoothly altering signal courses into
a toggling manner whereas signal values ≥ 1 and those close to 1 converge to
1 while signal values of ≈ 0.6 and smaller become forced down against 0. In
addition, we construct a logical unit whose function is a binary chemical counter
modulo 17 based on a cycle of five-bit states. Please note that the logical unit
remains unchanged during the whole study. After providing the pool of modules,
we explore the effect of different core oscillators on the behavioural pattern of the
entire frequency divider system in the presence or absence of the binary signal
separator. Although leaving intact the logical unit, we observe new frequency
division ratios of 1:3, 1:5, and 1:6 just by the effect of module assembly.

3.1 Sketching the Pool of Individual Modules

Taking into account a Brusselator, a Repressilator, and a Goodwin oscillator, we
allow for a pool of core oscillators assumed to be formerly emerged independently
from each other and based on different molecular mechanisms. Each individual
module is considered to be fixed including its previously chosen setting of kinetic
parameters. For all simulation studies carried out in this section, we utilise a
consistent time unit.

The Brusselator Module

The Brusselator derived from the Belousov-Zhabotinsky reaction is a tool ap-
proved for the generation of spiking oscillations forming a limit cycle [1, 28]. Here,
the oscillatory persistence is exclusively reached by a positive feedback effect of
an autocatalytic loop. The non-probabilistic P module brusselator = (∅, {S}, F )
is completely based on mass-action kinetics captured by five ODEs in F :
Ṗ = −k1PT ; Q̇ = −k3Q; Ṡ = k1PT − k2ST 2; Ṫ = −k1PT + k2ST 2 +
k3Q−k4T ; Ẇ = k4T . Figure 1 depicts the underlying topology of the reaction
network in conjunction with the selected parameter setting. Reaction velocities,

particularly those of decay T
k4−→ W producing waste W , mainly determine the

oscillation frequency. Our parameter setting avoids a transient phase and enables
a lower frequency oscillation with distinctive spikes.
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Fig. 1. Brusselator reaction network (left) composed of four reactions: (1) P +T
k1−→ S;

(2) S + 2T
k1−→ 3T ; (3) Q

k3−→ T ; (4) T
k4−→ W for generation of persistently spiking

oscillations. The concentration course of species S over time (right) acts as module
output. Mass-action parameter setting: k1 = k2 = k3 = k4 = 0.1; initial concentrations:
P (0) = 3, Q(0) = 1, W (0) = 0, S(0) = 0.5, T (0) = 0.5

The Repressilator Module

The Repressilator is represented by a cyclic gene regulatory network [9] where
a progressional inhibition on its own causes an almost sinusoidal oscillation due
to a negative feedback.

Fig. 2. Repressilator reaction network (left) composed of three inhibiting cycling re-
actions along with degradation of each species. The concentration course of species Z
over time (right) acts as module output. Second order Hill kinetic’s parameter setting
H1 = H2 = H3 = 0.6, ki = 1 for i ∈ {1, . . . , 6} chosen to exhibit persistent almost
sinusoidal oscillations whose amplitude enables signal values between approx. 0.1 and
0.6; initial concentrations: X(0) = 0.3, Y (0) = 0.15, Z(0) = 0.55

We formalise the dynamical behaviour of the module repressilator = (∅, {Z}, F )
using second-order Hill kinetics by three ODEs in F :

Ẋ =
k3H

2
3

Z2 + H2
3

− k4X Ẏ =
k1H

2
1

X2 + H2
1

− k5Y Ż =
k2H

2
2

Y 2 + H2
2

− k6Z
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We parameterise the Repressilator in a way to exhibit a medium frequency limit
cycle oscillation emphasising a comparatively small amplitude in concert with
small signal values not exceeding a threshold of approximately 0.6, see Figure
2. This threshold is meant to coincide with the ambiguous “forbidden range” in
terms of a clear distinction between 0 and 1 of binarily interpreted signals.

The Goodwin Module

The Goodwin oscillator follows the scheme of a three-staged cyclic gene regu-
latory network consisting of two subsequent activating transitions along with
a single inhibition completing the loop by a negative feedback [12]. According
to the internal balance of reaction velocities, the resulting oscillatory waveform
might vary from an almost sinusoidal behaviour towards an asymmetric λ-like
shape. Here, a fast growing edge is combined with a slightly sigmoidal dimin-
ishment of the signal. This makes the Goodwin oscillator a promising candi-
date for naturally plated limit cycle oscillations. The non-probabilistic P module
goodwin = (∅, {X}, F ) containing three ODEs

Ẋ =
H

1 + Z9
− k4X Ẏ = k1X − k5Y Ż = k2Y − k6Z

defines the Goodwin oscillator in its original form [12]. The degradation ve-
locities most significantly determine its oscillatory frequency. Our configuration
shown in Figure 3 is focused on a lower frequency oscillation of a high ampli-
tude spanned by signal values altering between approx. 0.6 and 2.5. In contrast
to the Repressilator’s parameterisation, we intend to face the binarily operat-
ing signal postprocessing units with intense signals revealing high values for a
comparatively longer amount of time.

Fig. 3. Goodwin oscillator reaction network (left) in its original form. We assume the
concentration course of species X over time (right) to act as module output. Higher-
order Hill kinetic’s parameter setting H = 1.5, ki = 0.05 for i ∈ {1, . . . , 6} chosen
to maintain slightly plated oscillations whose amplitude enables signal values between
approx. 0.6 and 2.5; initial concentrations: X(0) = 1.0, Y (0) = 1.6, Z(0) = 1.7
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The Binary Signal Separator Module

Figure 4 illustrates a three-stage signalling cascade whose function consists in
binarisation of species concentration courses captured by OF

0 .
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Fig. 4. Signalling cascade for binarisation of input species concentration course OF
0 .

Concentrations ≥ 1 and those close to 1 converge to 1 while values smaller than a
threshold H are forced down against 0. Michaelis-Menten kinetics and mass-action
kinetics describe the dynamical behaviour of the module. Chosen parameter setting:
H = 0.6, k = 0.1

The corresponding module separator = ({OF
0 }, {OF

3 }, F ) employs ODEs:

ȮT
0 =

kH

OF
0 + H

ȮT
i = k ·OF

i ·OT
i−1 − k ·OT

i ·OF
i−1 − k ·OT

i · (OF
i )2 + k ·OF

i · (OT
i )2 i = 1, 2, 3

ȮF
i = k ·OT

i ·OF
i−1 − k ·OF

i ·OT
i−1 − k ·OF

i · (OT
i )2 + k ·OT

i · (OF
i )2

The Logical Unit Forming a Binary Counter Modulo 17

Our construction of a chemical binary counter model modulo 17 is based on a
chemical representation of each boolean variable b ∈ {0, 1} by two correlated
species BT and BF with complementary concentrations such that BF +BT = 1.
The inequality BT � BF indicates “false” (b = 0) and BF � BT “true” (b = 1),
respectively. Following a commonly used requirement in circuit design, we intend
by denoting � a deviation of at least one order of magnitude.

A chemical counterpart of a logic gate can be obtained if each line of the
transition table refers to a dedicated chemical reaction where the boolean in-
put variable values identify corresponding catalysts. These catalysts manage the
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output variable setting. In case of a NOR gate, the transition table results in
the following set of reactions:

a b c corresponding reactions

0 0 1 CF + AF + BF k−→ CT + AF + BF

0 1 0 CT + AF + BT k−→ CF + AF + BT

1 0 0 CT + AT + BF k−→ CF + AT + BF

1 1 0 CT + AT + BT k−→ CF + AT + BT

In order to maintain a high signal quality, we equip each chemical logic gate

of output c with two additional reactions of the form CT + 2CF km−→ 3CF and

CF + 2CT km−→ 3CT . All together, mass-action kinetics lead to the ODEs:

ȦF = 0; ȦT = 0; ḂF = 0; ḂT = 0;

ĊT = kCF AF BF + kmCF (CT )2 − kmCT (CF )2

ĊF = kCT AF BT + kCT AT BF + kCT AT BT + kmCT (CF )2 − kmCF (CT )2

Analogously, all types of binary logic gates can be transferred into corresponding
chemical representations. Please note that each chemical logic gate owns a certain
latency determined by the rate constants k and km due to the amount of time
necessary to switch the output concentrations. Taking into account this latency,
chemical logic gates of the aforeintroduced form are sufficient to be cascaded in
a way that a gate’s output might serve as input for a subsequent gate.

For setting up a binary counter modulo 17, we need to distinguish 17
states, which requires five bits per state. The counting is organised in a way
that a periodical clock signal serves as a trigger initiating a state transition
(b1, . . . , b5) �→ (b′1, . . . b

′
5). To this end, we utilise a five-bit Gray code, which

keeps the total number of logic gates low since almost all state transitions pro-
ceed by changing one out of five bits:

count b1 b2 b3 b4 b5 b′1 b′2 b′3 b′4 b′5 count b1 b2 b3 b4 b5 b′1 b′2 b′3 b′4 b′5
1 0 0 0 0 0 0 0 0 0 1 10 0 1 1 0 1 0 1 1 1 1
2 0 0 0 0 1 0 0 0 1 1 11 0 1 1 1 1 0 1 1 1 0
3 0 0 0 1 1 0 0 0 1 0 12 0 1 1 1 0 0 1 0 1 0
4 0 0 0 1 0 0 0 1 1 0 13 0 1 0 1 0 0 1 0 1 1
5 0 0 1 1 0 0 0 1 1 1 14 0 1 0 1 1 0 1 0 0 1
6 0 0 1 1 1 0 0 1 0 1 15 0 1 0 0 1 0 1 0 0 0
7 0 0 1 0 1 0 0 1 0 0 16 0 1 0 0 0 1 1 0 0 0
8 0 0 1 0 0 0 1 1 0 0 17 1 1 0 0 0 0 0 0 0 0
9 0 1 1 0 0 0 1 1 0 1

Bit b1 indicates the accumulation of 17 counts constituting the counter’s output.
In addition, intermediate states need to be temporarily stored in order to bridge
the time span between successive counts. To this end, we incorporate five RS flip
flops into the counter automaton, each of which is composed of two regeneratively
coupled NOR gates, see Figure 5. For bitwise state transition, we utilise five
boolean functions resulting from the transition table above and syntactically
simplified using standard Karnaugh optimisation. We denote these functions in
disjunctive normal form:
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b′1 = b̄1b2b̄3b̄4b̄5

b′2 = b̄1b2 ∨ b̄1b2b̄3b̄4b̄5

b′3 = b̄1b̄2b3 ∨ b̄1b3b̄4 ∨ b̄1b2b3b5 ∨ b̄1b̄2b4b̄5

b′4 = b̄1b4b̄5 ∨ b̄1b2b3b5 ∨ b̄1b̄2b̄3b5 ∨ b̄1b̄2b̄3b4 ∨ b̄1b2b3b4

b′5 = b̄1b̄2b̄3b̄4 ∨ b̄1b̄2b3b4 ∨ b̄1b2b3b̄4 ∨ b̄1b2b̄3b4

For implementation of these functions, we exclusively use logic AND and OR
gates with two input variables and one output variable in a cascaded manner in
order to avoid an exponential growth of reactions whose number doubles with
any additional input variable. The corresponding cascade lengths (number of
subsequent gates to be passed by a binary signal) vary between 4 and 7. As a
consequence, the latencies of the cascades also deviate, which might imply an
evolutionary potential towards modified functionalities.

NOR

NOR

&

&

NOR

NOR

&

&

b4b3b2b1b

’
5b

’
1b

5

Fig. 5. Sketch of the logical unit representing a chemical model of a binary counter
modulo 17. A periodical trigger acts as input providing the counts. Bit b1 accomplishs
the output. For all reactions within the logical unit, we utilise mass-action kinetics
along with rate constants consistently set to k = 1. This allows a fast toggling which
results in a short latency of approx. 10 time units per individual gate.

Figure 5 sketches the structure of the entire binary counter modulo 17. In
the chemical representation, the resulting module mod17 = ({C}, {BT

1 }, F ) con-
sists of 145 species and subsumes 416 individual reactions. The logical unit was
constructed by using standard techniques of circuit design known from engineer-
ing. We consider this unit as a fixed module whose potential with respect to
additional, originally unintended functionalities is worth to be found out.
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3.2 Composing the Original Frequency Divider 1:17

The original frequency divider 1:17 can be obtained by sequential coupling of the
Brusselator with the separator which in turn becomes finally connected with the
mod17 module. To do so, we define a P meta framework initially creating a pool
consisting of one instance from each module specified by multiset M . Program
P generates the connective structure by producing graph G.

ΠFD17 = (M, P ) with

M = {(brusselator, 1), (repressilator, 1), (goodwin, 1), (separator, 1), (mod17, 1)}
P = {0 : ModuleConnect(brusselator[1] → separator[1], {(S, OF

0 )}),
0 : ModuleConnect(separator[1] → mod17[1], {(OF

3 , C)})}

Figure 6 sketches the coupling (upper part) and depicts the dynamical behaviour
of the resulting reaction system. Periodically after receiving 17 counts, the output
temporarily releases a plated pulse (lower part).

brusselator[1] separator[1] mod17[1]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200

co
nc

en
tra

tio
n 

(a
.u

.)

time (a.u.)

repressilator[1]
goodwin[1]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

co
nc

en
tra

tio
n 

(a
.u

.)

time (a.u.)

TT
1B B 1C

C

C

Fig. 6. Dynamical behaviour of the frequency divider 1:17 (left: divider output BT
1

during a period of 17 counts, right: BT
1 for a longer amount of time, C: counts)

3.3 Frequency Divider 1:5 by Removal of the Binary Signal
Separator

The binary signal separator is responsible for normalisation and binarisation
of the core oscillator’s output. Primarily, we were going to figure out whether
or not this module is essential for the function of the entire frequency divider.
Interestingly, the corresponding knockout P meta framework

ΠFD5 = (M, P ) with

M = {(brusselator, 1), (repressilator, 1), (goodwin, 1), (separator, 1), (mod17, 1)}
P = {0 : ModuleConnect(brusselator[1] → separator[1], {(S, OF

0 )}),
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0 : ModuleConnect(separator[1] → mod17[1], {(OF
3 , C)}),

200 : ModuleDisconnect(brusselator[1] ↔ separator[1]),

200 : ModuleConnect(brusselator[1] → mod17[1], {(S, C)})}
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Fig. 7. Dynamical behaviour of the frequency divider 1:5 obtained by skipping the
binary signal separator (left: cycle of state transitions, right: counts together with
divider output)

reveals a frequency divider 1:5 although no changes within the logical unit were
made. The same effect can be observed if the Brusselator is directly connected
with the logical unit from the beginning while avoiding any temporary connection
with the binary separator module. Figure 7 shows the behavioural pattern. It
appears that a majority of state transitions skip by leaving a reduced scheme
with identical signal courses of b4 and b5 persistently cycling through five states
(after a short transient phase). A most likely reason for that can be found in
the waveform in concert with the quantitatively high-valued oscillatory signal
released by the Brusselator. Most of the time, its course indicates the logical
value “1” solely interrupted by extremely short drops at the 0-level. Since the
flip flops had been designed to be set or reset at the 1-level, the circuit loses
its synchronicity due to the variable cascade lengths in computing the boolean
functions. This in turn might entail a scenario where intermediate stages in the
computation of a bit b′i interfere with the computation of another bit b′j .

3.4 Frequency Divider 1:6 by Repressilator Instead of Brusselator

Due to its nature to induce almost sinusoidal and hence more symmetric signal
courses, the question arises whether or not the Repressilator module in its func-
tion as core oscillator could be able to restore the original qualitative behaviour
of the entire system on its own when renouncing the binary signal separator
again. Checking out this scenario by the P meta framework

ΠFD6 = (M, P ) with
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M = {(brusselator, 1), (repressilator, 1), (goodwin, 1), (separator, 1), (mod17, 1)}
P = {0 : ModuleConnect(repressilator[1] → mod17[1], {(Z, C)})}

repressilator[1]goodwin[1] separator[1]brusselator[1]
mod17[1]
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Fig. 8. Dynamical behaviour of the frequency divider 1:6 obtained by replacing the
Brusselator with the Repressilator module and skipping the binary signal separator
again (left: cycle of state transitions, right: counts together with divider output)

leads to the observation that now a frequency divider 1:6 with reliable operation
occurred, see Figure 8. After a short transient phase, a stable cycle consisting
of six state transitions emerged when the Repressilator’s parameterisation as
introduced before is applied. We assume the reason for that is a deterministi-
cally maintained perturbance of the binary function’s computation in the logical
unit. Contrary to the previously discussed frequency divider 1:5, the Repressi-
lator implies an undersupply of the counting signal with its logical 1-level. This
prevents the system from completing the computation and forces the release of
an intermediate computational state taken as output.

3.5 Frequency Divider 1:3 by Usage of the Goodwin Module

The Goodwin module along with its capability of rudimentary plated oscilla-
tory signal generation appears to be another interesting candidate to drive our
frequency divider. By means of the P meta framework

ΠFD3 = (M, P ) with

M = {(brusselator, 1), (repressilator, 1), (goodwin, 1), (separator, 1), (mod17, 1)}
P = {0 : ModuleConnect(goodwin[1] → mod17[1], {(X, C)})}

we achieve once more a modified qualitative behavioural pattern, this time a
frequency division 1:3, see Figure 9. After a short transient phase, the system
persistently cycles through three states out of 17 from the original model. It
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seems that the resulting toggling process runs slightly more fragile than in the
Repressilator study. This becomes visible by a pronounced signal tuning, which
exhibits damped high frequential micro oscillations in conjunction with output
switch. Even several modifications of the experimental setup confirm this be-
haviour, for instance a more distinctive transient oscillation of the Goodwin
module (shown in Figure 9) as well as doubling the rate constants from k = 0.05
to k = 0.1 within the Goodwin module. Again, the core oscillator continuably
disturbes the computation of the bits b′1 up to b′5.

repressilator[1]
goodwin[1]separator[1]brusselator[1] mod17[1]
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Fig. 9. Dynamical behaviour of the frequency divider 1:3 obtained by replacing the
Brusselator with the Goodwin module in absence of the binary signal separator (left:
cycle of state transitions, right: counts together with divider output). Instead of BT

1 ,
we depict BT

2 as divider output due to its more precisely toggling nature.

3.6 Discussion

The experimental results indicate that an originally designed frequency divider
1:17 might change its behaviour revealing division ratios of 1:3, 1:5, and 1:6
just by slight rewiring of few interacting modules. By using a binary counter
approach modulo 17, we intentionally employed a pure synthetic reaction system
derived from standard concepts in engineering. Although, those systems tend to
be quite resistent against evolutionary optimisation, there is some evidence for
achievement of new or extended functionalities. A detailed plausibilisation of the
observed behavioural pattern directly arises from the entirety of concentration
courses involved in carrying out the state transitions. In order to emphasise
this line of evidence, we conducted an additional simulation study by consistent
variation of the rate constants within the logical unit. Slowing down its reactions
by setting k = 0.1 instead of k = 1 leads to complete loss of frequency division by
forwarding the core oscillator’s period instead. Here, the entire system exhibits
a fragile “cycle” at the edge of chaotic behaviour after a longer transient phase,
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see Figure 10. Obviously, the reaction network attempts to calculate the next
step but is unable to do so in time for the next count. This effect preserves for
any rate constant k < 0.15, which marks the maximum latency of logic gates
required to guarantee their function. For 0.15 ≤ k ≤ 0.9, the frequency divider
1:17 operates correctly after a long transient phase of 18 counts necessary to
reconstruct minimal concentration levels of auxiliary species. For k > 0.9, there
is no restriction in the frequency divider’s functionality.

Finally, let us return to the life
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Fig. 10. Dynamical behaviour of the origi-
nal frequency divider model 1:17 after slowing
down all reactions within the logical unit for
one order of magnitude

cycle of periodical cicadas which
gave the crucial inspiration for our
studies. We are aware that the
mechanisms evolved in this life
form are most probably far away
from a binary counter modulo 17.
Up to now, we failed in retrieving
any scientific publication on poten-
tial or even verified mechanisms. A
more or less speculative hypothesis
aims at a combination of two pro-
cesses, a slow growth on the one
hand and a threshold on the other.
Growth means a successive accu-
mulation of a dedicated species. As
soon as its concentration exceeds
an inherently set threshold, the finalisation of the life cycle is initialised indi-
cating the elapsed amount of 17 years. A successive accumulation organised for
instance in annual cycles is useful for a high precision. To this end, a core oscil-
lator could provide an annually altering signal of the form a + sin(bt) subject to
time t. A simple signal integration then produces a temporal course of the form
at + c · sin(bt + d) with a successive, staircase-shaped growth. Nevertheless, this
strategy is more prone to premature or late alert than an n-ary counter.

4 Core Oscillator’s Interplay in Suprachiasmatic Nucleus

A second application study is intended to demonstrate in brief the descriptional
capacity of our P meta framework. Let us consider the suprachiasmatic nucleus,
a region of the human brain, in which each neuron comprises a core oscillator
for generation of a circadian rhythm characterised by a controllable period close
to 24 hours. A cyclic gene regulatory network consisting of 10 molecular species
and 18 reactions including an inhibitory negative feedback forms this core oscil-
lator whose dynamical behaviour had been formalised via specific ODEs based
on mass-action and second-order Hill kinetics. For a full description, we refer
to [3]. The neuronal core oscillators within the suprachiasmatic nucleus appear
to be hierarchically organised in several layers. A small group of independently
oscillating neurons constitutes the so-called master-clock layer. Neurons in down-
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Fig. 11. Hierarchical scheme of unidirectionally coupled neuronal core oscillators or-
ganised in four layers. Individual oscillations synchronise by passing through these
layers. See text for detailed explanation.

stream layers synchronise their oscillation via unidirectional molecular coupling
in which the oscillatory outputs of superior layers directly affect oscillations in
adjacent subsequent layers. Neurons residing in the deepest layer release their
widely synchronised oscillatory signals to peripheral oscillators in other parts of
the organism. Figure 11 illustrates a small network composed of 14 core oscilla-
tors called n[1] up to n[14] organised within four layers.

We are going to conduct two experimental studies: In a first scenario, we wish
to consider a pre-synchronised network with a single neuron in the master-clock
layer, see part A of Figure 11. This neuron propagates its oscillatory rhythm to
all downstream neurons causing a slight signal delay from layer to layer. After
a short transient phase, all 12 neurons incorporated in this scenario oscillate
synchronously. Although sufficient so far, a single master clock makes the system
error-prone and fragile, especially if the master-clock oscillation deviates from
its expected behaviour which can easily happen along with cell ageing. In this
case, an incorrect or insufficient oscillatory signal runs through all layers without
any correction or control. Additional master-clock neurons with full connectivity
to downstream layers can help to stabilise the function of the whole network.
Our second scenario depicted in part B reflects this aspect. Here, we add a
master clock neuron and a second-layer neuron completing the network of 14
neurons. Temporal signal offsets (so-called phase differences) among individual
master-clock oscillations are diminished while passing the downstream layers.
Finally, a robust “average” oscillatory signal derived from all master clocks is
released as global output. Our simulation shows that initial phase differences
within the master-clock layer can be reduced up to ≈ 2.6-fold by running through
three subsequent layers, widely independent of the coupling strength. Antiphasic
master-clock oscillations (half-periodic offset, phase difference 180◦) turn out to
be resistent against synchronisation by passing the layers almost unaffected.
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The corresponding experimental setup can be captured by the P meta frame-
work assuming the non-probabilistic P module n = (X, Y, F ) from [3] to act as
unique neuronal core oscillator from which up to 14 instances are employed:

ΠSCN = (M, P ) with

M = {(n, 14)}
P = {0 : ModuleConnect(n[1] → n[3], {(Y, X)}),

0 : ModuleConnect(n[1] → n[4], {(Y, X)}), . . . ,
0 : ModuleConnect(n[10] → n[14], {(Y, X)})
300 : ModuleConnect(n[2] → n[4], {(Y, X)}), . . . ,
300 : ModuleConnect(n[6] → n[10], {(Y, X)})}

5 Conclusions

Assembly and reassembly as well as composition and decomposition of pre-
defined reaction network modules on the fly appears to be a promising strategy
in order to achieve complex systems capable of new or extended functional-
ity. Inspired by biological evolution at a granularity of highly conserved genetic
ensembles, our P meta framework provides a tool for control and systematic
conduction of corresponding studies. Within two application cases, we demon-
strated the descriptive capacity behind this approach. Particularly at the edge
of straight-forward lines for complex network inference in reverse engineering, a
strict utilisation of previously identified modules and their reuse can contribute
to explore the abilities of resulting systems in a more effective and efficient way.
Further studies will address technical aspects of module integration from differ-
ent specification platforms. It seems that modules based on ODEs on the one
hand and discrete forms along with rewriting rules on the other, needs to in-
teract with each other via appropriate interfaces. To this end, the Infobiotics
workbench offers an extensive functionality [5]. A fruitful combination of the
universe of P systems featured by their ability to manage dynamical structures
with the universe of ODEs featured by a profound toolbox for analytical exami-
nation could be an innovative clue. In all simulation studies carried out for this
paper, we consistently utilised the Complex Pathway Simulator software CoPaSi
(version 4.7) along with the Gepasi Model Extractor for generation of several
instances from a common module specification. Corresponding source files are
available from the authors upon request.
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Abstract. The newly introduced Kernel P systems offer an unitary and
elegant way of integrating established features of existing P system vari-
ants with new elements with potential value for formal modelling. This
paper presents a case study illustrating the expressive power and ef-
ficiency of kernel P systems on the 3-Col problem. The use of model
checking (in particular of Spin) for formal verification of kernel P sys-
tems is also discussed and illustrated in this case.

1 Introduction

Inspired by the behaviour and structure of the living cell, membrane systems,
also called P systems, have been intensely studied in recent years [12]. Many
variants of P systems have been introduced and investigated in terms of com-
putational power and their capability to solve computationally hard problems
[13]. Furthermore, in the last years, significant progress has been made in using
different P system models to model, simulate and formally verify various systems
[2], including a number of well-known distributed algorithms and problems [11].
In many cases, however, the specifications produced required additional features
or constraints compared to the original definition of the P system variant used;
such additional features added expressiveness to the specification and clarified
complex aspects of the system involved. Although extremely useful for the ac-
tual modelling, the ad-hoc addition of such extra features is bound to have an
adverse effect on the capability of P systems to provide a coherent analysis and
verification framework.

To alleviate this problem, a kernel P system (kP system, for short) has been
recently defined [5]. This is a low level specification language that uses established
features of existing P system variants and also includes some new elements.
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Most importantly, kP systems offer a coherent way of integrating these elements
into the same formalism. In a longer term, it is envisaged that a kP system
simulator will be developed and integrated into the P-lingua platform [4] and
model checking facilities will also be available, thus providing a coherent platform
for system analysis and verification.

Kernel P systems use a graph-like structure (similar to that of tissue P sys-
tems) and rules of two types:

– object processing rules, which transform and move objects across compart-
ments; these include rewriting and communication rules guarded by promot-
ers and inhibitors, but also symport/antiport like rules;

– system structure rules, which change the topology of the system and include
membrane division and dissolution and also creation or removal of vertexes
in the graph.

The execution of a rule is conditioned by a guard, defined in a general manner
using activators and inhibitors. The execution strategy is defined in a more gen-
eral way that in traditional P systems, using context-free languages; this allows
established rule selection strategies, such as maximal parallelism and sequen-
tial modes, but also more complex strategies to be expressed in an unitary and
elegant way.

This paper illustrates the modelling power of the newly proposed kP system
language. For this purpose, it considers a well known NP-complete problem, the
3-colouring (3-Col) problem. A kP system that models this problem is compared
with a tissue P system model with cell division available in the literature [3].
The comparison shows that the kP system is more efficient in terms of time
complexity and number of rules used, while requiring the same space resources
(number of cells). The kP system is also implemented in Spin and a number of
interesting properties are extracted and formally verified.

The paper is structured as follows. Section 2 introduces the main elements of
kP systems. The modelling of the 3-Col problem is discussed in Section 3. The
next two sections are concerned with the formal verification of the kP system
model: Section 4 presents the Spin implementation while Section 5 identifies a
number of useful properties and discusses their verification using LTL. Finally,
conclusions are drawn and future work is outlined in Section 6.

2 Background: kP Systems

This section presents the kP system formalism as defined in [5].

Definition 1. Given a finite set, A, called alphabet, of elements, called objects,
and a finite set, L, of elements, called labels, a compartment is a tuple C =
(l, w0, R

σ), where l ∈ L is the label of the compartment, w0 is the initial multiset
over A and Rσ denotes the DNA code of C, which comprises the set of rules,
denoted R, applied in this compartment and a regular expression, σ, over Lab(R),
the labels of the rules of R.

F. Ipate, C. Dragomir, R. Lefticaru, L. Mierla, M.J. Pérez-Jiménez
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The format and the types of rules used by kP systems will be given later, in
Section 2.1.

Definition 2. A kernel P system of degree n is a tuple

kΠ = (A,L, IO, µ,C1, . . . , Cn, i0),

where A and L are, as in Definition 1, the alphabet and the set of labels,
respectively; IO is a multiset of objects from A, called environment; µ defines the
membrane structure, which is an undirected graph, (V,E), where V are vertices,
V ⊆ L (the nodes are labels of these compartments), and E edges; C1, . . . , Cn
are the n compartments of the system - each compartment is specified according
to Definition 1; the labels of the compartments are from L and initial multisets
are over A; io is the output compartment where the result is obtained.

2.1 kP System Rules

Before proceeding we introduce the notation used. We consider multisets over A∪
Ā, where A and Ā are interpreted as promoters and inhibitors, respectively;
Ā = {ā|a ∈ A}. For a multiset w over A ∪ Ā and an element a from the same
set we denote by |w|a the number of a′s occurring in w. We also consider the
set of well-known relational operators Rel = {<,≤,=, 6=,≥, >}. For a multiset
w = an1

1 . . . ank

k , aj ∈ A ∪ Ā, 1 ≤ j ≤ k, and αj ∈ Rel, 1 ≤ j ≤ k, we introduce
the following notation w′ = α1a

n1
1 . . . αka

nk

k ; aj is not necessarily unique in w or
w′; w′ is called multiset over A ∪ Ā with relational operators over Rel.

Each rule r has the form r {g}, denoting that r is applicable when g is
evaluated to true. The guards are constructed according to the following criteria
(let g be a guard and pr a predicate over the set of guards):

– g = ε means pr(ε) is always true, i.e., no condition is associated with the
rule r; this guard is almost always ignored from the syntax of the rule;

– g is a multiset over A ∪ Ā with relational operators over Rel, i.e., g =
α1a

n1
1 . . . αka

nk

k , then pr(w) is true iff for z, the current multiset of Ci, we
have, for every 1 ≤ j ≤ k, either (i) if aj ∈ A then |z|aj αj nj holds, or (ii)
if aj ∈ Ā, i.e., aj = ā, a ∈ A, then |z|aj αj nj does not hold;

– g = w1| . . . |wp, i.e., g is a finite disjunction of multisets over A ∪ Ā with
relational operators over Rel, then pr(w1| . . . |wp) is true iff there exists j,
1 ≤ j ≤ p, such that pr(wj) is true.

We denote by FE(A ∪ Ā), from Finite regular Expressions over A ∪ Ā with
relational operators, the set of expressions defined above. When a compound
guard, cg, referring to compartments li and lj is used, its generic format is
cg = li.g1 op lj .g2, where g1, g2 are finite expressions referring to compartments
li and lj , respectively; then, obviously, pr(cg) = pr(g1) op pr(g2), op ∈ {&, |},
where & stands for and and | for or, meaning that either both guards are true
or at least one is true. Simpler forms, where one of the operands is missing, are
also allowed as well as cg = ε. A compound guard defines a Boolean condition
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defined across the two compartments.

A rule can have one the following types:

– (a) rewriting and communication rule: x→ y {g},
where x ∈ A+, y ∈ A∗, g ∈ FE(A∪ Ā); the right hand side, y, has the form
y = (a1, t1) . . . (ah, th), where aj ∈ A and tj ∈ L, 1 ≤ j ≤ h, is an object and
a target, i.e., the label of a compartment, respectively; the target, tj , must be
either the label of the current compartment, li, (more often ignored) or of an
existing neighbour of it ((li, tj) ∈ E) or an unspecified one, ∗; otherwise the
rule is not applicable; if a target, tj , refers to a label that appears more than
once then one of the involved compartments will be non-deterministically
chosen; if tj is ∗ then the object aj is sent to a neighbouring compartment
arbitrarily chosen;

– (b) input-output rule, is a form of symport/antiport rule: (x/y) {g},
where x, y ∈ A∗, g ∈ FE(A∪ Ā); x from the current region, li, is sent to the
environment and y from the environment is brought into the current region;

– (c) system structure rules; the following types are considered:
• (c1) membrane division rule: []li → []li1 . . . []lih {g},

where g ∈ FE(A ∪ Ā); the compartment li will be replaced by h com-
partments obtained from li, i.e., the content of them will coincide with
that of li; their labels are li1 , . . . , lih , respectively; all the links of li are
inherited by each of the newly created compartments;

• (c2) membrane dissolution rule: []li → λ {g};
the compartment li will be destroyed together with its links;

• (c3) link creation rule: []li ; []lj → []li − []lj {cg};
the current compartment, li, is linked to lj and if more than one lj
exists then one of them will be non-deterministically picked up; cg, called
compound guard, describes an expression li.g1 op lj .g2 as defined above;

• (c4) link destruction rule: []li − []lj → []li ; []lj {cg};
is the opposite of link creation and means that compartments li, lj are
disconnected; as usual, when more than a link, (li, lj) ∈ E, exists then
only one is considered by this rule; cg is a compound guard.

Further details and examples of kP system computations can be found in [5].

2.2 Regular Expressions and their Interpretation for kP Systems

In kP systems the rule execution strategy is described using regular expressions
over the sets of labels of rules.

First consider the set of labels of the rules from the set R in a given compart-
ment, denoted by Lab(R). The set of regular expressions over this set is denoted
by REG(Lab(R)). A regular expression σ ∈ REG(Lab(R)) is interpreted as
follows:

– σ = ε means no rule from the current compartment will be executed;
– σ = r, r ∈ Lab(R), means the rule r is executed;
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– σ = αβ means first are executed rules designed by α and then those in β,
where α, β ⊆ Lab(R);

– σ = α|β means either the rules designed by α or those by β are executed,
α, β ⊆ Lab(R); often we use the notation defining sets where | is replaced
by ,;

– σ = γ∗ means rules designed by γ are executed in a maximal parallel way,
γ ⊆ Lab(R).

The use of regular expressions allows the usual behaviour of P systems -
requiring the rewriting and communication, and input-output rules to be applied
in a maximal parallel way and structural rules (e.g. membrane division and
dissolution, creation and destruction of links) to be executed one per membrane
- as well as other alternative or additional features to be expressed in a consistent
and elegant manner [5]. For example, for a one-compartment kP system with
object processing rules R1 and structural rules R2 the maximal parallelism mode
can be expressed by R∗1R2. Furthermore, if a certain order relationship on the
object processing rules exists, e.g. r1, r2 > r3, r4 (i.e. when weak priority is
applied, the first two rules are executed first, if possible, then the next two), this
can be described by {r1, r2}∗ {r3, r4}∗. Considering a hyperdag P system [11],
having two rules:

1. r1 : x→min y
2. r2 : x′ →max y

′

meaning that r1 is executed before r2, such that r1 is applied only once, while
r2 is applied in a maximal way, the corresponding regular expression for a kP
system with this type of execution strategy is: {r1}1{r2}∗. Further details are
given in [5].

3 3-Col Problem Specified with kP Systems

In order to illustrate the modelling power of kP systems we consider the 3-Col
problem [3]. In general, the k-colouring problem is formulated as follows: given
an undirected graph G = (V,E), decide whether or not G is k-colourable; that
is, if there exists a k-colouring of G for which every edge {u, v} ∈ E the colours
of u and v are different.

As shown in [3], the 3-colouring problem can be solved in linear time by a
recognizer tissue P system with cell division and symport/antiport rules [3]. In
what follows, we present a kP system model of the same problem and compare
the two approaches.

A kP system which solves the 3-Col problem for a graph with n ≥ 2 vertices
is kΠ = (A,L, IO, µ,C1, C2, 0), where

– A = {A1, . . . , An} ∪{Ai,j |1 ≤ i < j ≤ n} ∪{B1, . . . , Bn} ∪{R1, . . . , Rn}
∪{G1, . . . , Gn} ∪{a, S,X, Y, T, yes, no} ∪ {X1, . . . , Xn+3}, where Ai, 1 ≤
i ≤ n, stand for the n vertices, Ai,j , 1 ≤ i < j ≤ n are for all possible edges
between the n vertices, Bi, Ri, Gi, 1 ≤ i ≤ n, are for the three colours, blue,
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red and green, respectively, that can be associated with the n vertices; a is
used only in cell 1; S is a flag, X is used to mark that cell division has been
completed, Y is used after cell division and T, F at the end; yes, no are the
two possible answers - one of them being sent to the environment at the end
of the computation; X1, . . . , Xn+3 are used to count the maximum number
of steps, 2n+ 2, requested for the last possible input from C2;

– L = {1, 2};
– IO is not relevant in this case; at the end one of two possible answers will

be sent out;
– C1 = (1, w1,0, R

σ
1 ), C2 = (2, w2,0, R

σ
2 ), where w1,0 = aX1, w2,0 = A1S code(n),

with code(n) being the multiset of edges of the graph to be coloured;
– µ is given by the graph with edge (1, 2)
– Rσ1 and Rσ2 are given by
• R1 contains only rewriting and communication rules:
∗ Xi → Xi+1, 1 ≤ i ≤ n+ 2; these rules are used for counting the first
n+ 2 steps;
∗ aT → (yes, 0); in the first n + 2 steps, for each solution found, an

object T will be sent from C2 to C1; when one or more T ′s are
received from compartments C2, i.e., there is at least one solution,
then this rule is used to release yes into the environment;
∗ aXn+3 → (no, 0) {≥ T̄}; when no T ’s are received after n+ 3 steps,

a no is sent out into the environment.
• R2 contains
∗ membrane division rules: [Ai]2 → [BiAi+1]2[GiAi+1]2[RiAi+1]2{=
S}, 1 ≤ i ≤ n − 1 and [An]2 → [BnX]2[GnX]2[RnX]2{= S}; these
are applied in n steps and all the possible combinations of colouring
n vertices with three colours are obtained;
∗ rewriting and communication rules
· S → λ{= A1,2 = B1 = B2| = A1,2 = G1 = G2| = A1,2 = R1 =
R2| . . . | = An−1,n = Bn−1 = Bn| = An−1,n = Gn−1 = Gn| =
An−1,n = Rn−1 = Rn} (one rule but with a condition containing
3 ∗n ∗ (n− 1)/2 terms) and X → Y ; the first rule checks, for any
pair 1 ≤ i < j ≤ n, that the colour of i and j is the same and
S is available; if so, S is erased; when S disappears, no further
verifications are performed in the corresponding cell; when all
the verifications are completed, X is transformed into Y by the
second rule X → Y ;
· Y S → (T, 1); this rule is applied in the (n + 2)th step: if S is

available, i.e, there is a solution in the current cell 2, T is sent
to cell 1.

The rule execution strategy for compartment 1 is the well-known maximal
parallelism mode, i.e. the associated regular expression is R∗1. Similarly, the rules
are applied in a maximal parallel manner in compartment 2, with the constraint
that cell division rules may only be applied once per computation step, at the
end of the step. That is, if the cell division rules of compartment 2 are denoted by
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R2,1 and the rewriting and communication rules by R2,2, the regular expression
associated with compartment 2 is R∗2,2R2,1.This is possible as long as the symbols
used in division rules are not used by any of the rewriting and communication
rules.

The following table summarizes some comparative data concerning the spec-
ification of the 3-Col problem with the model from [3] using symport/antiport
rules and the one above. This shows that the number of symbols and rules is
significantly reduced in comparison to the tissue P system model. Naturally, to
some extent, the reduction in the number of rules is achieved at the expense
of their complexity: for example, the kP system has one rule with a condition
containing 3 ∗ n ∗ (n− 1)/2 terms, also the cell division rules contain 7 symbols
plus one used by their guard. The actual number of cells labelled 2 produced by
the kP system may in general be (significantly) less than 3n since cell divisions
are only performed when S is available (i.e. when the cell content may lead to
a solution); otherwise, when S is no longer available, the cell division stops, as
illustrated by the example below. On the other hand, in the case of the tissue P
system, 3n cells labelled 2 are always produced.

Consider, for example, the following configurations for n ≥ 4:

– [aX1]1[A1Scode(n)]2 - only the division rule will be applied
– [aX2]1[B1A2Scode(n)]2 - only the division rule will be applied
– [aX3]1[B1B2A3Scode(n)]2 - suppose that A1,2 is in code(n); then S will

disappear at this step (the rewriting rule will be applied) after which the
cell will be divided;

– [aX4]1[B1B2B3A4code(n)]2 - this will no longer evolve as S is no longer
available.

It can be observed that an edge (i, j), 1 ≤ i < j ≤ n, is checked at the
(j + 1)th step. Therefore, at the (j + 1)th, S will disappear from all cells for
which there exists an edge (i, j), 1 ≤ i < j, and i and j a coloured identically;
such cells will no longer divide. Thus, the maximum possible number of cells
will only be attained for graphs in which all edges (if any) are of the form (i, n),
i < n.

Type/Specification Tissue P systems kP systems

Alphabet 6n2 + 12n+ +2m+ 2[log m] + 29 n(n+ 1)/2 + 5n+ 10
Rules 2n & 6n(n+ 1)/2 + 8n+ 2m+ 3[log m] + 25 n & n+ 7

Max number of cells 3n + 1 3n + 1
Number of steps 2n+m+ [log m] + 11 n+ 3

The number of steps for the kP system specification will increase if we con-
sider division rules with no object rewriting features associated with. Indeed, in
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this case the rules [Ai]2 → [BiAi+1]2[GiAi+1]2[RiAi+1]2{= S}, 1 ≤ i ≤ n−1 and
[An]2 → [BnX]2[GnX]2[RnX]2{= S} must be replaced with division rules that
do not use object rewriting. Hence we need some additional cells, three more
types, namely 21, 22, 23 and new rules to replace the membrane above division
rules. The new rules used in the membrane division process are the following:

– membrane division in R2: []2 → []21[]22[]23 {= A1 = S| . . . | = An = S};
whenever an Ai and a S are present in cell 2, this is divided into three cells
of types 21, 22 and 23;

– rewriting rules: Ai → BiAi+1 ∈ R21, 1 ≤ i ≤ n − 1, An → BnX ∈ R21,
Ai → GiAi+1 ∈ R22, 1 ≤ i ≤ n− 1, An → GnX ∈ R22 and Ai → RiAi+1 ∈
R23, 1 ≤ i ≤ n− 1, An → RnX ∈ R23;

– membrane division (in fact a label change): []21 → []2 {= B1 = A2| . . . | =
Bn−1 = An| = Bn = X} ∈ R21; []22 → []2 {= G1 = A2| . . . | = Gn−1 =
An| = Gn = X} ∈ R22; []23 → []2 {= R1 = A2| . . . | = Rn−1 = An| = Rn =
X} ∈ R23; cell 21, 22 and 23 will be relabelled 2 when the guards are true;

In this case, 1 + 3n+ 3 rules will replace the n division rules; the maximum
number of cells will remain the same, i.e., 3n + 1 and the number of steps will
become 2n+ 3 (provided that the rewriting and division rules in cells 21, 22 and
23 are executed in the same step. These values are presented in the table below.

Type/Specification kP systems

Alphabet n(n+ 1)/2 + 4n+ 8
Rules 4 & 4n+ 7

Max number of cells 3n + 1
Max number of steps 2n+ 3

4 Promela Implementation of the kP System

To further demonstrate our solution to the 3-Col problem using kP systems,
we will implement, execute and formally verify the proposed model in the Spin
verification tool [1]. Originally designed for verifying communications protocols,
Spin is particularly suited for modelling concurrent and distributed systems that
are based upon interleaving of atomic instructions. Systems are described in a
high level language called Promela (a process meta language). Promela allows
the use of embedded C code as part of the model specifications, facilitating the
verification of high level, implementation dependent properties. It also allows
for a concise specification of logical correctness requirements, including, but not
restricted to requirements expressed in LTL (linear temporal logic). Our goal is
twofold: firstly, we aim to simulate the kP system for several instances of the
problem and secondly, we attempt to verify the correctness of our model by
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asserting the validity of a set of properties/invariants. In this section we address
the implementation of the kP system model defined earlier, into Spin’s Promela.

There are two essential antinomic aspects usually considered when imple-
menting a specification. On the one hand, an implementation must target co-
herence, structural clarity and a granularity that confers a certain flexibility
for potential alterations and/or extensions. On the other hand, the developer is
challenged by the performance requirements, the demand for a reasonably fast
and efficient execution. The importance of the latter is particularly augmented
in the context of NP complete problems. There is an evident trade-off between
the level of abstraction and an optimal representation given by exploiting the
particularities of the problem. Additionally, we must take into consideration the
issue of property specification in our implementation; that is, we must be able to
relate to variables denoting P system elements (i.e. membranes, objects, links).

In accordance with these considerations, we set our primary focus on the
development of a model specific implementation, taking into account particular-
ities such as the existence of only two types of membranes, the absence of link
creation/destruction rules, the absence of a composite execution strategy, the
use of indexed object symbols.

The Spin model checker was successfully used on various other case studies
employing membrane systems [8, 7, 10]. We can identify certain (re-usable) pat-
terns of correspondence between P system features and Promela statements and
instruction blocks. For example, the guarded parallel rewriting of P systems can
be translated using Promela’s non-deterministic conditional statements (i.e if,
do); the projection of a membrane to a Promela data type definition. However,
our approach differs from existing implementations due to the direct mapping
of a membrane’s set of rules (the instruction set) to an individual process in
Promela. Spin executes processes asynchronously (the programs are interleaved
behind the scene, simulating a parallel execution) which makes it a natural
support for membrane rules. Hence, we have an expandable set of membrane
instances which store a multiset of objects - the program data; and a finite set of
instructions encapsulated in independent processes - the parallel instruction set.
Each process will run for each membrane instance it is associated with, perform-
ing rewriting and communication but also creating new instances (membrane
division). In order to distinguish a computational step in a P system and pre-
vent a rather chaotic process execution, an auxiliary process is introduced as a
coordinator: for each step the Scheduler process will launch each set of instruc-
tions on the instances and will block until all processes have completed (for all
membrane instances). The scheduler plays the role of a clock which synchronises
execution into steps. This task is repeated until the environment is flagged with
either ”yes” or ”no”, signalling the computation has halted and a result was
generated, or until it reaches a maximum number of steps specified by the user.
The input is also defined through a global parameter - the number of vertices
and an initial configuration of Aij objects which denote the edges of the graph.

In Table 1 we illustrate the mapping of kP system features to Promela ele-
ments. Figure 1 describes the algorithm devised for this kP system solution in
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(commented) pseudo-code. A code sample for each of the P system’s distinctive
components is also provided in the Appendix.

kP system component Element in Promela Sample

Membrane type Data type definition Fig. 2
Membrane instances Instances of defined type (organised in an array) Fig. 3

Objects Variables/arrays of variables of type int Fig. 2
Rules (instruction set) Promela processes Fig. 4

Table 1. Mapping of kP system features to Promela elements

5 Formal Verification with Spin

In this section we describe the formal verification of some kP systems properties,
by extending the approach introduced in [6] for P systems with static structure.
This approach was initially used in conjunction with the NuSMV model checker
and further developed in [8, 10] for verification of static P systems with the Spin
model checker, later adapted in [7, 9] for P systems with active membranes and
tissue P systems, respectively.

The main idea behind this formal verification is the transformation of the P
system into an associated Kripke structure, for which expected properties are
defined. The equivalence between these properties, expressed in terms of P sys-
tem and the corresponding Kripke structure is formally proved in [6]. However,
the executable model of a P or kP system written in Promela is normally imple-
mented as a sequence of transitions (as described in Section 4) and consequently
additional (intermediary) states are introduced into the model.

One important assumption is that the intermediary states do not form infi-
nite loops and consequently every possible (infinite) path in the Promela model
will contain infinitely often states corresponding to the kP system configura-
tions. This request ensures that every path in the kP system has at least one
corresponding path in the Promela model and vice versa.

The properties to be verified in the kP system must be reformulated as equiv-
alent formulas for the associated Promela model. In Table 2 we summarize the
transformations of different types of LTL formulas for the Promela specification.
The first set of rows describe the transformations of basic LTL formulas, involv-
ing temporal logic operators such as Globally (G), Until (U), neXt (X), Finally
(F), Release (R), for which the equivalent Promela transformations have been
formally proved in [8]. The second set of formulas from Table 2 can be easily
derived using the basic LTL operators, for which the transformations are previ-
ously defined. In corresponding LTL Promela specifications, pInS represents a
flag which is true in the original (non-intermediary) states of the kP system. For
example, a property such as ‘Eventually, there is YES in the environment’, will
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/* Array of instances for membranes of type Compartment1 */

Compartment1 c1Cells[ ];

/* Array of instances for membranes of type Compartment2 */

Compartment2 c2Cells[ ];

int stepCount = 0;

while(environment is empty AND stepCount < MaxNumberOfSteps) {

foreach(membraneInstance m in c1Cells) {

/* Execute process1 which contains all rules

defined for a membrane of type "Compartment1"

*/

run process1(m);

}

foreach(membraneInstance m in c2Cells) {

/* Execute process2 which contains all rules

defined for a membrane of type "Compartment2"

*/

run process2(m);

}

/* Wait until all processes complete

i.e. when all applicable rules were executed.

*/

wait();

/* Computational step complete */

stepCount++;

}

Fig. 1. Pseudo code illustrating the kP system model implementation into Promela
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Property LTL specification

G p [ ] ( p || !pInS )

F p < > ( p && pInS )

pU q (p || !pInS) U (q && pInS)

X p X ( !pInS U ( p && pInS))

pR q ( p && pInS ) V ( q || !pInS )

G (p→ q) [ ] ( !p || q || !pInS )

G (p→ F q) [ ] ((p -> < >(q && pInS)) || !pInS )

G (p→ Xq) [] (!p || X(!pInS U (q && pInS)) || !pInS))

Table 2. Reformulating the P system properties for the Promela implementation

become, for the Promela model, <> (environment.yes == 1 && pInS), i.e.
we expect the number of yes objects in the environment to become 1 only for
configurations corresponding to the kP system, but not for all the intermediary
states.

In the following we present some properties of the kP system which were
verified:

– ltl solYes { ((environment.yes == 0 && environment.no == 0) ||

!pInS) U (environment.yes == 1 && environment.no == 0 && pInS)}

is a property stating that the number of yes and no objects in the environ-
ment is zero until a yes is sent to the environment.

– ltl solNo { ((environment.yes == 0 && environment.no == 0) ||

!pInS) U (environment.yes == 0 && environment.no == 1 && pInS)}

is a property stating that the number of yes and no objects in the environ-
ment is zero until a no is sent to the environment. This property, checked for
a 3-Col model having the number of vertices n = 3 and consequently hav-
ing solution was falsified by the model checker and a counterexample was
received.

– ltl g1 {[] (!(c1Cells[0].a == 1 && c1Cells[0].T >= 1) ||

X(!pInS U ((environment.yes == 1) && pInS)) || !pInS) }

states that: globally, if in the membrane labelled with 1 there are present
the objects a, T , then, in the next state of the kP system, an yes object will
be sent to the environment.

– ltl g2 {[] (!(schedulerStep == stepIndex &&

((c2Cells[c2CellIdx].B[vtx1] && c2Cells[c2CellIdx].B[vtx2]) ||

(c2Cells[c2CellIdx].G[vtx1] && c2Cells[c2CellIdx].G[vtx2]) ||

(c2Cells[c2CellIdx].R[vtx1] && c2Cells[c2CellIdx].R[vtx2]) )

&& c2Cells[c2CellIdx].Aij[vtx1*N + vtx2]) ||

X(!pInS U (c2Cells[c2CellIdx].S == 0 && pInS)) || !pInS) }

expresses that: if at the computation step given by c2CellIdx, in a certain
membrane with the label 2, given by the index c2CellIdx, there exists an
edge between (vtx1, vtx2), and the two vertices are both coloured in blue,
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green or red, then, in the next kP system configuration, the S symbol from
this membrane will disappear.

The properties expressed before were checked for several kP systems, having
different graph structures, which implied obtaining different results for these
formulas, true or false plus a corresponding counterexample. For higher values
of n the kP system simulation is realised in a few seconds, but the property
verification faces the well-known ‘state explosion problem’.

6 Conclusions

Kernel P systems offer an unitary and elegant way of integrating established
features of existing P system variants with new elements, valuable for formal
modelling. This paper presents a case study illustrating the expressive power
and efficiency of kernel P systems on the 3-Col problem. It presents a kP system
that models the problem and compares it with a tissue P system model available
in the literature; the comparison proves the efficiency and expressiveness of kP
systems. The paper also makes a first step towards formal verification of kP
systems: the kP system model for the 3-Col problem is implemented in Promela
and a number of rules for converting a kP system into a Promela implementation
are identified. Furthermore, using this implementation, a number of interesting
properties are formally verified using Spin.

In future work we will continue to asses the modelling power and efficiency
of kP systems in other case studies. Another priority is the development of a
platform for simulation and formal verification of kP systems.
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Appendix

/* Membrane type and object definition */

typedef Compartment2 {

int A[N] = 0;

int Aij[NN] = 0;

int B[N] = 0;

int G[N] = 0;

int R[N] = 0;

int X = 0;

int S = 0;

int Y = 0;

int isDisolved;

int isComputing;

}

Fig. 2. Sample of membrane type and object specification

M1 instM1[MAX_M1_COUNT]; /* global array of membrane instances */

Fig. 3. Sample of membrane instances global array
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proctype M1Rules(int instIndex) {

instM1[instIndex].isComputing = true;

/* rewriting rules */

/* non-deterministic rules application */

do

:: instM1[instIndex].A && instM1[instIndex].B &&

instM1[instIndex].D >= 1 -> /* guard */

instM1[instIndex].A--; instM1[instIndex].B--;

instM1[instIndex].D++;

:: c1Cells[cellIndex].A && c1Cells[cellIndex].C &&

instM1[instIndex].D < 2 -> /* guard */

instM1[instIndex].A--; instM1[instIndex].C--;

:: else -> break;

od;

/* communication rules */

if

:: instM1[instIndex].A && instM1[instIndex].B ->

instM1[instIndex].A--; instM1[instIndex].B--;

/* outgoing symbols are stored global buffers */

/* until the end of the current step */

goingToM2.S++;

:: else -> skip;

fi;

/* membrane division rules */

if

:: instM1[instIndex].D == 3 -> /* guard */

d_step {

/* copyCell(srcM1,destM1): inline macro defined in Promela */

copyCell(instM1[instIndex], instM1[totalM1Count]);

totalM1Count++;

copyCell(instM1[instIndex], instM1[totalM1Count]);

totalM1Count++;

}

instM1[instIndex].isDisolved = true;

:: else -> skip;

fi;

instM1[instIndex].isComputing = false;

}

Fig. 4. Sample of Promela encoding for the following set of rules: AB → D{≥ D},
AC → λ{< D2}, AB → (S, 2), []1 → []11[]12{= D3}
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Abstract. Spiking Neural P Systems (SN P Systems, for short) is a
developing field within the universe of P Systems. New variants arise
constantly as the study of their properties, such as computational
completeness and computational efficiency, grows. Variants frequently
incorporate new ingredients into the original model inspired by real
neurophysiological structure of the brain. A singular element present
within that structure is the astrocyte. Astrocytes, also known collectively
as astroglia, are characteristic star-shaped glial cells in the brain and
spinal cord. In this paper, a new variant of Spiking Neural P Systems
incorporating astrocytes is introduced. These astrocytes are modelled
as computing devices capable of performing function computation in a
single computation step. In order to experimentally study the action of
Spiking Neural P Systems with astrocytes, it is necessary to develop
software providing the required simulation tools. Within this trend, P–
Lingua offers a standard language for the definition of P Systems. Part
of the same software project, pLinguaCore library provides particular
implementations of parsers and simulators for the models specified in
P–Lingua. Along with the new SN P System variant with astrocytes, an
extension of the P–Lingua language allowing definition of these systems is
presented in this paper, as well as an upgrade of pLinguaCore, including
a parser and a simulator that supports the aforementioned variant.

1 Introduction

Spiking Neural P Systems were introduced in [10] in the framework of mem-
brane computing [16] as a new class of computing devices which are inspired by
the neurophysiological behaviour of neurons sending electrical impulses (spikes)
along axons to other neurons.

A SN P System consists of a set of neurons placed as nodes of a directed
graph (called the synapse graph). Each neuron contains a number of copies of a
single object type, the spike. Rules are assigned to neurons to control the way
information flows between connected neurons, i.e. rules assigned to a neuron
allow it to send spikes to its neighbouring neurons. SN P Systems usually work
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in a synchronous mode, where a global clock is assumed. In each time unit, for
each neuron, only one of the applicable rules is non-deterministically selected to
be executed. Execution of rules takes place in parallel amongst all neurons of
the system.

Since the introduction of this model, many computational properties of SN P
Systems have been studied. It has been proved that they are Turing-complete
when considered as number computing devices [10], used as language gener-
ators [5,3], or computing functions [15]. Also, many variants have come into
scene bringing new ingredients into the model (or sometimes dropping some of
them), while others modify its behaviour, that is, its semantics. Motivation of
this “research boom” can be found in a quest for both enhancing expressivity
and efficiency of the model, as well as exploring its computational power.

As a direct result of all of this, there is an extensive (and growing) bibliog-
raphy related to SN P Systems. For instance, it has been shown [4] how usage
of pre-computed resources makes them able to solve computationally hard prob-
lems in constant time. Also, study of different kinds of asynchronous “working
modes” has been conducted [18]. In what concerns to the addition of new ingre-
dients into the model, this involves (naming only some examples) weights [20],
antispikes [12], extended rules [18] or budding and division rules [13].

A SN P Systems variant with astrocytes was first introduced in [2]. Astro-
cytes are glial cells connected to one or more synapses that can sense the whole
spike traffic passing along their neighbouring synapses and, eventually, modify it.
Their functionalities include biochemical support of endothelial cells that form
the blood-brain barrier, provision of nutrients to the nervous tissue, maintenance
of extracellular ion balance, and a role in the repair and scarring process of the
brain and spinal cord following traumatic injuries. It has been shown that as-
trocytes propagate intercellular Ca+2 waves over long distances in response to
stimulation, and, similarly to neurons, release transmitters (called gliotransmit-
ters) in a Ca+2 -dependent manner.

Moreover, within the dorsal horn of the spinal cord, activated astrocytes have
the ability to respond to almost all neurotransmitters [9] and, upon activation,
release a multitude of neuroactive molecules that influences neuronal excitability.
Synaptic modulation by astrocytes takes place because of the 3-part association
between astrocytes and presynaptic and postsynaptic terminals forming the so-
called “tripartite synapse” [1].

Such discoveries have made astrocytes an important area of research within
the field of neuroscience, thus also an interesting element to consider bringing
into Natural Computing disciplines like Membrane Computing.
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The model presented in [2], pretty complex, was then simplified in [17], in
which only inhibitory astrocytes were considered. This simplification was re-
cently revised again in [14], where “hybrid” astrocytes were introduced. Be-
haviour of an astrocyte of this kind, inhibitory or excitatory, relied on the amount
of spikes passing on its neighbouring synapses, in relation to a given threshold
associated to it. Thus, for a given astrocyte ast with associated threshold t with
k spikes passing along its neighbouring synapses synast at a certain instant,
a) if k > t, the astrocyte ast has an inhibitory influence on the neighbouring
synapses, and the k spikes are simultaneously suppressed (that is, the spikes
are removed from the system); b) if k < t, the astrocyte ast has an excitatory
influence on the neighbouring synapses, all spikes survive and pass to their des-
tination neurons, reaching them simultaneously; c) if k = t, the astrocyte ast
non-deterministically chooses an inhibitory or excitatory influence on the neigh-
bouring synapses. It is possible for two or more astrocytes to control the same
synapse. In this case, only if every astrocyte has an excitatory influence on the
synapse the spikes passing along that synapse survive.

In this paper, again, a new variant is introduced. Based upon the original
model defined in [2], new ingredients are introduced in order to turn astrocytes
into function computation devices. Briefly, a set of pairs (threshold, function) is
associated with each astrocyte. Existing spike traffic measured on distinguished
neighbouring control synapses attached to the astrocyte is matched against the
thresholds until one of them is selected. Subsequently, the associated function to
the matched threshold is selected. At this point, that function is computed tak-
ing as arguments the amounts of spikes measured on distinguished neighbouring
operand synapses attached to the astrocyte. Finally, the result of the function
computation is sent through a distinguished operand synapse.

So, by introducing this new kind of astrocytes, not only covering of func-
tionality of the astrocytes defined in [2] is achieved, also any computable partial
function between natural numbers can be computed in a single computation
step. Moreover, this new ingredient eases the design of machines that calculate
functions, as astrocytes can be viewed as “macros”.

In addition, a P–Lingua based simulator for the proposed model has been
developed, which also simulates the model defined in [14]. The aforementioned
simulator is an extension of the one presented in [11]. P–Lingua is a program-
ming language intended to define P Systems [7,8,19], that comes together with
a Java library providing several services (e.g., parsers for input files and built-in
simulators).

This paper is structured as follows. Section 2 is devoted to introduce the
formal specification of SN P Systems with Functional Astrocytes (SNPSFA
for short). Section 3, is devoted to show applications of the presented model.
Section 4 is devoted to simulation: A P–Lingua syntax for defining SNPSFA
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is introduced, along with several examples. Finally, the simulation algorithm is
shown. Section 5 covers conclusions and future work.

2 Spiking Neural P Systems with Functional Astrocytes

In this section, we introduce SN P Systems with Functional Astrocytes.

2.1 Syntax

A Spiking Neural P System with Functional Astrocytes (SNPSFA for short) of
degree (m, l),m ≥ 1, l ≥ 1, is a construct of the form

Π = (O, σ, syn, ast, out), where:

– O = {a} is the singleton alphabet (a is called spike);
– σ = {σ1, . . . , σm} is the finite set of neurons, of the form σi = (ni, Ri), 1 ≤
i ≤ m, where:

• ni ≥ 0 is the initial number of spikes contained in σi;
• Ri is a finite set of extended rules of the following form:

E/ac → ap

where E is a regular expression over a, and c ≥ 1, p ≥ 1 with c ≥ p;
– syn = {s1, . . . , sθ} ⊆ {1, . . . ,m} × {1, . . . ,m} with (i, i) 6∈ syn is the set of

synapses;
– ast = {ast1, . . . , astl} is the finite set of astrocytes, with astj , (1 ≤ j ≤ l) of

the form

astj = (synoj , syn
c
j , ωj , Tj , Fj , pj(0), γj), where:

• synoj = {soj,1, . . . , soj,rj} ⊆ syn, rj ≥ 1, is the astrocyte finite set of
operand synapses, ordered by a lexicographical order imposed on synoj ;

• syncj = {scj,1, . . . , scj,qj} ⊆ syn, qj ≥ 0, is the astrocyte finite set of control
synapses;

• ωj ∈ {true, false} is the astrocyte control-as-operand flag;
• Tj = {Tj,1, . . . , Tj,kj}, kj ≥ 1, is the astrocyte finite set of thresholds,

such that, Tj,α ∈ N, (1 ≤ α ≤ kj) and Tj,1 < . . . < Tj,kj ;
• Fj = {fj,1, . . . , fj,kj} is the astrocyte finite multiset (some elements in Fj

can be the same) of natural functions such that for each α (1 ≤ α ≤ kj):
∗ fj,α is a computable function between natural numbers;
∗ if ωj = true then fj,α is a unary function;
∗ if ωj = false and rj = 1 then fj,α is a unary constant function;
∗ if ωj = false and rj > 1 then fj,α has arity rj − 1;

• pj(0) ∈ N is the astrocyte initial potential;
• γj ∈ {true, false} is the astrocyte potential update flag;

– out ∈ σ is the output neuron.
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2.2 Semantics

In order to precise semantics of a SNPSFA, let us informally introduce some
topological aspects of the model and the nature of the firing process. Given a
synapse sg = (σg,1, σg,2) ∈ syn, if an astrocyte is linked to sg, it can be viewed as
that it “makes contact” with sg in the “space between” s1g and s2g (it can be said
that the astrocyte is “attached” to the synapse as well). If there exists several
astrocytes attached to sg, all of them make contact at the same intermediate
point. These astrocytes can simultaneously read the spike traffic going from σg,1
to σg,2 at an instant t and eventually modify it.

Keeping in mind the intuitive ideas expressed above, we proceed now to for-
mally specify the semantics of SN P Systems with Functional Astrocytes as an
extension of the one defined for the well-known SN P Systems model. A global
clock is assumed and in every computation step one and only one rule can be
selected for a given neuron. Let us introduce the following notation as a matter
of convenience: given a synapse sy = (σ1

y, σ
2
y), we denote by σ1

y the input neuron
of sy and by σ2

y the output neuron of sy.

An astrocyte can sense the spike traffic passing along its neighbouring
synapses, both control and operand ones. For an astrocyte astj , if there are
k spikes passing along the control synapses in an instant t and the current po-
tential of astj at t is p, then the value s = k+ p is computed. At this point, the
number h satisfying that s ∈ [Tj,h, Tj,h+1) is computed out of s. Let us notice
that if s < Tj,1 then h = 1, and if s > Tj,kj then h = kj . Following this, by
using both h and the boolean value ωj , a number s′ is computed as follows. If
ωj = true then s′ = fj,h(s) directly. Otherwise, two cases are considered: a) if
the number of operand synapses rj is one, then s′ = fj,h(0); and b) if the num-
ber of operand synapses is greater than one and assuming that x1, x2, . . . , xrj−1
spikes are passing along the respective operand synapses associated to astj , then
s′ = fj,h(x1, x2, . . . , xrj−1). Finally, the multisets of the input and output neu-
rons associated to the operand and control synapses are updated. For the output
neurons: a) if they are associated to control synapses, then their corresponding
multisets are added the spikes passing along the synapses at instant t; and b)
if they are associated to operand synapses, then no change is applied to their
multisets, except for neuron soj,rj , which is added s′ spikes. Similarly, multisets
corresponding to input neurons associated to both operand and control synapses
are subtracted the spikes passing along the aforementioned synapses at instant t.

As a last remark, if the astrocyte potential update flag γj = true then the
astrocyte potential in t+ 1 will be incremented in s units. Otherwise, the astro-
cyte potential does not change.
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3 Applications of Spiking Neural P Systems with
Functional Astrocytes

As mentioned before, by introducing SNPSFA covering of functionality of as-
trocytes defined in [2] is achieved. Also, astrocytes within SNPSFA are able to
compute any computable natural partial function f : Nm− → N in a single
computation step. Let us illustrate this fact by showing how to re-implement
the examples covered in [2] within the scope of our proposed model. Moreover,
the corresponding P–Lingua files for the aforementioned examples are covered
in Section 4, thus by running the introduced simulator against these files, its
working process can be checked in relation to the semantics presented above.

3.1 Excitatory and Inhibitory Astrocytes

First couple of examples shows how to implement excitatory and inhibitory as-
trocytes respectively, with a given threshold k. Implementation involves defining
two functions: f(x), which is the identically zero function of arity one, and g(x).

Excitatory astrocyte, astexc, is depicted in the Fig. 1 with its formal
specification being:

astexc = ({(p′, q)}, {(p, q′)}, true, {0, k}, {f(x), g(x)}, 0, false)
and its working equation, assuming that α spikes pass through synapse (p, q′)

at a given instant t, being:

astexc(α, t) =

{
f(α) = 0 if 0 ≤ α < k
g(α) if α ≥ k

Fig. 1. Excitatory astrocyte.
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Inhibitory astrocyte, astinh, is structurally identical to astexc, with its formal
specification being:

astinh = ({(p′, q)}, {(p, q′)}, true, {0, k + 1}, {g(x), f(x)}, 0, false)

and its working equation, assuming that α spikes pass through synapse (p, q′)
at a given instant t, being:

astinh(α, t) =

{
g(α) if 0 ≤ α ≤ k
f(α) = 0 if α ≥ k + 1

3.2 Logic Gates

Second couple of examples shows how to implement logical gates, concretely
AND-gates and NAND-gates respectively. Implementation involves defining two
functions, f(x) and g(x), both of them unary constant functions, which asso-
ciates the 0 and 1 natural values respectively for every x ∈ N.

AND-gate astrocyte, astand, is depicted in the Fig. 2 with its formal
specification being:

astand = ({(p, q)}, {(A,A′), (B,B′)}, false, {1, 2}, {f(x), g(x)}, 0, false)

and its working equation, assuming that α, 0 ≤ α ≤ 2 spikes in total pass
through synapses (A,A′) and (B,B′) at a given instant t, being:

astand(α, t) =

{
f(0) = 0 if 0 ≤ α ≤ 1
g(0) = 1 if α = 2

Fig. 2. AND-gate astrocyte.
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NAND-gate astrocyte, astnand, is structurally identical to astand, with its
formal specification being:

astnand = ({(p, q)}, {(A,A′), (B,B′)}, false, {1, 2}, {g(x), f(x)}, 0, false)

and its working equation, assuming that α, 0 ≤ α ≤ 2 spikes in total pass
through synapses (A,A′) and (B,B′) at a given instant t, being:

astnand(α, t) =

{
g(0) = 1 if 0 ≤ α ≤ 1
f(0) = 0 if α = 2

3.3 Discrete Amplifier

Last example shows how to implement a discrete amplifier which, as soon as
the spike amount passing through control synapse (B,B′) goes beyond a given
threshold k, computes the amplification function f∗,n(x) = n ∗ x from the input
given at E, otherwise no amplification is performed. Rules al → al belonging
to neuron p are interpreted in the same way as in [2]. Implementation involves
defining two functions: g(x) = f∗,n(x) and f(x), which associates x for every
x ∈ N.

Discrete amplifier astrocyte, astamp, is depicted in the Fig. 3 with its formal
specification being:

astamp = ({(p, p′), (q′, q)}, {(B,B′)}, false, {0, k}, {f(x), g(x)}, 0, false)

and its working equation, assuming that at a given instant t α spikes pass
through synapse (B,B′) and β spikes pass through synapse (p, p′), being:

astamp(α, β, t) =

{
f(β) = β if 0 ≤ α < k
g(β) = n ∗ β if α ≥ k

4 A P–Lingua Based Simulator for SNPSFA

This section introduces a P–Lingua simulator for SNPSFA, extending the one
presented in [11]. SNPSFA are only partially simulated because only certain func-
tions can be defined within P–Lingua framework. Also, let us notice that an
extension of the simulator presented here intended to simulate SNPSA as intro-
duced in [14] is being developed.

P–Lingua syntax for specifying aforementioned SNPSFA is introduced, along
with several examples. To conclude, the simulation algorithm is shown.
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Fig. 3. Discrete amplifier astrocyte.

4.1 P–Lingua Syntax

A set of new features has been incorporated into P–Lingua in order to support
SNPSFA. New instructions have been included to define both astrocytes and
functions, extending the P–Lingua model specification framework for Spiking
Neural P Systems. Thus, these instructions can be used only when the source
P–Lingua files defining the models begin with the following sentence:

@model<spiking_psystems>

In what follows, P–Lingua syntax for defining SNPSFA is introduced.

– Astrocytes.

The following sentence can be used to define a SNPSFA astrocyte astbj , with
b standing for binder, as the astrocytes presented in [2] inspired the func-
tional astrocytes presented in this paper:

@mastb =

(

label-j,

operand-synapses-j,control-synapses-j,control-operand-flag-j,

set-thresholds-j,set-functions-j,

potential-j,update-potential-j

);

where:

• label-j is the label of the astrocyte;
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• operand-synapses-j is the set of operand synapses associated to the
astrocyte, with operand-synapses-j = {soj,1, . . . , soj,rj} and soj,v =

(σo,1j,v , σ
o,2
j,v ), a pair of neuron labels defining the synapse;

• control-synapses-j is the set of control synapses associated to the astro-
cyte, with control-synapses-j = {scj,1, . . . , scj,qj} and scj,u = (σc,1j,u, σ

c,2
j,u),

a pair of neuron labels defining the synapse;

• control-operand-flag-j is the astrocyte control-as-operand flag, with
control-operand-flag-j ∈ {true, false};

• set-thresholds-j is the astrocyte natural set of thresholds, defined as
set-thresholds-j = {Tj,1, . . . , Tj,kj} with Tj,1 < . . . < Tj,kj ;

• set-functions-j is the astrocyte set of natural computable functions, de-
fined as set-functions-j = {fj,1, . . . , fj,kj}, all of them having the same
arity;

• potential-j is the astrocyte initial potential, with potential-j ∈ N;

• update-potential-j is the astrocyte potential update flag, verifying that
update-potential-j ∈ {true, false};

– Functions.

The following sentence can be used to define a function of name f-name:

@mastfunc =

(

f-name(x1,...,xN),

f-name(x1,...,xN) = "expr(x1,...,xN)"

);

where:

• f -name is the function name, a P–Lingua identifier;

• x1, . . . , xN is the list of arguments; notation for naming arguments must
follow the convention of starting with x and immediately being followed
by a integer literal, starting with 1 and being incremented in one unit
each time;

• exp(x1, ..., xN) is the function defining expression; this expression must
yield a natural number; because of the underlying coding library, exp4j
[6], definition of functions is restricted to use elements shown at
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http://projects.congrace.de/exp4j/;

Let us notice that, as we are restricted when defining functions, SNPSFA
are only partially simulated. The following functions are pre-defined, thus
can be used directly, without having to be explicitly defined in the P–Lingua
source file:

• zero(x1) is the identically zero function of arity one;

• identity(x1) is the identity function of arity one;

• pol() is a function template allowing the definition of a polynomial as-
trocyte function pol(x0, x1, . . . , xn, x) of any arity n + 2, n ≥ 0, defined
as follows:

pol(x0, x1, . . . , xn, x) = x0 +
n∑

i=1

xi ∗ xi

with xi ∈ N, 0 ≤ i ≤ n, x ∈ N;

x0, . . . , xn, x arguments take value from the spikes passing through the
operand synapses associated to a given astrocyte astj at a instant t in
the following way:





x0 ← soj,1(t)

x1 ← soj,2(t)

. . .

xn ← soj,rj−2
(t)

x← soj,rj−1
(t)

• sub() is a function template allowing the definition of a natural
substraction function sub(x1, . . . , xn) of any arity n greater or equal
than one, defined as follows:

sub(x1, . . . , xn) =

{
x1 − x2 − · · · − xn when x1 − x2 − · · · − xn ≥ 0
0 otherwise

with xi ∈ N, 1 ≤ i ≤ n;

Spiking neural P systems with functional astrocytes

269



x1, . . . , xn arguments take value from the spikes passing through the
operand synapses of a given astrocyte astj at an instant t in the following
way:





x1 ← soj,1(t)

. . .

xn ← soj,rj−1
(t)

Let us notice that if n = 1 and the astrocyte control-as-operand-flag
is set, then it is trivial to show that sub(x1, . . . , xn) = potential(j, t) +
spikes(j, t).

4.2 Examples

In what follows, a set of on line examples are listed. Each of them corresponds to
a P–Lingua file that shows one of the SNPSFA applications presented in Section
3.

– Excitatory astrocyte:
http://www.p-lingua.org/examples/SNPSFA excitatory.pli.

– Inhibitory astrocyte:
http://www.p-lingua.org/examples/SNPSFA inbitory.pli.

– AND-gate:
http://www.p-lingua.org/examples/SNPSFA AND gate.pli.

For this example, forgetting rules have been used assuming a natural ex-
tension of the proposed model. This allows generating “random” boolean
signals coming from neurons A and B.

– Discrete amplifier:
http://www.p-lingua.org/examples/SNPSFA amplifier.pli.

4.3 Simulation Algorithm

In [8], a Java library called pLinguaCore was presented under GPL license. The
library provides parsers to handle input files, built–in simulators to generate P
System computations and is able to export several output file formats that rep-
resent P Systems. pLinguaCore is not a closed product because developers with
knowledge of Java can add new components to the library, thus extending it.
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In this paper, an upgrade of the library is presented. Support for SNPSFA has
been included, as an extension of the works presented in [11]. As a result of this,
pLinguaCore is now able to handle input P–Lingua files defining SNPSFA. In
addition, a new built–in simulator capable of simulating computations of these
systems has been included into the library. For downloading the latest version of
pLinguaCore, please refer to http://www.p-lingua.org. Also, a simulator for
astrocytes as introduced in [14] is in development.

The following pseudo-code shows a computation step from instant t to
t + 1 for a SNPSFA, illustrating the way in which the simulator operates. The
pseudo-code is structured in two algorithms, following the semantics of SNPSFA
introduced in Section 2. The first one deals with the input neurons of the systems,
while the second one deals with astrocytes and output neurons. Notation follows
from Section 2, while additional required notation can be found at the end of
this Section.

Algorithm 1 Neurons loop

1: let σ = {σ1, . . . , σm} be the set of all the neurons in the system
2: for i = 1 to m do
3: σi(t+ 1)← σi(t)− li(t)
4: end for
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Algorithm 2 Astrocytes loop

1: let ast = {ast1, . . . , astl} be the set of all the astrocytes in the system
2: for j = 1 to l do

3: spikes(j, t)←
qj∑

u=1

scj,u(t)

4: selector(j, t)← spikes(j, t) + pj(t)

5: h←





1 if selector(j, t) < Tj,1

kj if selector(j, t) > Tj,kj

e if e = max {x | 1 ≤ x ≤ kj ∧ Tj,x ≤ selector(j, t)}
6: f∗

j ← fj,h
7: if ωj = true then
8: output(j, t)← f∗

j (selector(j, t))
9: end if

10: if ωj = false and rj = 1 then
11: output(j, t)← f∗

j (0)
12: end if
13: if ωj = false and rj > 1 then
14: output(j, t)← f∗

j (soj,1(t), . . . , soj,rj−1(t))
15: end if
16: for u = 1 to qj do
17: σc,2

j,u(t+ 1)← σc,2
j,u(t) + scj,u(t)

18: end for
19: for v = 1 to rj − 1 do
20: σo,2

j,v (t+ 1)← σo,2
j,v (t)

21: end for
22: σo,2

j,rj
(t+ 1)← σo,2

j,rj
(t) + output(j, t)

23: if γj = true then
24: pj(t+ 1)← spikes(j, t)
25: end if
26: end for

Required Additional Notation Following notation from Section 2, we intro-
duce the following required additional notation.

– Given an astrocyte astj , (1 ≤ j ≤ l), we denote the synapses attached to

astj as sλj,w = (σλ,1j,w, σ
λ,2
j,w), λ ∈ {o, c}, w ∈ {u, v}, and:

• we denote the operand synapses of astj as

soj,v = (σo,1j,v , σ
o,2
j,v ), 1 ≤ v ≤ rj , (rj ≥ 1);

• we denote the control synapses of astj as

scj,u = (σc,1j,u, σ
c,2
j,u), 1 ≤ u ≤ qj , (qj ≥ 0).
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– Given an astrocyte astj , (1 ≤ j ≤ l) attached to a synapse sλj,w = (σλ,1j,w, σ
λ,2
j,w)

as defined above, we denote sλj,w(t) as the number of spikes fired by σλ,1j,w at
an instant t of a computation.

– Given a neuron σi, 1 ≤ i ≤ m, we denote

• σi(t) = number of spikes contained in σi at instant t by a computation

• li(t) = number of spikes corresponding to the left hand side of the se-
lected rule in neuron σi at instant t by a computation

• ri(t) = number of spikes corresponding to the right hand side of the
selected rule in neuron σi at instant t by a computation

5 Conclusions and Future Work

In this paper we present a new variant of Spiking Neural P Systems, wich in-
cludes astrocytes capable of calculating computable functions in a simple com-
putation step. Applications of this variant are vast, as exemplified in the study
cases shown, but yet to explore. In this sense, a new release of P–Lingua, that
extends the previous SN P System simulator has been developed, incorporating
the ability to work with astrocytes. This new simulator has been included into
the library pLinguaCore and tested by simulating examples taken from the lit-
erature, concretely the ones existing in [14] and [2] (these ones adapted to the
introduced SNPSFA variant).

At the moment, an extension of the implemented simulator supporting Spik-
ing Neural P System with “hybrid” Astrocytes as defined in [14] is in develop-
ment. Once this work is done, a desirable feature would be to provide a mecha-
nism for defining arbitrary computable functions, thus fully simulating SNPSFA.
Additional elements such as weights and antispikes might also be incorporated.
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Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5391, pp. 187–203. Springer
(2008)

8. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: An overview of p-lingua 2.0. In: Păun, G., Pérez-Jiménez,
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13. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P Systems with neuron
division and budding. Science China Information Sciences 54(8), 1596–1607 (2011)

14. Pan, L., Wang, J., Hoogeboom, H.J.: Asynchronous extended spiking neural P
Systems with astrocytes. In: Proceedings of the 12th international conference on
Membrane Computing. pp. 243–256. CMC’11, Springer-Verlag, Berlin, Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-28024-5 17
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Abstract. The classical de�nition of tissue P systems includes a dis-
tinguished alphabet with the special assumption that its elements are
available in an arbitrarily large amount of copies. These objects are
shared in a distinguished place of the system, called the environment.
This ability of having in�nitely many copies of some objects has been
widely exploited in the design of e�cient solutions to computationally
hard problems by means of tissue P systems.
This paper deals with computational aspects of tissue P systems with
cell separation where there is no such environment as described above.
The main result is that only tractable problems can be e�ciently solved
by using this kind of P systems. Bearing in mind that NP�complete
problems can be e�ciently solved by using tissue P systems without
environment and with cell division, we deduce that in the framework
of tissue P systems without environment, the kind of rules (separation
versus division) provides a new frontier of the tractability of decision
problems.

Keywords: Membrane Computing, Tissue P System, Cell Separation,
Environment of a Tissue, Computational Complexity, Borderline of
Tractability

1 Introduction

Membrane Computing is a young branch of Natural Computing initiated by
Gh. P un in the end of 1998 [15]. The computational devices of this paradigm,
called P systems, operate in a distributed, parallel and non-deterministic manner,
getting inspiration from living cells (their structure and functioning), as well as
from the way cells are organized in tissues, organs, etc.

Several di�erent models of cell-like P systems have been successfully used
to solve computationally hard problems e�ciently, by trading space for time,
usually following a brute force approach: an exponential workspace is created
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in polynomial time by using some kind of rules, and then massive parallelism
is used to simultaneously check all the candidate solutions. Inspired by living
cells, several ways for obtaining exponential workspace in polynomial time were
proposed: membrane division (mitosis) [16], membrane creation (autopoiesis) [7],
and membrane separation (membrane �ssion) [12]. These three ways have given
rise to the following models: P systems with active membranes, P systems with
membrane creation, and P systems with membrane separation.

A new type of P systems, the so-called tissue P systems, was considered
in [10]. Instead of considering a hierarchical arrangement, membranes/cells are
placed in the nodes of a virtual graph. This variant has two biological justi�ca-
tions (see [11]): intercellular communication and cooperation between neurons.
The common mathematical model of these two mechanisms is a net of processors
dealing with symbols and communicating these symbols along channels speci-
�ed in advance. The communication among cells is based on symport/antiport
rules, which were introduced to P systems in [18]. These models have a special
alphabet associated with the environment of the system and it is assumed that
the symbols of that alphabet appear in an arbitrary large amount of copies at
the initial con�guration of the system.

From the seminal de�nitions of tissue P systems [10, 11], several research lines
have been developed and other variants have arisen (see, for example, [1, 2, 4, 8,
9, 14]). One of the most interesting variants of tissue P systems was presented
in [19], where the de�nition of tissue P systems is combined with the one of P
systems with active membranes, yielding tissue P systems with cell division.

In the biological phenomenon of �ssion, the contents of the two new cells
evolved from a cell can be signi�cantly di�erent, and membrane separation in-
spired by this biological phenomenon in the framework of cell-like P systems
was proved to be an e�cient way to obtain exponential workspace in polynomial
time [12]. In [13], a new class of tissue P systems based on cell �ssion, called tis-
sue P systems with cell separation, was presented. Its computational e�ciency
was investigated, and two important results were obtained: (a) only tractable
problems can be e�ciently solved by using cell separation and communication
rules with length at most 1, and (b) an e�cient (uniform) solution to the SAT

problem by using cell separation and communication rules with length at most
8 was presented.

In this paper we study the e�ciency of tissue P systems with communication
rules and cell separation where the alphabet associated with the environment
is empty. These systems are called tissue P systems without environment and,
speci�cally, we prove that only tractable problems can be solved in polynomial
time by families of tissue P systems with communication rules, with cell separa-
tion and without environment.

The paper is organized as follows: �rst, we recall some preliminaries, and
then, the de�nition of tissue P systems with cell separation, recognizer tissue
P systems and computational complexity classes in this framework, are brie�y
described. Section 4 is devoted to the main result of the paper: the polynomial
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complexity class associated with T̂SC is the class P. Finally, conclusions and
further works are presented.

2 Preliminaries

An alphabet, Σ, is a non�empty set whose elements are called symbols. A �nite
sequence of symbols is a string over Σ. If u and v are strings over Σ, then so
is their concatenation uv, obtained by juxtaposition, that is, writing u and v
one after the other. The number of symbols in a string u is the length of the
string, and it is denoted by |u|. As usual, the empty string (with length 0) will
be denoted by λ. The set of all strings over an alphabet Σ is denoted by Σ∗. In
algebraic terms, Σ∗ is the free monoid generated by Σ under the operation of
concatenation. Subsets of Σ∗, �nite or in�nite, are referred to as languages over
Σ.

The Parikh vector associated with a string u ∈ Σ∗ with respect to the
alphabet Σ = {a1, . . . , ar} is ΨΣ(u) = (|u|a1 , . . . , |u|ar ), where |u|ai denotes
the number of ocurrences of the symbol ai in the string u. This is called the
Parikh mapping associated with Σ. Notice that in this de�nition the ordering
of the symbols from Σ is relevant. If Σ1 = {ai1 , . . . , ais} ⊆ Σ then we de�ne
ΨΣ1

(u) = (|u|ai1 , . . . , |u|ais ), for each u ∈ Σ∗.
A multiset m over a set A is a pair (A, f) where f : A→ IN is a mapping. If

m = (A, f) is a multiset then its support is de�ned as supp(m) = {x ∈ A | f(x) >
0}. A multiset is empty (resp. �nite) if its support is the empty set (resp. a �nite
set). If m = (A, f) is a �nite multiset over A, and supp(m) = {a1, . . . , ak} then
it will be denoted as m = {af(a1)1 , . . . , a

f(ak)
k }. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for x ∈ A, then the element x

is omitted. A �nite multiset m = {af(a1)1 , . . . , a
f(ak)
k } can also be represented

by the string a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all

permutations of this string identify the same multiset m precisely. Throughout
this paper, whenever we refer to �the �nite multiset m� where m is a string, this
should be understood as �the �nite multiset represented by the string m�.

Ifm1 = (A, f1),m2 = (A, f2) are multisets over A, then we de�ne the union of
m1 and m2 as m1 +m2 = (A, g), where g = f1 +f2, that is, g(a) = f1(a)+f2(a),
for each a ∈ A. We also de�ne the di�erence m1 \ m2 as the multiset (A, h),
where h(a) = f1(a)− f2(a), in the case f1(a) ≥ f2(a), and h(a) = 0, otherwise.
In particular, given two sets A and B, A \B is the set {x ∈ A | x /∈ B}.

In what follows, we assume the reader is already familiar with the basic
notions and the terminology of P systems. For details, see [17].

2.1 Tissue P Systems with Communication Rules and with Cell

Separation

A tissue P system with communication rules and with cell separation of degree
q (q ≥ 1) is a tuple Π = (Γ, E , Γ0, Γ1,M1, . . . ,Mq,R, iout), where:
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1. Γ is a �nite alphabet.
2. E ⊆ Γ .
3. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 6= ∅, Γ0 ∩ Γ1 = ∅;
4. M1, . . . ,Mq are strings over Γ .
5. R is a �nite set of rules of the following forms:

Communication rules: (i, u/v, j), for i, j ∈ {0, . . . , q}, i 6= j, u, v ∈ Γ ∗,
|u|+ |v| > 0;

Separation rules: [a]i → [Γ0]i[Γ1]i, where i ∈ {1, . . . , q}, a ∈ Γ and i 6= iout.
6. iout ∈ {0, . . . , q}.

A tissue P system with communication rules and with cell separation Π =
(Γ, E , Γ0, Γ1,M1, . . . ,Mq,R, iout), of degree q can be viewed as a set of q cells,
labelled by 1, . . . , q such that: (a)M1, . . . ,Mq represent the �nite multisets of
objects initially placed in the q cells of the system; (b) E is the set of objects
initially located in the environment of the system, all of them available in an
arbitrary number of copies; and (c) iout represents a distinguished region which
will encode the output of the system. We use the term region i (0 ≤ i ≤ q) to
refer to cell i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ.
A symport rule (i, u/λ, j), with i 6= 0, j 6= 0, provides a virtual arc from cell i
to cell j. A communication rule (i, u/v, j) is called an antiport rule if u 6= λ and
v 6= λ. An antiport rule (i, u/v, j), with i 6= 0, j 6= 0, provides two arcs: one from
cell i to cell j and the other from cell j to cell i. Thus, every tissue P system has
an underlying directed graph whose nodes are the cells of the system and the
arcs are obtained from communication rules. In this context, the environment
can be considered as a virtual node of the graph such that its connections are
de�ned by communication rules of the form (i, u/v, j), with i = 0 or j = 0.

When applying a rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v
are sent from region j to region i. The length of communication rule (i, u/v, j)
is de�ned as |u|+ |v|.

When applying a separation rule [a]i → [Γ0]i[Γ1]i, in reaction with an object
a, the cell i is separated into two cells with the same label; at the same time,
object a is consumed; the objects from Γ0 are placed in the �rst cell, those from
Γ1 are placed in the second cell; the output cell iout cannot be separated.

The rules of a system like the above one are used in a non-deterministic
maximally parallel manner as customary in membrane computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
we apply a multiset of rules which is maximal, no further applicable rule can
be added). This way of applying rules has only one restriction: when a cell is
separated, the separation rule is the only one which is applied for that cell at that
step; thus, the objects inside that cell do not evolve by means of communication
rules. The new cells resulting from separation could participate in the interaction
with other cells or the environment by means of communication rules at the
next step � providing that they are not separated once again. The label of a cell
precisely identi�es the rules which can be applied to it.
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An instantaneous description or a con�guration at any instant of a tissue
P system with cell separation is described by all multisets of objects over Γ
associated with all the cells present in the system, and the multiset of objects
over Γ − E associated with the environment at that moment. Recall that there
are in�nitely many copies of objects from E in the environment, and hence this
set is not properly changed along the computation. The initial con�guration
is (M1, · · · ,Mq; ∅). A con�guration is a halting con�guration if no rule of the
system is applicable to it.

Let us �x a tissue P system with cell separation Π. We say that con�guration
C1 yields con�guration C2 in one transition step, denoted by C1 ⇒Π C2, if we can
pass from C1 to C2 by applying the rules from R following the previous remarks.
A computation of Π is a (�nite or in�nite) sequence of con�gurations such that:

1. the �rst term of the sequence is the initial con�guration of the system;
2. each non-initial con�guration of the sequence is obtained from the previous

con�guration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is �nite (called halting computation) then the last term of the
sequence is a halting con�guration.

All computations start from an initial con�guration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output cell iout in the halting con�guration.

If C = {Ct}t<r+1 of Π (r ∈ IN) is a halting computation, then the length of C
is r, that is, the number of non-initial con�gurations which appear in the �nite
sequence C. We denote it by |C|. We also denote by Ct(i) the contents of region
i (0 ≤ i ≤ q) at the con�guration Ct.

2.2 Recognizer Tissue P Systems

In order to study the computing e�ciency, the notions from classical compu-
tational complexity theory are adapted for membrane computing, and a special
class of cell-like P systems is introduced in [22]: recognizer P systems (called ac-
cepting P systems in a previous paper [21]). For tissue P systems, with the same
idea as recognizer cell-like P systems, recognizer tissue P systems is introduced
in [19].

A recognizer tissue P system with communication rules and with cell separa-
tion of degree q (q ≥ 1) is a tuple Π = (Γ, E , Σ, Γ0, Γ1,M1, . . . ,Mq,R, iin, iout),
where:

� (Γ, E , Γ0, Γ1,M1, . . . ,Mq,R, iout) is a tissue P system with communication
rules and with cell separation of degree q, as de�ned in the previous subsec-
tion.

� The working alphabet Γ has two distinguished objects yes and no, at least
one copy of them present in some initial multisetsM1, . . . ,Mq.

� Σ is an (input) alphabet strictly contained in Γ such that Σ ∩ E = ∅.
� M1, . . . ,Mq are strings over Γ \Σ.
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� iin ∈ {1, . . . , q} is the input cell.
� iout = 0 is the output region, that is, the output of the system is encoded in

the environment.
� All computations halt.
� If C is a computation of Π, then either object yes or object no (but not

both) must have been released into the output region, and only at the last
step of the computation.

For each w ∈ Σ∗, the computation of the system Π with input w ∈ Σ∗ starts
from the con�guration of the form (M1, . . . ,Miin + w, . . . ,Mq; ∅), that is, the
input multiset w has been added to the contents of the input cell iin, and we
denote it by Π + w. Therefore, we have an initial con�guration associated with
each input multiset w (over the input alphabet Σ) in this kind of systems.

Given such a recognizer tissue P system and a halting computation C =
{Ct}t<r+1 of Π (r ∈ IN), we de�ne the result of C as follows:

Output(C) =





yes, if Ψ{yes,no}(Mr,0) = (1, 0) ∧
Ψ{yes,no}(Mt,0) = (0, 0) for t = 0, . . . , r − 1

no, if Ψ{yes,no}(Mr,0) = (0, 1) ∧
Ψ{yes,no}(Mt,0) = (0, 0) for t = 0, . . . , r − 1

where Ψ is the Parikh mapping, and Mt,0 is the multiset over Γ \ E associated
with region 0 at the con�guration Ct, in particular, Mr,0 is the multiset over
Γ \ E associated with region 0 at the halting con�guration Cr.

We say that a computation C is an accepting computation (respectively, re-
jecting computation) if Output(C) = yes (respectively, Output(C) = no), that
is, if object yes (respectively, object no) appears in the output region of the
corresponding halting con�guration of C, and neither object yes nor no appears
in the output region of any non�halting con�guration of C.

We denote by TSC the class of recognizer tissue P systems with cell commu-
nication and with cell separation. For each natural number k ≥ 1, we denote by
TSC(k) the class of recognizer tissue P systems with cell separation and with
communication rules of length at most k.

3 Tissue P Systems with Communication Rules, with

Cell Separation and without Environment

De�nition 1. A tissue P system with communication rules, with cell separation
and without environment of degree q + 1 is a tuple

Π = (Γ, Γ0, Γ1,M0,M1, . . . ,Mq,R, iout),

where:

1. Γ is a �nite alphabet.
2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 6= ∅, Γ0 ∩ Γ1 = ∅;
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3. M0,M1, . . . ,Mq are strings over Γ .

4. R is a �nite set of rules of the following forms:

Communication rules: (i, u/v, j), for i, j ∈ {0, . . . , q}, i 6= j, u, v ∈ Γ ∗,
|u|+ |v| > 0;

Separation rules: [a]i → [Γ0]i[Γ1]i, where i ∈ {0, . . . , q}, a ∈ Γ and i 6= iout.

5. iout ∈ {0, . . . , q}.

A tissue P system with communication rules, with cell separation and with-
out environment is a tissue P system with communication rules and with cell
separation such that the alphabet E of the environment is empty.

De�nition 2. A recognizer tissue P system with communication rules, with cell
separation and without environment of degree q + 1 is a tuple

Π = (Γ,Σ, Γ0, Γ1,M0,M1, . . . ,Mq,R, iin, iout)

where:

� (Γ, Γ0, Γ1,M0,M1, . . . ,Mq,R, iout) is a tissue P system with communica-
tion rules, with cell separation and without environment of degree q + 1, as
de�ned previously.

� The working alphabet Γ has two distinguished objects yes and no, at least
one copy of them present in some initial multisetsM0,M1, . . . ,Mq.

� Σ is an (input) alphabet strictly contained in Γ .

� M0,M1, . . . ,Mq are strings over Γ \Σ.

� iin ∈ {1, . . . , q} is the input cell.

� iout = 0 is the output cell.

� All computations halt.

� If C is a computation of Π, then either object yes or object no (but not
both) must have been released into cell 0, and only at the last step of the
computation.

For each w ∈ Σ∗, the computation of the system Π with input w ∈ Σ∗ starts
from the con�guration of the form (M0,M1, . . . ,Miin +w, . . . ,Mq; ∅), that is,
the input multiset w has been added to the contents of the input cell iin, and
we denote it by Π + w. Therefore, we have an initial con�guration associated
with each input multiset w (over the input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell separation, and a halting com-
putation C of Π, the result of C is de�ned as in the previous section.

We denote by T̂SC the class of recognizer tissue P systems with cell com-
munication, cell separation and without environment. For each natural number

k ≥ 1, we denote by T̂SC(k) the class of recognizer tissue P systems with cell
separation, without environment, and with communication rules of length at
most k.
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3.1 Polynomial Complexity Classes

Next, we de�ne what solving a decision problem in a uniform and e�cient way
means in the framework of tissue P systems. Since we de�ne each tissue P system
to work on a �nite number of inputs, to solve a decision problem we de�ne a
numerable family of tissue P systems.

De�nition 3. We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of recognizer
tissue P systems with communication rules, with cell separation and without
environment if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ IN.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
− for each instance u ∈ IX , s(u) is a natural number, and cod(u) is an

input multiset of the system Π(s(u));
− for each n ∈ IN, s−1(n) is a �nite set;
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and it performs at
most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

>From the soundness and completeness conditions above, we deduce that
every P system Π(n) is con�uent, in the following sense: every computation of
a system with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the set
of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial�time reductions [21].

4 E�ciency of Tissue P Systems with Cell

Communication, with Cell Separation and without

Environment

4.1 Representation of Tissue P Systems from T̂SC

Let Π = (Γ,Σ, Γ0, Γ1,M0,M1, . . . ,Mq,R, iin, iout) be a recognizer tissue P
system of degree q+1 with communication rules, with cell separation and without
environment.
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1. We denote by RC (RS respectively) the set of communication rules (separa-
tion rules respectively) of Π. We will �x total orders in RC and RS .

2. Let C be a computation of Π, and Ct a con�guration of C. The application
of a communication rule keeps the multiset of objects of the whole system
unchanged because only movement of objects between the cells of the system
is produced. On the other hand, the application of a separation rule causes
that an object is removed from the system, and since there is no objects
replication, the rest remain unchanged. Thus, the multiset of objects of the
system in any con�guration Ct is contained inM0 + · · ·+Mq. Moreover, if
M = |M0 + · · ·+Mq| then the total number of copies of cell i ∈ {0, . . . , q}
at con�guration C is, at most, M because the copies can only be produced
by the application of a separation rule, and each application of this kind of
rule consumes one object. Consequently, (q + 1) ·M is an upper bound of
the number of cells at any con�guration of the system.

3. In order to identify the cells created by the application of a separation rule,
we modify the labels of the new membranes in the following manner:

� The label of a cell will be a pair (i, σ) where 0 ≤ i ≤ q and σ ∈ {0, 1}∗.
At the initial con�guration, the labels of the cells are (0, λ), . . . , (q, λ).

� If a separation rule is applied to a cell labelled by (i, σ), then the new cre-
ated cells will be labelled by (i, σ0) and (i, σ1), respectively. Cell (i, σ0)
will contain the objects of cell (i, σ) which belong to Γ0, and cell (i, σ1)
will contain the objects of cell (i, σ) which belong to Γ1.

� Note that we can consider a lexicographical order over the set of labels
(i, σ) in a natural way.

4. If cells labelled by (i, σi) and (j, σj) are engaged by a communication rule,
then, after the application of the rule, both cells keep their labels.

5. A con�guration of Π can be described by a multiset of labelled objects from
{(a, i, σ)| a ∈ Γ ∪ {λ}, 0 ≤ i ≤ q, σ ∈ {0, 1}∗}.

6. Let r ≡ (i, a1 · · · as/b1 · · · bs′ , j) be a communication rule of Π. If n is a
natural number, then denote by n · LHS(r, (i, σi), (j, σj)) the multiset of
labelled objects �consumed� by applying n times rule r over cells (i, σi) and
(j, σj). That is, n · LHS(r, (i, σi), (j, σj)) is the following multiset

(a1, i, σi)
n · · · (as, i, σi)n(b1, j, σj)

n · · · (bs′ , j, σj)n

Similarly, n · RHS(r, (i, σi), (j, σj)) denotes the multiset of labelled objects
produced by applying n times rule r over cells (i, σi) and (j, σj). That is,
n ·RHS(r, (i, σi), (j, σj)) is the following multiset

(a1, j, σj)
n · · · (as, j, σj)n(b1, i, σi)

n · · · (bs′ , i, σi)n

7. If Ct is a con�guration of Π we denote by Ct + {(x, i, σ)/σ′} the multiset
obtained by replacing in Ct every occurrence of (x, i, σ) by (x, i, σ′). Besides,
Ct +m ( Ct \m, respectively) is used to denote that a multiset m of labelled
objects is added (removed, respectively) to the con�guration.
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4.2 E�ciency of Tissue P Systems from T̂SC

The goal of this section is to show that only tractable problems can be solved
e�ciently by using tissue P systems with communication rules, separation rules
and without environment. That is, we will prove that P = PMC

T̂SC
.

For this purpose, given a family of recognizer tissue P system, we provide
a deterministic algorithm A working in polynomial time that receives as input

a recognizer tissue P system from T̂SC together with an input multiset, and
reproduces the behaviour of a computation of such system. In particular, if the
given tissue P system is con�uent, then algorithm will provide the same answer
of the system, that is, the answer of the algorithm is a�rmative if and only if
the input tissue P system has an accepting computation.

The pseudocode of the algorithm A is described as follows:

Input: A recognizer tissue P system Π from T̂SC and an input multiset m
Initialization stage : the initial configuration C0 of Π +m
t← 0
while Ct is a non halting configuration do

Selection stage : Input Ct, Output (C′t, A)
Execution stage : Input (C′t, A), Output Ct+1

t← t+ 1
end while

Output: Yes if Ct is an accepting configuration, No otherwise

The selection stage and the execution stage implement a transition step of a
recognizer tissue P system Π. Speci�cally, the selection stage receives as input a
con�guration Ct of Π at an instant t. The output of this stage is a pair (C′t, A),
where A encodes a multiset of rules selected to be applied to Ct, and C′t is the
con�guration obtained from Ct once the labelled objects corresponding to the
application of rules from A have been consumed. The execution stage receives
as input the output (C′t, A) of the selection stage. The output of this stage is the
next con�guration Ct+1 of Ct. Speci�cally, at this stage, the con�guration Ct+1

is obtained from C′t by adding the labelled objects produced by the application
of rules from A.

Next, selection stage and execution stage are described in detail.

Selection stage.

Input: A configuration Ct of Π at instant t
C′t ← Ct; A← ∅; B ← ∅
for r ≡ (i, u/v, j) ∈ RC according to the order chosen do

for each pair of cells (i, σi), (j, σj) of C′t according to the

lexicographical order do

nr ← maximum number of times that r is applicable to (i, σi), (j, σj)
if nr > 0 then

C′t ← C′t \ nr · LHS(r, (i, σi), (j, σj))
A← A ∪ {(r, nr, (i, σi), (j, σj))}
B ← B ∪ {(i, σi), (j, σj)}

L.F. Maćıas-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font,
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end if

end for

end for

for r ≡ [a]i → [Γ0]i[Γ1]i ∈ RS according to the order chosen do

for each (a, i, σi) ∈ C′t, according to the lexicographical order, and

such that (i, σi) /∈ B do

C′t ← C′t \ {(a, i, σi)}
A← A ∪ {(r, 1, (i, σi))}
B ← B ∪ {(i, σi)}

end for

end for

This algorithm is deterministic and works in polynomial time. Indeed, the
cost in time of the previous algorithm is polynomial in the size of Π because the
number of cycles of the �rst main loop for is of order

O(|R| · (2M+q)(2M+q−1)
2 ), and the number of cycles of the second main loop for

is of order O(|R| · |Γ | · (2M + q)). Besides, the last loop includes a membership
test of order O(2M + q).

In order to complete the simulation of a computation step of the system Π,
the execution stage takes care of the e�ects of applying the rules selected in the
previous stage: updating the objects according to the RHS of the rules.

Execution stage.

Input: The output C′t and A of the selection stage

for each (r, nr, (i, σi), (j, σj)) ∈ A do

C′t ← C′t + nr ·RHS(r, (i, σi), (j, σj))

end for

for each (r, 1, (i, σi)) ∈ A do

C′t ← C′t + {(λ, i, σi)/σi0}
C′t ← C′t + {(λ, i, σi1)}
for each (x, i, σi) ∈ C′t according to the lexicographical order do

if x ∈ Γ0 then

C′t ← C′t + {(x, i, σi)/σi0}
else

C′t ← C′t + {(x, i, σi)/σi1}
end if

end for

end for

Ct+1 ← C′t

This algorithm is deterministic and works in polynomial time. Indeed, the
cost in time of the previous algorithm is polynomial in the size of Π because the
number of cycles of the �rst main loop for is of order O(|R|), and the number
of cycles of the second main loop for is of order O(|R| · |Γ | · (2M + q)). Besides,
inside the body of the last loop there is a membership test of order O(|Γ |).
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Throughout this algorithm we have deterministically simulated a computa-
tion of Π in such manner that the answer of the algorithm is a�rmative if and
only if the simulated computation is accepting.

Theorem 1. P = PMC
T̂SC

.

Proof. It su�ces to prove that PMC
T̂SC

⊆ P. Let k ∈ IN such that X ∈
PMC

T̂SC(k)
and let {Π(n) : n ∈ IN} be a family of tissue P systems from

T̂SC(k) solving X according to De�nition 3. Let (cod, s) be a polinomial en-
coding associated with that solution. If u ∈ IX is an instance of the problem X,
then u will be processed by the system Π(s(u)) + cod(u).

Let us consider the following algorithm A′:
Input: an instance u of the problem X.

Construct the system Π(s(u)) + cod(u).

Run algorithm A with input Π(s(u)) + cod(u).

Output: Yes if Π(s(u))+cod(u) has an accepting computation, No otherwise

The algorithm A′ receives as input an instance u of the decision problem X =
(IX , θX) and works in polynomial time. The following assertions are equivalent:

1. θX(u) = 1, that is, the answer of problem X to instance u is a�rmative.

2. Every computation of Π(s(u)) + cod(u) is an accepting computation.

3. The output of the algorithm with input u is Yes.

Hence, X ∈ P.

ut

Remark 1. From the previous theorem we deduce that P = PMC
T̂SC(3)

. In

[23], a polynomial time solution of the SAT problem was given by a family of
tissue P systems from TSC(3) according to De�nition 3. Thus, NP ∪ co-NP

⊆ PMCTSC(3). Hence, in the framework of tissue P systems with cell separation
and communication rules of length at most 3, the environment provides a new
borderline between e�ciency and non-e�ciency, assuming P 6= NP.

Remark 2. From the previous theorem we deduce that P = PMC
T̂SC(2)

. In

[24], it was shown that PMCTDC(k+1) = PMC
T̂DC(k+1)

, for each k ∈ IN. In

[25], a polynomial time solution of the HAM-CYCLE problem was given by a family
of tissue P systems from TDC(2) according to De�nition 3. Thus, NP ∪ co-NP
⊆ PMCTDC(2) = PMC

T̂DC(2)
. Hence, in the framework of tissue P systems

with communicaction rules of length at most 2 and without environment, the
kind of rules (separation versus division) provides a new borderline between the
e�ciency and non-e�ciency, assuming P 6= NP.
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5 Conclusions and Further Works

The e�ciency of cell-like P systems for solving NP-complete problems has been
widely studied. The usual approach is to perform a space-time tradeo� that al-
lows �e�cient� (in terms of the number of steps of the computations) solutions
to NP-complete problems in the framework of Membrane Computing. For in-
stance, membrane division, membrane creation, and membrane separation are
three e�cient ways of obtaining exponential workspace in polynomial time that
have been used in the literature. Such tools have been adapted to tissue�like P
systems, and linear-time solutions to the SAT problem have been designed both
in the model with cell division rules [19], as well as in the case of cell separation
[13].

In this paper, the computational e�ciency of tissue P systems with cell sepa-
ration and without environment has been studied. We highlight the relevant role
played by the environment in this framework from the point of view of e�ciency.

Finally, two new borderlines between e�ciency and non-e�ciency are pre-
sented, assuming P 6= NP. The �rst of them is related with the environment
and the second one is related to the kind of rules (separation versus division).
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Abstract. Population Dynamics P systems (PDP systems, in short)
refer to a formal framework for ecological modelling. The semantics
of the model associates probabilities with rules, but inasmuch as
the model is based on P systems, the rules are also applied in a
maximally parallel way. Following the success of the first model using
this framework, initially called multienvironment probabilistic P systems,
several simulation algorithms have been developed in order to better
reproduce the behaviour of the ecosystems being modelled.
It is natural for those algorithms to classify the rules from the model
into blocks, comprising rules that share identical left-hand side. Previous
algorithms, such as the Binomial Block Based (BBB) or the Direct Non
Deterministic distribution with Probabilities (DNDP), do not define
a deterministic behaviour for blocks of rules competing for the same
resources. In this paper we introduce the Direct distribution based on
Consistent Blocks Algorithm (DCBA), a simulation algorithm which
address that inherent non-determinism of the model by distributing
proportionally the resources.

Keywords: Membrane Computing, Population Dynamics P systems, Simula-
tion Algorithm, Probabilistic P systems, DCBA, P-Lingua, pLinguaCore

1 Introduction

Since the devising of the field of Membrane Computing [12,14], it has established
as a feasible background for the modelling of biochemical phenomena. Within
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Computational Systems Biology, for example, it is complementary and an
alternative [1,5,13,15] to more classical approaches (ODEs, Petri Nets, etc).
Taking into account the particularities that ecosystem dynamics present, P
systems also suit as the base for their computational modelling. In this regard,
the success attained with the models of several phenomena (population dynamics
of Gypaetus barbatus [3] and Rupicapra p. pyrenaica [6] in the Catalan Pyrenees;
population density of Dreissena polymorpha in Ribarroja reservoir [2]) has led
to the development of a computing framework for the modelling of Population
Dynamics [2].

One of the assets of this framework is the ability to conduct the simultaneous
evolution of a high number of species, as well as the management of a large
number of auxiliary objects (that could represent, for instance, grass, biomass
or animal bones). Moreover, the compartmentalized structure, both as a directed
graph (environments) and as a rooted tree (membranes), allows to differentiate
multiple geographical areas. The framework also facilitates the elaboration of
models for which a straightforward interpretation of the simulations can be easily
obtained.

The development of algorithms capable of capturing the semantics described
by the framework is a challenging task. These algorithms should select rules
in the models according to their associated probabilities, while keeping the
maximal parallelism semantics of P systems. In this scenario, the concept of
rule blocks arises. A rule block is a set of rules sharing the same left-hand side
(more precisely, the necessary and sufficient conditions for them to be applicable
are exactly the same). That is, given a particular P system configuration, either
all or none of the rules in the block can be applied. On each step of computation
one or more blocks are selected, according to the semantics associated with the
modelling framework. For every selected block, its rules are applied a number of
times in a probabilistic manner according to their associated probabilities, also
known as local probabilities.

The way in which the blocks and rules in the model are selected depends on
the specific simulation algorithm employed. These algorithms should be able to
deal with issues such as the possible competition of blocks and rules for objects.
So far, several algorithms have been developed in order to capture the semantics
defined by the modelling framework. Some of these algorithms are the Binomial
Block Based algorithm, BBB, and the Direct Non Deterministic algorithm with
Probabilities, DNDP. A comparison on the performance of these algorithms can
be found on [7].

The algorithms mentioned above share a common drawback, regarding a
distorted selection of blocks and rules. Indeed, instead of blocks and rules being
selected according to its probabilities in a uniform manner, the selection process
is biased towards those with the highest probabilities. This paper introduces
a new algorithm, known as Direct distribution based on Consistent Blocks
Algorithm, DCBA, that overcomes the aforementioned distortion, thus not
biasing the selection process towards the most likely blocks and rules.

M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo,
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The rest of the paper is structured as follows: Section 2 introduces the formal
modelling framework. Section 3 describes the DCBA algorithm. Section 4 shows
the behaviour of DCBA when simulating a real ecosystem model. The simulated
model has been adapted and improved from the original version. The paper ends
with some conclusions and ideas for future work.

2 The P System Based Framework

Definition 1. A Population Dynamics P system of degree (q,m) with q ≥ 1,
m ≥ 1, is a tuple

Π = (G,Γ,Σ, T,RE , µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

– G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are
called environments;

– Γ is the working alphabet and Σ $ Γ is an alphabet representing the objects
that can be present in the environments;

– T is a natural number greater or equal to 1, that represents the simulation
time of the system;

– RE is a finite set of communication rules between environments of the form

(x)ej
p−−−→(y1)ej1 · · · (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (1 ≤ l ≤ h) and p is a computable
function from {1, . . . , T} to [0, 1]. If for any rule p is the constant function
1, then we can omit it. These functions verify the following:
• For each ej ∈ V and x ∈ Σ, the sum of functions associated with the

rules whose left-hand side is (x)ej , is the constant function 1.
– µ is a membrane structure consisting of q membranes injectively labelled by

1, . . . , q. The skin membrane is labelled by 1. We also associate electrical
charges from the set EC = {0,+,−} with membranes.

– R is a finite set of evolution rules of the form

u[ v ]αi → u′[ v′ ]α
′
i

where u, v, u′, v′ ∈ Γ ∗, i (1 ≤ i ≤ q), u+ v 6= λ and α, α′ ∈ {0,+,−}.
• If (x)ej is the left-hand side of a rule from RE, then none of the rules

of R has a left-hand side of the form u[v]α1 , for any u, v ∈ Γ ∗ and
α ∈ {0,+,−}, having x ∈ u.

– For each r ∈ R and for each j (1 ≤ j ≤ m), fr,j : {1, . . . , T} −→ [0, 1] is
computable. These functions verify the following:
• For each u, v ∈ Γ ∗, i (1 ≤ i ≤ q), α, α′ ∈ {0,+,−} and j (1 ≤ j ≤ m)

the sum of functions associated with j and the rules whose left-hand side
is u[v]αi and whose right-hand side has polarization α′, is the constant
function 1.
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– For each j (1 ≤ j ≤ m), M1j , . . . ,Mqj are strings over Γ , describing
the multisets of objects initially placed in the q regions of µ, within the
environment ej.

In other words, a system as described in the previous definition can be
viewed as a set of m environments e1, . . . , em linked between them such that
they form a directed graph G. Each environment ej contains a P system,
Πj = (Γ, µ,RΠj ,M1j , . . .Mq,j), of degree q, where every rule r ∈ R has a
computable function fr,j (specific for environment j) associated with it. The set
of rules r ∈ R of Π having included the functions fr,j is denoted by RΠj

, for
each environment ej .

A configuration of the system at any instant t is a tuple of multisets of
objects present in the m environments and at each of the regions of each Πj ,
together with the polarizations of the membranes in each P system. At the initial
configuration of the system we assume that all environments are empty and all
membranes have a neutral polarization.

We assume that a global clock exists, marking the time for the whole system,
that is, all membranes and the application of all rules (from RE and all RΠj

)
are synchronized in all environments.

The P system can pass from one configuration to another by using the rules
from

⋃m
j=1RΠj

∪RE as follows: at each transition step, the rules to be applied
are selected according to the probabilities assigned to them, and all applicable
rules are simultaneously applied in a maximal way.

When a communication rule (x)ej
p−−−→(y1)ej1 . . . (yh)ejh between environ-

ments is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into
objects y1, . . . , yh respectively. At any moment t (1 ≤ t ≤ T ) for each object
x in environment ej , if there exist communication rules whose left-hand side is
(x)ej , then one of these rules will be applied. If more than one communication
rule can be applied to an object, the system randomly selects one, according to
their probability which is given by p(t).

For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of RΠj

simultaneously to
the same membrane, all the rules must have the same electrical charge on their
right-hand side.

3 Direct Distribution Based on Consistent Blocks
Algorithm (DCBA)

In this section we describe the Direct distribution based on Consistent Blocks
Algorithm (DCBA), together with some auxiliary definitions and properties
necessary for it. The DCBA is introduced in order to solve some distortions
generated by the previous algorithm, DNDP. First, the number of applications
for competing rules (with overlapping left-hand sides) is proportionally
distributed, avoiding the distortion of using a random order over the rules,
as made in the DNDP algorithm. Moreover, the management of consistency
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294



in application of rules has been improved by introducing the new concept of
consistent block. More details can be obtained from the following definitions
and the description of the DNDP algorithm [10,11].

3.1 Definitions for Blocks and Consistency

The selection mechanism starts from the assumption that rules in R and RE
can be classified into blocks of rules having the same left-hand side, following
the Definitions 2, 3 and 4 given below.

Definition 2. The left and right-hand sides of the rules are defined as follows:

(a) Given a rule r ∈ R of the form u[v]αi → u′[v′]α
′
i where 1 ≤ i ≤ q,

α, α′ ∈ {0,+,−} and u, v, u′, v′ ∈ Γ ∗:
– The left-hand side of r is LHS(r) = (i, α, u, v). The charge of LHS(r)

is α.
– The right-hand side of r is RHS(r) = (i, α′, u′, v′). The charge of
RHS(r) is α′.

(b) Given a rule r ∈ RE of the form (x)ej
p−−−→ (y1)ej1 · · · (yh)ejh where ej ∈ V

and x, y1, . . . , yh ∈ Σ:
– The left-hand side of r is LHS(r) = (ej , x).
– The right-hand side of r is RHS(r) = (ej1 , y1) · · · (ejh , yh).

Definition 3. Rules from R can be classified in blocks associated to (i, α, u, v)
as follows: Bi,α,u,v = {r ∈ R : LHS(r) = (i, α, u, v)}.

Definition 4. Rules from RE can be classified in blocks associated to (ej , x) as
follows: Bej ,x = {r ∈ RE : LHS(r) = (ej , x)}.

Recall that, according to the semantics of the model, the sum of probabilities
of all the rules belonging to the same block is always equal to 1 – in particular,
rules with probability equal to 1 form individual blocks. Note that rules with
overlapping (but different) left-hand sides are classified into different blocks.

Definition 5. A block Bi,α,u,v is consistent if and only if ∃α′ such that ∀r ∈
Bi,α,u,v the charge of RHS(r) is α′.

Now, we consider blocks of the type Bi,α,α′,u,v = {r ∈ R : ∃u′, v′ ∈ Γ ∗ : r ≡
u[v]αi → u′[v′]α

′
i }. Then, a block Bi,α,u,v is consistent if and only if there exists

α′ such that Bi,α,u,v = Bi,α,α′,u,v.

Remark 1. Note that all the rules r ∈ Bi,α,α′,u,v can be consistently applied, in
the sense that each membrane i with charge α goes to the same charge α′ by
any rule of Bi,α,α′,u,v.

Definition 6. Two blocks Bi1,α1,α′1,u1,v1 and Bi2,α2,α′2,u2,v2 are mutually consis-
tent with each other, if and only if (i1 = i2 ∧ α1 = α2)⇒ (α′1 = α′2).
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Definition 7. A set of blocks B = {B1, B2, . . . , Bs} is self consistent (or
mutually consistent) if and only if ∀i, j (i 6= j) ⇒ Bi and Bj are mutually
consistent.

Remark 2. In such a context, a set of blocks has an associated set of tuples
(i, α, α′), that is, a relationship between labels and electrical charges (H ×EC)
in EC. Then, a set of blocks is mutually consistent if and only if the associated
relationship H × EC in EC is functional.

3.2 DCBA Pseudocode

This new simulation algorithm for PDP systems has the same general scheme
than its predecessor, DNDP [10,11]. The main loop (Algorithm 1) is divided into
two stages: selection and execution of rules, similarly to the DNDP algorithm.

Note that the algorithm selects and executes rules, but not blocks of rules.
Blocks are used by DCBA in order to select rules, and this is made in three
micro-stages as seen in algorithm 2. Phase 1 distributes objects to the blocks
in a certain proportional way. Phase 2 assures the maximality by checking
the maximal applications of each block. Finally, Phase 3 passes from block
applications to rule applications by computing random numbers following the
multinomial distribution with the corresponding probabilities.

Algorithm 1 DCBA MAIN PROCEDURE

Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units), and
A ≥ 1 (Accuracy). The initial configuration is denoted by C0.

1: INITIALIZATION . (Algorithm 3).
2: for t ← 1 to T do
3: C′t ← Ct−1

4: Calculate probability functions fr,j(t) and p(t) associated to the rules.
5: SELECTION of rules. . (Algorithm 2)
6: EXECUTION of rules. . (Algorithm 7)
7: Ct ← C′t
8: end for

Algorithm 2 SELECTION

1: Selection PHASE 1 : distribution . (Algorithm 4)
2: Selection PHASE 2 : maximality . (Algorithm 5)
3: Selection PHASE 3 : probabilities . (Algorithm 6)

Before starting to select and execute rules in the system, some data
initialization is required (Algorithm 3). For instance, the selection stage uses
a table in order to distribute the objects among the blocks. This table T , also
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Algorithm 3 INITIALIZATION

1: Construction of the static distribution table T :
– Column labels: consistent blocks of rules from R: Bi,α,α′,u,v
– Row labels: pairs (o, i) and (o′, e), for all object o ∈ Γ , o′ ∈ Σ and membrane
i, e being a generic identifier of the environments of the P system.

– For each consistent block B, each object o ∈ Γ and i, place at row labelled
by (o, i) and column labelled by B the fraction 1

k
if o appears within i with

multiplicity k in the LHS of B, or place a null value otherwise; do the same for
each object x ∈ Σ appearing outside the skin membrane (i.e. the environment).

2: for j = 1 to m do . (Construct the expanded table Tj)
3: Tj ← T . . (Initialize the table with the original T )
4: For each communication rule block B from RE , which is associated with the

environment ej , add a column labelled by B to the table Tj ; place the value 1 at
row (x, e) and column B, x being the object appearing in the LHS of B.

5: end for
6: Initialize the multisets Bjsel ← ∅ and Rjsel ← ∅

called static table, is used in each time step, so it is initialized only once, at the
beginning of the algorithm. The static table has one column per each consistent
block of rules, and one row per each pair of object and compartment (i.e., each
membrane and the environment). An expanded static table Tj is also constructed
for each environment, to consider also blocks from environment communication
rules. Finally, for each environment, two multisets Bjsel and Rjsel, are initialized.
They are used by the algorithm in order to store the selected blocks and the
selected rules, respectively.

The distribution of objects among the blocks with overlapping LHS is
performed in Selection Phase 1 (Algorithm 4). The expanded static table Tj
is used for this purpose in each environment. Three filters are defined in order
to adapt Tj to the configuration Ct of the system; that is, to select which
blocks are going to receive objects. Filter 1 discards the columns of the table
corresponding to non-applicable blocks due to mismatch charges in the LHS.
Filter 2 discards the columns corresponding to non-applicable blocks due to
the objects from the LHS. The goal of Filter 3 is to save space in the table,
discarding rows that become empty because of the previous filters. These three
filters are applied at the beginning of phase 1, and the result is a dynamic table
T tj (for the environment j and time step t).

Filter procedures for selection Phase 1

procedure Filter 1(table T , configuration C) . (By columns and charges)
Discard columns from table T , according to the charge of the membrane in the

LHS of the corresponding block and in the configuration C.
end procedure
procedure Filter 2(table T , configuration C) . (By columns and multiplicity)

Discard columns from table T , such that for any row (o, i) or (x, e), the
multiplicity of that object in C multiplied by 1/k (the value in the table), returns a
number κ, 0 ≤ κ < 1. If all the values for that column are null, it is also filtered.
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end procedure
procedure Filter 3(table T , configuration C) . (By rows and multiplicity)

Discard rows from T labelled by (o, i) and (x, e) when the corresponding objects
are not present in the multisets of C.
end procedure

Recall that the static table T collects all consistent blocks within the columns.
The set of all consistent blocks is unlikely to be mutually consistent. However,
two non-mutually consistent blocks, Bi,α,α′1,u1,v1 and Bi,α,α′2,u2,v2 (assigning a
different charge to the same membrane), can be filtered as follows:

– If u1 6= u2 or v1 6= v2, and if one of these blocks is not applicable, therefore
it will be filtered by Filter 2. This situation is commonly handled by the
model designers, in order to take control of the model evolution.

It is very important to have a set of mutually consistent blocks before
distributing objects to the blocks. For this reason, after applying Filters 1 and
2, the mutually consistency is checked. If it fails, meaning that an inconsistency
was encountered, the simulation process is halted, providing a warning message
to the user. Nevertheless, it can be interesting to find a way to continue the
execution by non-deterministically constructing a subset of mutually consistent
blocks. Since this method can be exponentially expensive in time, it is optional
for the user to whether activate it or not.

Once the columns of the dynamic table represent a set of mutually consistent
blocks, the distribution process starts. This is carried out by updating the values
in the table by the following products:

– The normalized value with respect to the row; that is, the value divided
by the total sum of the row. This calculates a way to proportionally
distribute the corresponding object along the blocks. Since it depends on
the multiplicities in the LHS of the blocks, the distribution, in fact, penalize
the blocks requiring more copies of the same object, which is inspired in the
amount of energy required to join individuals from the same species.

– The value in the original dynamic table (i.e. 1
k ). This indicates the number

of possible applications of the block with the corresponding object.
– The corresponding multiplicity of the object in the current configuration C ′t.

This performs the distribution of the copies of the object along the blocks.

After the object distribution process, the number of applications for each
block is computed by selecting the minimum value in each column. This number
is then used for consuming the LHS from the configuration. However, this
application could be not maximal. The distribution process can eventually
deliver objects to blocks that are restricted by other objects. As this situation
may occur frequently, the distribution and the configuration update process is
performed A times, where A is an input parameter referring to accuracy. The
more the process is repeated, the more accurate is the distribution, but the less
could be the performance of the simulation. We have experimentally checked
that A = 2 gives the best accuracy/performance ratio.
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Algorithm 4 SELECTION PHASE 1: DISTRIBUTION

1: for j = 1 to m do . (For each environment ej)
2: Apply filters to table Tj using Ct, obtaining T tj . The filters are applied as follows:

a. T tj ← Tj
b. Filter 1 (T tj , Ct).
c. Filter 2 (T tj , Ct).
d. Check mutual consistency for the blocks remaining in T tj :

• Create a vector MCtj , of order q (number of membranes in Π), with
MCtj(i) = −1, 1 ≤ i ≤ q.
• for each column Bi,α,α′,u,v in T tj , do
∗ if MCtj(i) = −1 then MCtj(i)← α′.
∗ else if MCtj(i) = α′ then do nothing.
∗ else store all the information about the inconsistency.

• if there was at least one inconsistency then report the information
about the error, and optionally halt the execution (in case of not
activating step 3.)

e. Filter 3 (T tj , Ct).
f. T tj,z ← T tj

3: (OPTIONAL) Generate, from T tj , sub-tables formed by sets of mutually
consistent blocks, in a maximal way in T tj (by the inclusion relationship). This
will produce a set of sub-tables T tj,k, k = 1, . . . , s. Randomly select one table from
the set: T tj,z

4: a← 1
5: Cat ← C′t
6: repeat
7: Add up the values of each row in T tj,z. Filter the rows whose sum is 0.
8: Each element of the table is divided by the sum of the values from the

corresponding row.
9: For each pair (o, i) and (x, e) ∈ Cat , if the object in Cat has multiplicity
mult > 0, all the elements of the corresponding row in T tj,z are multiplied by mult,
by the corresponding value in T tj,z (computed in the previous step), and by the
original value in Tj . That is, if in the position (X,Y ) of the table Tj there is a not
null value, and the corresponding object in the row X has multiplicity multX,a,t
in Cat , then:

T tj,z(X,Y ) = bmultX,a,t · T tj,z(X,Y ) · T tj,z(X,Y )

RowSumX,t
c = bmultX,a,t ·

(T tj,z(X,Y ))2

RowSumX,t
c

10: For each block B (i.e., column) appearing (i.e. not filtered) in T tj,z, calculate
the minimum number of the previously calculated values, Na

B ≥ 0. This is the
number of times the block is going to be applied. This value is accumulated to the
total calculated through the iteration of the loop over a: Bjsel ← Bjsel + {BNa

B}
11: Ca+1

t ← Cat − LHS(B) ·Na
B . (Delete the LHS of the block.)

12: Filter 2 (T tj,z, C
a+1
t )

13: Filter 3 (T tj,z, C
a+1
t )

14: a← a+ 1
15: until (a > A) ∨ (all the selected minimums in step 10 are 0)
16: end for
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In order to repeat efficiently the loop for A, and also before going to the
next phase (maximality), Filters 2 and 3 are applied again. This way, once
the configuration is updated, the blocks that are not applicable any more are
discarded from the table.

Algorithm 5 SELECTION PHASE 2: MAXIMALITY

1: for j = 1 to m do . (For each environment ej)
2: Set a random order to the blocks remaining in the last updated table T tj,z in

Phase 1, step 13.
3: C′t ← CAt . (Copy the last updated configuration in Phase 1, step 11 )
4: for each block B, following the previous random order do
5: Calculate the number of applications, NB , of B in C′t.
6: Bjsel ← Bjsel + {BNB} . (Add NB to Bjsel from phase 1, step 10 )
7: C′t ← C′t − LHS(B) ·NB . (Delete the LHS of block B, NB times.)
8: end for
9: end for

After phase 1, some objects may be left without being consumed. This
can be caused by a low A value or by rounding artefacts when calculating
sums and minimums of inverse numbers in the distribution process. Due to
the requirements of P systems semantics, a maximality phase is now applied
(algorithm 5). Following a random order, a maximal number of applications is
calculated for each block still applicable. As a consequence, no object that can be
consumed is left in the current configuration. In order to minimize the distortion
towards the most probable blocks, this phase is performed after phase 1, as a
residual number of objects is expected to be consumed in this phase.

After the application of phases 1 and 2, a maximal multiset of selected
(mutually consistent) blocks has been computed. The output of the selection
stage has to be, however, a maximal multiset of selected rules. Hence, phase
3 (algorithm 6) passes from blocks to rules, by applying the corresponding
probabilities (at the local level of blocks). The rules belonging to a block are
selected according to a multinomial distribution M(N, g1, . . . , gl), where N is the
number of applications of the block, and g1, . . . , gl are the probabilities associated
with the rules r1, . . . , rl within the block, respectively.

Once the rules to be applied on the current simulation step are selected, the
execution stage (algorithm 7) is applied. This stage consists on executing the
previously selected multiset of rules. As the objects present on the left hand
side of these rules have already been consumed, the only operation left is the
application of the RHS of the selected rules. Therefore, for each selected rule,
the objects present on the RHS are added to the corresponding membranes and
the indicated membrane charge is set.
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Algorithm 6 SELECTION PHASE 3: PROBABILITY

1: for j = 1 to m do . (For each environment ej)
2: for all block BNB ∈ Bjsel do
3: Calculate a random multinomial M(NB , g1, . . . , gl) with respect to the

probabilities of the l rules r1, . . . , rl within the block B, producing {n1, . . . , nl}
4: for k = 1 to l do
5: Rjsel ← Rjsel + {rnk

k }.
6: end for
7: end for
8: Delete the multiset of selected blocks Bjsel ← ∅. . (Useful for the next step)
9: end for

Algorithm 7 EXECUTION

1: for j = 1 to m do . (For each environment ej)
2: for all rule rn ∈ Rjsel do . (Apply the RHS of selected rules)
3: C′t ← C′t + n ·RHS(r)
4: Update the electrical charges of C′t from RHS(r).
5: end for
6: Delete the multiset of selected rules Rjsel ← ∅. . (Useful for the next step)
7: end for

4 Validation

4.1 Improved Model for the Scavenger Bird Ecosystem

In this section, it is presented a novel model for an ecosystem related to the
Bearded Vulture in the Pyrenees (NE Spain), by using PDP systems. This
model is an improved model from the one provided in [4]. The Bearded Vulture
(Gypaetus barbatus) is an endangered species in Europe that feeds almost
exclusively on bone remains of wild and domestic ungulates. In this model, the
evolution of six species is studied: the Bearded Vulture and five subfamilies of
domestic and wild ungulates upon which the vulture feeds.

The model consists of a PDP system of degree (2, 1),

Π = (G,Γ,Σ, T,RE , µ,R, {fr,1 : r ∈ R},M1,M2)

where:

– G = (V, S) with V = {e1} and S = ∅.
– In the alphabet Γ , we represent the seven species of the ecosystem (index i

is associated with the species and index j is associated with their age, and
the symbols X, Y and Z represent the same animal but in different states);
it also contains the auxiliary symbol B, which represents 0.5 kg of bones,
and C, which allows a change in the polarization of the membrane labeled
by 2 at a specific stage.

Γ = {Xi,j , Yi,j , Zi,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4} ∪ {B,C}
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The species are the following:

• Bearded Vulture (i = 1)
• Pyrenean Chamois (i = 2)
• Female Red Deer (i = 3)
• Male Red Deer (i = 4)

• Fallow Deer (i = 5)
• Roe Deer (i = 6)
• Sheep (i = 7)

Note that although the male red deer and female red deer are the same
species, we consider them as different species. This is because mortality of
male deer is different from the female deer by reason of hunting.

– Σ = ∅.
– Each year in the real ecosystem is simulated by 3 computational steps, so
T = 3 · Y ears, where Y ears is the number of years to simulate.

– RE = ∅.
– µ = [ [ ]2 ]1 is the membrane structure and the corresponding initial multisets

are:
• M1 = { Xqi,j

i,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4}

• M2 = { C,Bα} where α = d
k1,4∑
j=1

q1,j · 1.10 · 682e
Value α represents an external contribution of food which is added during
the first year of study so that the Bearded Vulture survives. In the
formula, q1,j represents the number of bearded vultures that are j years
old, the goal of the constant factor 1.10 is to guarantee enough food for
10% population growth. At present, the population growth is estimated
an average 4%, but this value can reach higher values. Thus, to avoid
problems related with the underestimation of this value the first year we
have overestimated the population growth at 10%. The constant value
682 represents the amount of food needed per year for a Bearded Vulture
pair to survive.

– The set R is defined as follows:
• Reproduction rules for ungulates

Adult males

r0,i,j ≡ [Xi,j ]1
1−ki,13−−−→[Yi,j ]1 : ki,2 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Adult females that reproduce

r1,i,j ≡ [Xi,j ]1
ki,5ki,13−−−→[Yi,j , Yi,0]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7, i 6= 3

Red Deer females produce 50% of female and 50% of male springs

r2,j ≡ [X3,j ]1
k3,5k3,130.5−−−→ [Y3,jY3,0]1 : k3,2 ≤ j < k3,3

r3,j ≡ [X3,j ]1
k3,5k3,130.5−−−→ [Y3,jY4,0]1 : k3,2 ≤ j < k3,3

Fertile adult females that do not reproduce

r4,i,j ≡ [Xi,j ]1
(1−ki,5)ki,13−−−→ [Yi,j ]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7

Not fertile adult females

r5,i,j ≡ [Xi,j ]1
ki,13−−−→[Yi,j ]1 : ki,3 ≤ j ≤ ki,4, 2 ≤ i ≤ 7
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Young ungulates that do not reproduce

r6,i,j ≡ [Xi,j ]1
1−−−→[Yi,j ]1 : 0 ≤ j < ki,2, 2 ≤ i ≤ 7

• Growth rules for the Bearded Vulture

r7,j ≡ [X1,j ]1
k1,6+k1,10−−−→ [Y1,k1,2−1Y1,j ]1 : k1,2 ≤ j < k1,4

r8,j ≡ [X1,j ]1
1−k1,6−k1,10−−−→ [Y1,j ]1 : k1,2 ≤ j < k1,4

r9 ≡ [X1,k1,4 ]1
k1,6−−−→[Y1,k1,2−1Y1,k1,4 ]1

r10 ≡ [X1,k1,4 ]1
1−k1,6−−−→[Y1,k1,4 ]1

• Mortality rules for ungulates
Young ungulates which survive

r11,i,j ≡ Yi,j [ ]2
1−ki,7−ki,8−−−→ [Zi,j ]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which die

r12,i,j ≡ Yi,j [ ]2
ki,8−−−→[Bki,11 ]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which are retired from the ecosystem

r13,i,j ≡ Yi,j [ ]2
ki,7−−−→[ ]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Adult ungulates that do not reach the average life expectancy
Those which survive

r14,i,j ≡ Yi,j [ ]2
1−ki,10−−−→[Zi,j ]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Those which die

r15,i,j ≡ Yi,j [ ]2
ki,10−−−→[Bki,12 ]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Ungulates that reach the average life expectancy
Those which die in the ecosystem

r16,i ≡ Yi,ki,4 [ ]2
ki,9+(1−ki,9)ki,10−−−→ [Bki,12 ]2 : 2 ≤ i ≤ 7

Those which die and are retired from the ecosystem

r17,i ≡ Yi,ki,4 [ ]2
(1−ki,9)(1−ki,10)−−−→ [ ]2 : 2 ≤ i ≤ 7

• Mortality rules for the Bearded Vulture

r18,j ≡ Y1,j [ ]2
1−k1,10−−−→[Z1,j ]2 : k1,2 ≤ j < k1,4

r19,j ≡ Y1,j [ ]2
k1,10−−−→[ ]2 : k1,2 ≤ j < k1,4

r20 ≡ Y1,k1,4 [ ]2
1−−−→[Z1,k1,2−1]2

r21 ≡ Y1,k1,2−1[ ]2
1−−−→[Z1,k1,2−1]2

• Feeding rules

r22,i,j ≡ [Zi,jB
ki,14 ]2

1−−−→Xi,j+1[ ]+2 : 0 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

• Balance rules
Elimination of remaining bones

r23 ≡ [B]+2
1−−−→[ ]2

Adult animals that die because they have not enough food
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r24,i,j ≡ [Zi,j ]
+
2

1−−−→[Bki,12 ]2 : ki,1 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

Young animals that die because the have not enough food

r25,i,j ≡ [Zi,j ]
+
2

1−−−→[Bki,11 ]2 : 0 ≤ j < ki,1, 1 ≤ i ≤ 7

Change the polarization

r26 ≡ [C]+2
1−−−→[C]2

The constants associated with the rules have the following meaning:

– ki,1: Age at which adult size is reached. This is the age at which the animal
consumes food as an adult does, and at which, if the animal dies, the amount
of biomass it leaves behind is similar to the total left by an adult. Moreover,
at this age it will have surpassed the critical early phase during which the
mortality rate is high.

– ki,2: Age at which it begins to be fertile.
– ki,3: Age at which it stops being fertile.
– ki,4: Average life expectancy in the ecosystem.
– ki,5: Fertility ratio (number of descendants by fertile females).
– ki,6: Population growth (this quantity is expressed in terms of 1).
– ki,7: Animals retired from the ecosystem in the first year, age < ki,1 (this

quantity is expressed in terms of 1).
– ki,8: Natural mortality ratio in first years, age < ki,1 (this quantity is

expressed in terms of 1).
– ki,9: 0 if the live animals are retired at age ki,4, in other cases, the value is

1.
– ki,10: Mortality ratio in adult animals, age ≥ ki,1 (this quantity is expressed

in terms of 1).
– ki,11: Amount of bones from young animals, age < ki,1.
– ki,12: Amount of bones from adult animals, age ≥ ki,1.
– ki,13: Proportion of females in the population (this quantity is expressed in

terms of 1).
– ki,14: Amount of food necessary per year and breeding pair (1 unit is equal

to 0.5 kg of bones).

In [4] can be found actual values for the constants associated with the rules
as well as actual values for the initial populations qi,j for each species i with age
j. There are two sets of initial populations values, one beginning on year 1994
and another one beginning on year 2008.

4.2 Simulation Results

PLinguaCore is a software library for simulation that accepts an input written
in P-Lingua [8] and provides simulations of the defined P systems. For each
supported type of P system, there are one or more simulation algorithms
implemented in pLinguaCore. It is a software framework, so it can be expanded
with new simulation algorithms.
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L.F. Maćıas-Ramos, L. Valencia-Cabrera, A. Romero-Jiménez, C. Graciani,
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Thus, we have extended the pLinguaCore library to include the DCBA
simulation algorithm for PDP systems. The current version of pLinguaCore is
3.0 and can be downloaded from [17].

In this section, we use the model of the Bearded Vulture described above to
compare the simulation results produced by the pLinguaCore library using two
different simulation algorithms: DNDP [11] and DCBA. We also compare the
results of the implemented simulation algorithms with the results provided by
the C++ ad hoc simulator and with the actual ecosystem data, both obtained
from [4]. In [18] it can be found the P-Lingua file which defines the model and
instructions to reproduce the comparisons.

We have set the initial population values with the actual ecosystem values
for the year 1994. For each simulation algorithm we have made 100 simulations
of 14 years, that is, 42 computational steps. The simulation workflow has
been implemented on a Java program that runs over the pLinguaCore library
(this Java program can be downloaded from [18]). For each simulated year
(3 computational steps), the Java program counts the number of animals for

each species i, that is: Xi =
ki,4∑
j=0

Xi,j . After 100 simulations, the Java program

calculates average values for each year and species and writes the output to a text
file. Finally, we have used the GnuPlot software [16] to produce the population
graphics.

The population graphics for each species and simulation algorithm are
represented in Figures 1 to 7.

Fig. 1. Evolution of the Bearded Vulture birds

Fig. 2. Evolution of the Pyrenean Chamois
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Fig. 3. Evolution of the female Red Deer

Fig. 4. Evolution of the male Red Deer

Fig. 5. Evolution of the Fallow Deer

Fig. 6. Evolution of the Roe Deer

Fig. 7. Evolution of the Sheep

The main difference between the DNDP and the DCBA algorithms is the way
the algorithms distribute the objects between different rule blocks that compete
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for the same objects. In the model, the behaviour of the ungulates are modelled
by using rule blocks that do not compete for objects. So, the simulator provides
similar results for both DCBA and DNDP algorithms. In the case of the Bearded
Vulture, there is a set of rules r22,i,j that compete for B objects because k1,14 is
not 0 (the Bearded Vulture needs to feed on bones to survive). The ki,14 constants
are 0 for ungulates (2 ≤ i ≤ 7), because they do not need to feed on bones to
survive. The initial amount of bones and the amount of bones generated during
the simulation is enough to support the Bearded Vulture population regardless
the way the simulation algorithm distributes the bones between vultures of
different ages (rules r22,1,j). Since there is a small initial population of bearded
vultures (20 pairs), some differences can be noticed between the results from
DCBA, DNDP, C++ simulator and the actual ecosystem data for the Bearded
Vulture (39 bearded vultures with DCBA for year 2008, 36 with DNDP, 38 with
the C++ simulator and 37 on the actual ecosystem).

In Figure 8 it is shown the comparison between the actual data for the year
2008 and the simulation results obtained by using the C++ ad hoc simulator,
the DNDP algorithm and the DCBA algorithm implemented in pLinguaCore.
In the case of the Pyrenean Chamois, there is a difference between the actual
population data on the ecosystem (12000 animals) and the results provided by
the other simulators (above 20000 animals), this is because the population of
Pyrenean Chamois was restarted on year 2004 [4]. Taking this into account, one
can notice that all the simulators behave in a similar way for the above model
and they can reproduce the actual data after 14 simulated years. So, the DCBA
algorithm is able to reproduce the semantics of PDP systems and it can be used
to simulate the behaviour of actual ecosystems by means of PDP systems.

5 Conclusions and Future Work

In this paper we have introduced a novel algorithm for Population Dynamics P
systems (PDP systems), called Direct distribution based on Consistent Blocks
Algorithm (DCBA). This new algorithm performs an object distribution along
the rules that eventually compete for objects. The main procedure is divided
into two stages: selection and execution. Selection stage is also divided into three
micro-phases: phase 1 (distribution), where by using a table and the construction
of rule blocks, the distribution process takes place; phase 2 (maximality), where
a random order is applied to the remaining rule blocks in order to assure
the maximality condition; and phase 3 (probability), where the number of
application of rule blocks is translated to application of rules by using random
numbers respecting the probabilities. The algorithm is validated towards a real
ecosystem model, showing that they reproduce the same results as the original
simulator written in C++.

The accelerators in High Performance Computing offers new approaches to
accelerate the simulation of P systems and Population Dynamics. An initial
parallelization work of the DCBA by using multi-core processors is described in
[9]. The analysis of the two parallel levels (simulations and environments), and
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Fig. 8. Data of the year 2008 from: real measurements of the ecosystem, original
simulator in C++, simulator using DNDP and simulator using DCBA.

the speedup achieved by using the different cores, make interesting the search for
more parallel architectures. For the near future work, we will use the massively
parallel architectures inside the graphics cards (GPUs) using CUDA. We will
adapt and scale the DCBA algorithm using the CUDA programming model,
and develop a parallel simulator for GPU based systems.
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Jiménez, D. Sanuy, E. Serrano, L. Valencia-Cabrera. Modeling population
growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by using P systems,
LNCS, 6501 (2011), 144–159.
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Tamás Mihálydeák1 and Zoltán Csajbók2
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Abstract. Active cell components involved in real biological processes
have to be close enough to a membrane in order to be able to pass through
it. Rough set theory gives a plausible opportunity to model a border zone
around a cell-like formation. However, this theory works within conven-
tional set theory, and so to apply its ideas to membrane computing, first,
we have worked out an adequate approximation framework for multisets.
Next, we propose a two-component structure consisting of a P system
and a partial approximation space for multisets. Using the approxima-
tion technique, we specify the closeness around membranes, even from
inside and outside, via border zones. Then, we define communication
rules within the P system in such a way that they operate in the border
zones solely. The two components mutually cooperate.

Keywords: Approximation of sets, rough multisets, membrane computing

1 Introduction

As it is well known P systems (membrane systems) were introduced by Păun
([9]). P systems can be considered as distributed computing devices which were
motivated by the structure and functioning of a living cell. Membranes delimit
compartments (regions), which are arranged in a cell-like (hence hierarchical)
structure. A set of rules is given for every region. These rules can model reac-
tions inside a region (like chemical reactions work), or processes of passing ob-
jects through membranes (like biological processes work). In the general model,
regions are represented by multisets and two types of rules are given: rewriting
rules for the first type and communication rules (either symport or antiport fash-
ion) for the second type. There are some generalizations of P systems in which
nonhierarchical arrangements of compartments are also considered.

In the case of communication rules objects pass through membranes. If we
pay our attention to biological processes we can say that an object has to be
close enough to a membrane in order to be able to pass through it. In different
versions of P systems one can find some variants which embody the concept of
space and position inside a region (see for example [2], [3]), and so these systems
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are able to give a special meaning of ‘to be close enough to a membrane’. But
we have no precise information about the nature of the space of objects or their
positions in general. If we look at the regions of a P system as multisets, then
a very general theory (the theory of approximation for multisets) can help us to
introduce a correct concept of ‘closeness to a membrane’ (or ‘to be close enough
to a membrane’).

Different ways of set approximations go back (at least) to rough set theory
which was originated by Pawlak in the early 1980’s ([7], [8]). In his theory and its
different generalizations lower and upper approximations of a given set appear
which are based on different kinds of indiscernibility relations. An indiscernibility
relation on a given set of objects provides the set of base sets by which any set
can be approximated from lower and upper sides. The general theory of partial
approximation of sets (see [4]) gives a possibility to embed available knowledge
into an approximation space. The lower and upper approximations of a given
set rely on base sets which represent available knowledge. If we have concepts of
lower and upper approximations, the concept of border can be introduced.

From the set–theoretical point of view, regions in membrane computing are
multisets and so, first, we have to generalize the theory of set approximations for
multisets. In the present paper we give a very general theory of multiset approx-
imations called partial multiset approximations and provide a partial multiset
approximation space. In this space, approximations are based on a beforehand
given set of base multisets. Using the approximation technique, borders of multi-
sets can be given. Since the set–theoretic representations of regions are multisets,
borders of regions delimited by membranes can be formed. In short, they are also
called borders of membranes or simply membrane borders. Then, we can say that
an object is close enough to a membrane if it is a member of its border. What is
more we can specify inside and outside borders of membranes, thus the closeness
to membranes from inside and outside. Last, it is assumed that the communi-
cation rules in the P system execute only in membrane borders. Thus, a living
cell can be represented more precisely.

Communication rules change the regions by changing the inside and outside
borders of membranes. However, these changes take place within the base mul-
tisets. Consequently, the changes does not modify either the whole borders or
the partial multiset approximation space. The latter can be changed only then
when there is no any communication rule which can be executed in the borders,
i.e. the membrane computation has halted. Just then, daemons are activated.

Daemons are rules which are assigned to the base multisets. Their forms
are similar to communication rules, more precisely to symport rules of the form
〈u, in〉. However, we strictly have to differentiate regions from base multisets and
rules in the membrane computing sense from daemons. In order to set the dae-
mons to work, a certain event is specified which starts a daemon each time when
that event occurs. Immediately when the membrane computation has halted,
first, the daemons assigned to the base multisets within membrane borders are
activated.
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A daemon actually begins to work only in the case when a shortage of ob-
jects occurs in the inside/outside part of base multisets belonging to membrane
borders. This shortage of objects enforces a suction effect which the daemons try
to meet as far as possible. If the shortage of objects occurs in the inside/outside
part of a base multiset in a membrane border, the daemon assigned to this base
multiset tries to supplement the missing objects by the objects of the same type
from a neighbor base multiset belonging to the inside/outside space delimited by
the considered membrane. Two multisets are neighbor when their intersection
is nonempty. The first daemon execution sets off a sequence of nested daemon
calls. The nesting stops when 1) the actual base multiset does not have any
neighbor base multiset; 2) or the actual base multiset has one or more neighbor
base multisets but they do not contain any object of the required type. In this
phase, the partial multiset approximation space is changed and a new border
(from inside and outside) can be defined for regions as multisets. Hence, the
membrane computation can start again. The whole computation process stops
when there is no any applicable daemon.

It is assumed that we have a membrane system Π (Definition 6) with an
initial configuration (Fig. 1). Step 1 generates an initial partial multiset approx-
imation space (Definition 7). Step 2 constraints the scope of the executions of
communication (symport/antiport) rules for membrane borders.

Fig. 1. The initialization phase
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The second phase is the membrane computation (Fig. 2). In Step 3 the mem-
brane system works, i.e. communication rules are executed in membrane borders.
When the membrane computation has halted (Step 4) a new membrane config-
uration emerges but the partial multiset approximation space is unchanged. At
the same time daemons are activated provided that there is any applicable dae-
mon. If there is not, the whole computational process stops. However, when
there are applicable daemons, they fire (Step 5). As a result, a new partial mul-
tiset approximation space emerges in which the membrane borders are changed.
Thus, the membrane computation can start again.

Fig. 2. The computation phase
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The structure of the rest of the paper is the following. At first, in Section
2, we present the general theory of multiset approximations. Having given the
basic notions of multisets, we define the general partial multiset approximation
space and discuss its fundamental properties. Section 3 connects partial multiset
approximation spaces with membrane systems. Using the approximation tech-
nique, we can specify the closeness to membranes, even from inside and outside,
via border zones. In our membrane system model, at least for now, only commu-
nication rules are defined. Their executions are restricted to membrane borders.
In the present paper we focus on hierarchical P systems.

2 Multiset Approximations

This section presents a general theory of multiset approximations of multisets.
There are (at least) two readings of different versions of rough set theory. The
first one is about vagueness based on indiscernibility, whereas the second one
is about possible approximations of sets. In the present paper we focus on the
second reading, and we ask how to treat multisets in a very general approxima-
tion framework. The answer to this question is a minimal condition for applying
multiset approximations of multisets in membrane computing.

2.1 Fundamental Notions of Multiset Theory

A multiset is a well–known generalization of a set. We can say that an object can
have more than one occurrences in a multiset. The use of multisets in mathemat-
ics has a long history. For instance, Richard Dedekind used the term multiset in
a paper published in 1888. Nowadays multisets are used not only in mathematics
but informatics.

Definition 1. Let U be a finite nonempty set. A multiset M , or mset M for
short, over U is a mapping M : U → N ∪ {∞}, where N is the set of natural
numbers.

1. Multiplicity relation for an mset M over U is:
a ∈M (a ∈ U), if M(a) ≥ 1;

2. n–times multiplicity relation for an mset M over U is:
a ∈n M (a ∈ U), if M(a) = n;

3. an mset M is said to be an empty mset (in notation M = ∅) if M(a) = 0
for all a ∈ U ;

4. MS(U) is the set of msets over U ;
5. MSn(U) (n ∈ N) is the set of msets over U such that if M ∈ MSn(U),

then M(a) ≤ n for all a ∈ U ;
6. MS<∞(U) =

⋃∞
n=0MSn(U).

Remark 1. If a ∈ U , then M(a) gives the number of occurrences of the element
a in the mset M . If U = {a1, a2, . . . , an}, then
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– an mset M over U can be given in the form
{〈a1,M(a1)〉, 〈a2,M(a2)〉, . . . , 〈an,M(an)〉};

– in membrane computing if M(a) <∞ for all a ∈ U , the mset M over U can
be represented by all permutations of the string w:

w =

{
a
M(ak1

)

k1
a
M(ak2

)

k2
. . . a

M(akl
)

kl
, if M is not an empty mset;

λ, otherwise;

where λ is the empty string.

Remark 2. If all a ∈ U have (countable) infinite occurrences in the mset M over
U i.e. M(a) =∞ for all a ∈ U , then M is denoted by M∞.

Remark 3. In the general theory of msets the set U may be infinite. There is no
need to deal with this case in our investigation.

Set–theoretical operations and relations can be generalized for msets. Let M1

and M2 be two msets over U .

1. M1 = M2, if M1(a) = M2(a) for all a ∈ U ;
2. M1 vM2, if M1(a) ≤M2(a) for all a ∈ U ;
3. (M1 uM2)(a) = min {M1(a),M2(a)} for all a ∈ U ;
4. if M⊆MS(U), then (uM)(a) = min{M(a) |M ∈M} for all a ∈ U ;
5. set–type (t) and mset–type (⊕) union can be defined:

(a) (M1 tM2)(a) = max {M1(a),M2(a)} for all a ∈ U ;
(b) if M ⊆ MS<∞(U), then (

⊔M)(a) = max{M(a) | M ∈ M} for all
a ∈ U . By definition,

⊔ ∅ = ∅.
(c) (M1 ⊕M2)(a) = M1(a) + M2(a) for all a ∈ U (the mset–type union is

often called the mset addition);
6. (M1 	M2)(a) = max {M1(a)−M2(a), 0} for all a ∈ U (mset subtraction).
7. if M ∈ MSn(U) for an n ∈ N, then M

n
(a) = n −M(a) for all a ∈ U . M

n

is the complement of mset M with respect to n.

2.2 General Partial Mset Approximation Space

A general partial approximation space for msets or simply partial mset approx-
imation space depends on five different components:

– First, we have to give the domain of the approximation space of which mem-
bers are approximated. In our case the domain is a set of msets.

– The next step is to determine on what the approximations rely. Some distin-
guished members of the domain are chosen in order to use them as a basis for
approximations. They are called base msets. Base msets can be represented
as available knowledge. In membrane computing they can be taken as the
representation of the closeness.

– The third component is called the set of definable msets. Here ‘definable’
means that these msets can be given by using only base msets. Of course,
base msets and the empty mset are definable. The way of getting a definable
mset shows how base msets are used in a whole approximation process.
There are many different ways of giving definable msets. Definable msets are
considered as possible approximations of members of the domain.
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– The last step is to give the approximation pair of the space. These functions
determine the lower and upper approximations of any mset of the domain.

Definition 2. Let U be a nonempty set.
The ordered 5–tuple PASM(U) = 〈MS<∞(U),B,DB, l, u〉 is a general par-

tial mset approximation space over U , if

1. B ⊆ MS<∞(U) (in notation B = {Bγ | γ ∈ Γ}, its members are called
B-msets) and if B ∈ B, then B 6= ∅;

2. DB ⊆MS<∞(U) is an extension of B, i.e. B ⊆ DB, such that ∅ ∈ DB;
3. the functions l, u : MS<∞(U) → MS<∞(U) form an approximation pair
〈l, u〉, i.e.
(a) l(MS<∞(U)), u(MS<∞(U)) ⊆ DB (definability of l, u);
(b) the functions l and u are monotone, i.e. for all M1,M2 ∈ MS<∞(U) if

M1 v M2 then l(M1) v l(M2) and u(M1) v u(M2) (monotonicity of l
and u);

(c) u(∅) = ∅ (normality of u);
(d) if M ∈ DB, then l(M) = M (granularity of DB, i.e. l is standard);
(e) if M ∈MS<∞(U), then l(M) v u(M) (weak approximation property).

Remark 4. In Definition 2 each condition in 3 (a)–(e) is independent of the other
four.

Remark 5. All members of B are msets, but they are not regions in general. More
precisely, B-msets are not necessarily compartments delimited by membranes
from above and below (if any exist). The crucial difference between them is that
the B-msets do not generally form a hierarchical structure, i.e. it may happen
that if B1 uB2 6= ∅ (B1, B2 ∈ B), then B1 6v B2 and B2 6v B1.

Of course, there may be more than one msets with the same lower and upper
approximations. If M ∈MS<∞(U), the set

RM(M) = {M ′ ∈MS<∞(U) | l(M) = l(M ′) and u(M) = u(M ′)}

is called a rough mset connected to M .

2.3 Some Fundamental Properties of Mset Approximation Spaces

The following two propositions summarize some simple consequences of the con-
ditions 3 (a)–(e).

Proposition 1. Let PASM(U) = 〈MS<∞(U),B,DB, l, u〉 be a general partial
mset approximation space over U .

1. l(∅) = ∅ (normality of l).
2. ∀M ∈MS<∞(U) (l(l(M)) = l(M)) (idempotency of l).
3. M ∈ DB if and only if l(M) = M .
4. u(MS<∞(U)) ⊆ l(MS<∞(U)) = DB.
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Proposition 2. Let PASM(U) = 〈MS<∞(U),B,DB, l, u〉 be a general partial
mset approximation space over U .

1. For any M1,M2 ∈MS<∞(U)
(a) l(M1) t l(M2) v l(M1 tM2), l(M1 uM2) v l(M1) u l(M2),
(b) u(M1) t u(M2) v u(M1 tM2), u(M1 uM2) v u(M1) u u(M2).
In other words, both lower and upper approximations are superadditive and
submultiplicative.

2. In the case of M1 vM2, all inclusions in Point 1 can be replaced by equali-
ties:
(a) l(M1) t l(M2) = l(M1 tM2), l(M1 uM2) = l(M1) u l(M2),
(b) u(M1) t u(M2) = u(M1 tM2), u(M1 uM2) = u(M1) u u(M2).

The following proposition gives a simple property of lower and upper approx-
imations.

Proposition 3. Let PASM(U) = 〈MS<∞(U),B,DB, l, u〉 be a general partial
mset approximation space over U .

For any M ∈MS<∞(U)

1. l(M) =
⊔
L(M), where L(M) = {D ∈ DB | D v l(M)};

2. u(M) =
⊔

U(M), where U(M) = {D ∈ DB | D v u(M)}.

The definitions of definable and crisp msets can be given as usual in rough
set theory.

Definition 3. Let PASM(U) = 〈MS<∞(U),B,DB, l, u〉 be a general partial
mset approximation space over U .

1. An mset M over U is definable in the general partial mset approximation
space PASM(U), if M ∈ DB.

2. An mset M over U is crisp in the general partial mset approximation space
PASM(U), if l(M) = u(M).

Remark 6. In general case the members of DB are definable but not crisp.

2.4 Types of Partial Mset Approximation Spaces

A general partial mset approximation space can be specified in the following
different ways:

– giving some requirements for the base msets;
– giving a special way how to get the set of definable msets;
– specifying the approximation pair.

Definition 4. Let PASM(U) = 〈MS<∞(U),B,DB, l, u〉 be a general partial
mset approximation space over U .
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– The requirements from the base set point of view are:
• PASM(U) is bounded in occurrences by n (n ∈ N), if for all M ∈ B
M(a) ≤ n for all a ∈ U ;

• PASM(U) is single layered, if B ∈ B, B′ ∈ B \ {B} then B 6v B′ for
all B ∈ B;

• PASM(U) is one–layered, if B1 uB2 = ∅ for all B1, B2 ∈ B, B1 6= B2.
– The requirements from the set DB point of view are:
• PASM(U) is a set–type union partial mset approximation space, if B1t
B2 ∈ DB for all B1, B2 ∈ B;

• PASM(U) is a minimal set–type union partial mset approximation space,
if DB is given by the following inductive definition:
1. ∅ ∈ DB;
2. B ⊆ DB;
3. if B1, B2 ∈ B, then B1 tB2 ∈ DB;

• PASM(U) is a strict set–type union partial mset approximation space,
if DB is given by the following inductive definition:
1. ∅ ∈ DB;
2. B ⊆ DB;
3. if B′ ⊆ B, then

⊔
B′ ∈ DB;

• PASM(U) is a mset–type union partial mset approximation space, if
B1 ⊕B2 ∈ DB for all B1, B2 ∈ B;

• PASM(U) is an intersection type partial mset approximation space, if
B1 uB2 ∈ DB for all B1, B2 ∈ B;

• PASM(U) is total, if for all M ∈ MS<∞(U) there is a definable mset
D (D ∈ DB) such that M v D;

• PASM(U) is partial, if it is not total;
• PASM(U) relies on Pawlakian definable msets, if it is one–layered and

total.
– The requirements from the approximation pair point of view are:

• PASM(U) is lower semi–strong, if l(M) vM for all M ∈MS<∞(U);
• PASM(U) is upper semi–strong, if M v u(M) for all M ∈MS<∞(U);
• PASM(U) is strong, if lower and upper semi–strong, i.e.

l(M) vM v u(M) for all M ∈MS<∞(U);
• PASM(U) is a partial approximation space with Pawlakian approxima-

tion pair, if for any mset M ∈MS<∞(U)
1. l(M) =

⊔{B | B ∈ B and B vM};
2. u(M) =

⊔{B | B ∈ B and B uM 6= ∅}.

For the sake of simplicity general partial mset approximation spaces can be
taken as weak ones.

Proposition 4. If PASM(U) is a strict set–type union partial mset approxi-
mation space, then for any M ∈MS<∞(U)

1. l(M) =
⊔{B ∈ B | B v l(M)},

2. u(M) =
⊔{B ∈ B | B v u(M)}.
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3 P Systems with Neighborhoods

In this section we focus on hierarchical P systems with communication rules.

3.1 P Systems with Communication (Symport, Antiport) Rules

Definition 5. A membrane structure µ of degree m (m ≥ 1) is a rooted tree
with m nodes identified with the integers 1, . . . ,m.

Remark 7. If µ is a membrane structure of degree m, then µ can be represented
by the set Rµ, Rµ ⊆ {1, . . . ,m} × {1, . . . ,m}. 〈i, j〉 ∈ Rµ means, that there is
an edge from i (parent) to j (child) of tree µ (parent(j) = i).

Definition 6. Let µ be a membrane structure with m nodes and V be a finite
alphabet. The tuple

Π = 〈V, µ, w0
1, w

0
2, . . . , w

0
m, R1, R2, . . . , Rm〉

is a P system if

1. w0
i ∈MS<∞(V ) for i = 1, 2, . . . ,m;

2. Ri is a finite set of rules for i = 1, 2, . . . ,m such that if r ∈ Ri, then the
form of the rule r is one of the following:

(a) symport rules: 〈u, in〉, 〈u, out〉, where u 6= λ and there is an mset M ∈
MS<∞(V ) such that u represents M ;

(b) antiport rule: 〈u, in; v, out〉, where u 6= λ, v 6= λ and there are msets
M1,M2 ∈MS<∞(V ) such that u, v represent M1,M2, respectively.

Remark 8. The general form of a rule can be given as M →M ′, where M,M ′ ∈
MS<∞(V ).

3.2 Neighborhoods Given by Generated Approximation Spaces

Definition 7. Let Π = 〈V, µ, w0
1, w

0
2, . . . , w

0
m, R1, R2, . . . , Rm〉 be a P system.

PASM(Π) is a membrane approximation space generated by the P system Π if

PASM(Π) = 〈MS<∞(V ),B,DB, l, u〉

is a general partial mset approximation space over V such that

1. B is closed under intersection, i.e. if B1, B2 ∈ B and B1 u B2 6= ∅, then
B1 uB2 ∈ B;

2. PASM(Π) is strict set–union type;
3. PASM(Π) is lower semi–strong, i.e. l(M) vM for all M ∈MS<∞(V );
4. if parent(j) = i then u(wj) v wi.
5. if parent(j1) = parent(j2) = i then u(wj1)⊕ u(wj2) v wi.
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320



If we have a membrane system Π, and the generated membrane approxima-
tion space PASM(Π), then we can define the border of a region as an mset. To
introduce constrains on symport/antiport rules we need not only the border of
a region but ‘inside’ and ‘outside’ borders as well.

Definition 8. Let Π be a P system, V = {a1, a2, . . . , an} and PASM(Π) be a
membrane approximation space generated by the P system Π as in Definition 7.
Let the sets Γ u

i , Γ
l
i of indices (for all w0

i ) be as follows:

– u(w0
i ) =

⊔{Bγ | Bγ ∈ B γ ∈ Γ u
i },

– l(w0
i ) =

⊔{Bγ | Bγ ∈ B γ ∈ Γ l
i}.

Then

1. border(w0
i ) =

⊔{Bγ | γ ∈ Γ u
i \ Γ l

i};
2. borderout(w0

i ) =
⊔{Bγ 	 w0

i | γ ∈ Γ u
i \ Γ l

i};
3. borderin(w0

i ) =
⊔{Bγ 	 (Bγ 	 w0

i ) | γ ∈ Γ u
i \ Γ l

i}.

Remark 9. The mset border(w0
i ) is definable in the generated membrane approx-

imation space PASM(Π) for all i.

Using the borders of regions, the following constraint for rule executions can
be prescribed: a given rule r ∈ Ri of a membrane i has to work only in the border
of its region. In order to be so, let the execution of a rule r ∈ Ri (i = 1, 2, . . . ,m)
define in the following forms:

– if a symport rule has the form 〈u, in〉, it is executed only in that case when
u v borderout(w0

i );

– if a symport rule has the form 〈u, out〉, it is executed only in that case when
u v borderin(w0

i );

– if an antiport rule has the form 〈u, in; v, out〉, it is executed only in that case
when u v borderout(w0

i ) and v v borderin(w0
i ).

The next theorem shows that the membrane computation actually works in
the membrane borders.

Theorem 1. Let Π = 〈V, µ, w0
1, w

0
2, . . . , w

0
m, R1, R2, . . . , Rm〉 be a P system

where the communication rules in Ri (i = 1, 2, . . . ,m) are constrained as above,
and PASM(Π) = 〈MS<∞(V ),B,DB, l, u〉 be the membrane approximation
space generated by Π. After the membrane computation, let the P system Π ′ be
of the form Π ′ = 〈V, µ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉.

Then in PASM(Π) for all i (i = 1, 2, . . . ,m) the lower and upper approxi-
mations of multisets w0

i and wi are the same, i.e. the rough multisets connected
to w0

i and wi are the same: RM(w0
i ) = RM(wi).
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4 Future Work

In the near future, the most important task is to give the precise definition of
daemons. In addition, in order to demonstrate our model, we will work out a
biological example based on the MÉTA program which is a nationwide survey
of the actual state of natural vegetation of heritage of Hungary ([1], [6], [5]).
(MÉTA stands for Magyarországi Élőhelyek Térképi Adatbázisa: GIS Database
of the Hungarian Habitats.) It was carried out between 2003 and 2006. The
collected data are stored in an MS-SQL 2000 database.
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Abstract. There are several papers in which SAT is solved in linear time
by various new computing paradigms, and specially by various membrane
computing systems. In these approaches the used alphabet depends on
the number of variables. In this paper we show that the set of valid
SAT-formulae and n-SAT-formulae (for any fixed n) over finite sets of
variables are regular languages. We show a construction of deterministic
finite automata which accept the SAT and n-SAT languages in conjunc-
tive normal form checking both their syntax and satisfiable evaluations.
Theoretically the words of the SAT languages can be accepted by linear
time on their lengths by a traditional computer.

Keywords: SAT-problem, membrane computing, efficiency, new computing
paradigms, P-NP, regular languages, finite automata

1 Introduction

Computer science deals with problems that can be solved by algorithms. Some
problems can be solved by very effective algorithms, some of them seem not to
be. In complexity theory there are several classes of problems depending on the
complexity of the possible solving algorithms. A problem is in P if polynomial
deterministic algorithm solves it (on Turing machine). A problem is in NP if
non-deterministic polynomial algorithm solves it (on Turing machine). One of
the most challenging problems is to prove or disprove that the classes P=NP.
Most scientists think that NP is strictly includes P.

The SAT problem is the most basic NP-complete problem [14, 29]. It has
several forms. The first is the satisfiability of arbitrary Boolean formulae. A
restricted, and widely used version uses only formulae in conjunctive normal
forms. In conjunctive normal form a formula is build up from clauses. The clauses
are connected by conjunction. Each clause is build up form literals, and they are
connected by disjunction. A literal is nothing else, but a Boolean variable or its
negative (i.e., negated) form. The most restricted version we deal with is the
so-called 3-SAT. It is still NP-complete; and it has a huge literature. In 3-SAT
every clause has exactly 3 literals. It is very interesting fact, that SAT connects
some of the most important fields of theoretical computer science, such as logic,
formal languages, theory of algorithms and complexity theory.
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One of the aim of many people in computer science to solve the SAT (or the
3-SAT) in an efficient way. There are several attempts by usual algorithms on
traditional computers for both the original and some more restricted versions
[5, 7, 17]. There is an annual conference series: International Conference on The-
ory and Applications of Satisfiability Testing. Scientists also have competitions
whose program solves the given instances of the problem faster.

One of the main motivations of new computational paradigms to solve in-
tractable problems (SAT and n-SAT are frequently used candidates) by fast
methods. Membrane computing offers various ways for polynomial solutions to
SAT, by trading exponential space for time [33]. For a small collection of these
methods, see [21]. In these new computing paradigms the preparation of the
solution depends on the formula as we recall in Section 2. In this paper we as-
sume that the reader is familiar with most of the terms of membrane computing
and therefore we do not spend a large number of pages for full descriptions of
the recalled systems. We list several approaches and we point out the fact that
the size of the used alphabet depends on the problem instance (or some of its
parameters).

In Section 3, first we examine the syntactical part of the logical formulae
in conjunctive normal form. To obtain the syntactically correct formulae we
present regular expressions. After this we show how we can recognize the satisfi-
able formulae by a deterministic finite automaton. It is well-known that regular
languages can be recognized in linear time, moreover deciding if a word belongs
to the language or not can be done in “real time” by the deterministic finite au-
tomaton for the given language. Therefore the fact that the languages of (n-)SAT
are regular can help us to solve these problems in a very fast way, even if they
are NP-complete problems. We will discuss this possibility in the Subsection 3.3.
Finally we see the original problem and discuss its hardness.

Due to the numerous number of published solutions one may think that to
solve the SAT by membrane computing is not a challenging task any more.
With this paper we want to reopen this research field asking for new solution
algorithms that requires only a fixed number of object types independently of
the input. These new algorithms could play the same role as the traditional
algorithms play in classical computing defining a “more uniform” approach in
membrane computing.

1.1 Basic Definitions and Preliminaries

We recall some basic definitions, such as normal forms, CNF and SAT expressions
and regular expressions. We will deal with SAT only containing formulae in
conjunctive normal form.

Definition 1. The Boolean variables and their negations are literals. A logical
formula is called an elementary conjunction (clause), if it is a conjunction of
literals. The disjunction of elementary conjunctions is a disjunctive normal form
(DNF). If all clauses contain the same number (let us say, n) of literals, then we
call the form n-ary disjunctive form. Similarly, an elementary disjunction is a
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disjunction of literals. A conjunction of elementary disjunctions is a conjunctive
normal form (CNF, we are using also the terms CNF expression/CNF formula).
(For sake of simplicity we use brackets for all elementary disjunctions.) The SAT
problem is the following: given a propositional formula in conjunctive normal
form, decide whether it is satisfiable (or not). If the formula is unsatisfiable, then
it is equivalent to logical falsity. If the given formulae are in n-ary conjunctive
normal form, then the problem is known as the n-SAT problem.

It is well-known that the SAT and n-SAT problems (for n ≥ 3) are NP-
complete (see [12, 29]).

A Boolean variable is called positive literal, while its negation is called neg-
ative literal.

Let us fix an alphabet (if we want to speak about a language this is usually
the first step). Let F be a formula in CNF over the alphabet. If there is a satis-
fying assignment to the variables such that F evaluates to true, then F is in the
SAT language (and vice-versa, if a word is in the language, then it is a satisfi-
able formula in CNF form). We will also say that F is SAT expression/formula.
Similarly we define languages n-SAT, which contain only those formulae of the
SAT language in which each elementary disjunction contains exactly n literals
(n ∈ N). In this case F is also an n-SAT expression (or formula).

Note that there is a dual problem for the SAT problem. In the dual problem
the DNF is used. The problem to solve is to decide whether the given formula is
a tautology, (or not). We will refer to this form as the dual SAT-problem. The
dual of the SAT and n-SAT problems are also NP-complete problems (for n ≥ 3).
Actually, an NP-complete problem is to decide if a formula in CNF is satisfiable.
To decide if a formula in CNF is not satisfiable is co-NP-complete. Similarly, to
decide if a formula in DNF is tautology (logical law) is NP-complete. To decide
whether a formula in DNF is not tautology is co-NP-complete. The relation of NP
and co-NP is usually shown by these examples, the power of non-deterministic
computation is to have at least one computation that gives the result. However
to prove the opposite, i.e., the non-existence of such computation can have a
different complexity from the complexity of the original problem. (The class co-
NP also contains the class P. However, if P=NP, then NP=co-NP.) Here we just
want to mention one interesting moment: The problem to decide if a formula in
DNF is satisfiable or not, is almost trivial: the following linear algorithm solves
it.

1. Let i be 1.

2. Let us consider the ith clause. If there is no such a Boolean variable that
occurs both in positive and negative form (we say that a literal is contradictory
literal in a clause if both of its forms occur in the clause), then the formula is
satisfiable, a satisfying assignment is given by the elements of this clause: the
positive literals have true values, the negative literals have false values, thus the
formula is true independently of the values of the remaining Boolean variables.
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3. If this clause contain a contradictory literal, then increase the value of the
variable i. If there is an i-th clause, then go back to the previous step, else the
formula is unsatisfiable.

A version of the above algorithm solves the problem to decide if a Boolean
formula in CNF is tautology or not. Therefore one may ask, what is the “prob-
lem” when a formula is given in other form. There is a straightforward way to
translate a formula from DNF to CNF and vice-versa based on the logical equiv-
alences called distributive laws. To dissolve the problem, i.e., this contradiction,
it is enough to know that the size of the formula grows exponentially in this
translation...

After this short logical bypass let us get back to computing, especially to
formal languages.

In the next definition we use the well-known regular operators, such as union,
concatenation and Kleene-star (iteration); we use the usual notation +, ·, ∗ for
these operators respectively.

Definition 2. The finite expressions are regular expressions using the letters of
the alphabet and symbols +, ·, ∗ in the following way.

The letters of the alphabet with the empty word (λ) and the empty set (∅) are
regular expressions. They refer for the singleton languages containing only a
1-letter long word, and for the languages {λ}, {}, respectively.

If r, q are regular expressions, then (r + q), (r · q) and (r∗) are regular expres-
sions, as well. These complex expressions refer for the languages obtained by
the union, concatenation and Kleene-iteration of the languages referred by the
subexpressions r and q, respectively.

Note that some of the brackets can be eliminated by the usual precedence
relation among the operations and by associativity of union and concatenation.
Usually the sign of the concatenation (·) is also omitted. We will use the abbre-
viation rn, denoting the regular expression in which the regular expression r is
concatenated by itself with (a fixed) n (non-overlapping) occurrences.

A language is regular if there is a regular expression which describes it.

Now we recall the definition of finite automaton.

Definition 3. The ordered quintuple A = (K,T,M, σ0, H) is called a determin-
istic finite automaton (DFA), where K is the finite, non-empty set of states, T
is the finite alphabet of input symbols, M is the transition function, mapping
from K ×T to K, σ0 ∈ K is the initial state, and H ⊆ K is the set of accepting
states.

The well-known Kleene’s theorem states that each regular language can be
accepted by a DFA and each language accepted by a DFA is regular.
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2 Solving SAT by Membrane Computing

In this section we recall a very important class of unconventional computing
techniques and analyse the proposed solutions to SAT in that frameworks.

Over the last decade, molecular computing has been a very active field of
research. The great promise of performing computations at a molecular level
is that the small size of the computational units potentially allows for massive
parallelism in the computations. Thus, computations that seem to be intractable
in sequential modes of computation can be performed (at least in theory) in
polynomial or even linear time.

In this section we are dealing with Membrane Computing. It is a branch of
biocomputing, and developing very rapidly. New algorithmic ways are used to
solve hard (intractable) problems. This field was born by the paper [31]. An
early textbook presenting several variations of these systems is [33]. There are
various ways for trading space for time, i.e., by parallelism exponential space
can be obtained in linear time, for instance, by active membranes. The SAT
is solved by various models in effective ways. In the next subsections we re-
call some of these methods (dealing only with some aspects that are important
for our point of view, without further details due to the page limit; for fur-
ther details we recommend to check the literature at the P-system home page
at http://psystems.disco.unimib.it/ and http://ppage.psystems.eu; we
assume that the reader is familiar with the various concepts of these systems or
she/he can look for them in the cited literature). Since SAT is one of the most
known and most important NP-complete problems there are several attempts
by older and newer methods.

We use the terms uniform and semi-uniform by the definition of [35, 36]: in
semi-uniform algorithm a specific membrane system is created for a given in-
stance of the problem, while uniform algorithm can solve all instances having
same parameters (e.g., number of clauses, number of variables). We use the pa-
rameters: m clauses and k variables of the solvable CNF formula. Note that in
[22] it is pointed out that at problems connected to complexity classes P, NP
and P-SPACE the choice of uniformity or semi-uniformity leads to the charac-
terizations of the same complexity classes.

2.1 Membrane Creation

Using membrane creation one can use an exponential growth (exponential space
can easily been obtained) during the computation.

We briefly describe how membrane creating can be used to solve SAT in linear
time. First we have an initial membrane with only one object. Applying the only
applicable rule for this object we introduce two new objects corresponding to
the possible values of the first variable, and a technical object to continue the
process. Then the new objects of the logical variable create new membranes (and
copy some symbols to the new membranes). Now for each new membrane two
new objects are introduced corresponding to the next variable, these new objects
create new ones again, etc. Finally the membrane structure forms a complete
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k-level binary tree. Each path from the initial to a leaf-membrane represents
a possible truth-assignment. Now, each membrane in the k-th level computes
objects corresponding to satisfied clauses of the analysed formula. (It can be
done easily by a comparison among the literals of the clauses and the given
truth-assignment of the membrane.) Using a cooperative rule a special symbol is
sent out if all clauses are satisfied in a membrane. In the next step the previous
level membranes forward this symbol. Therefore this special symbol moves up
all k levels, and finally leaves the system and terminate the process with answer
‘satisfiable’. More technical details about such a method can be found in [33].

In this process the power of parallelism builds up a complete tree by levels
in linear time. In each membrane in the deepest level there are rules for each
clause, therefore the evaluation of clauses can go in a parallel way.

This approach, using membrane creation to solve SAT uses an alphabet with
cardinality approximately 3k+ 2m in [33]. The algorithm has a linear time com-
plexity: it solves the problem in 3k + 1 steps.

2.2 Membrane Division

Membrane division is another usual option for active membranes to increase the
number of membranes exponentially in the starting phase of the computation.

The SAT problem can be solved by a P system with active membranes in a
time which is linear on the number of variables and the number of clauses. In
the algorithm found in [32] the size of the alphabet is 5k +m.

In another algorithm ([33]) using membrane division the alphabet (the set
of object-symbols) has cardinality about 4k+ 2m. This algorithm solves SAT in
linear time with respect to k + 2m.

In the same book a parallel computer model is also shown in which the ‘par-
allel core’ do a massive parallel computation (brute-force) and then a ‘checker’
checks the result and a ‘messenger’ sends out the answer. This framework is used
to solve the SAT with alphabet of size 4k +m+ 2.

2.3 Active Membranes with Polarization

In [3] SAT can be deterministically decided in linear time (linear with respect
to k + m) by a uniform family of P systems with active membranes with two
polarizations and global evolution rules, move out and membrane division rules.
The size of the alphabet is approximately mk2.

It is also proved that the SAT can be deterministically decided in linear time
with respect to km by a uniform family of P systems with active membranes with
two polarizations and special rules: global split rules, exit only with switching
polarization, yes out rule (for ejecting the result) and global polarizationless
division rules. These systems use an alphabet of size approximately mk2.

In [39] about 4k + 2m kinds of object are used in a linear algorithm using
polarities of membranes to solve SAT.

In [28] evolution rules, move out rules and separation rules are used; the
alphabet is larger than mk2.
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2.4 Symport/antiport Systems

The SAT is also solved by symport/antiport systems using membrane division
by an alphabet of size approximately 11k + 2km+ (9k +m+ k logm) log(9k +
m+ k logm). The details of this algorithm can be seen in [1].

2.5 Minimal Parallelism and Membrane Divisions

The SAT is also solved effectively by membrane systems with minimal paral-
lelism. P systems constructed in a uniform manner and working in the minimally
parallel mode using non-cooperative rules, non-elementary membrane divisions,
move in and out rules and label changing can solve SAT in linear time. The size
of the used alphabet is larger than 4mk + 13k + 2m. Similar models are used
to solve SAT in linear time with respect to the number of the variables and
the number of clauses: P systems constructed in a uniform manner, working in
the minimally parallel mode using cooperative rules, non-elementary membrane
divisions, and move in and out rules solve SAT in linear time. Similarly, P sys-
tems working in the minimally parallel mode with cooperative rules, elementary
membrane divisions and move out rules solve SAT in linear time; moreover they
are constructed in a semi-uniform manner in [13].

The satisfiability of any propositional formula in CNF can be decided in
a linear time with respect to k by a P system with active membranes using
object evolution, move in and out rules, membrane dissolution and division; and
working in the minimally parallel mode. Moreover, the system is constructed in
a linear time with respect to k and m in a semi-uniform way [6]. This method
uses an alphabet of size 7k +m+ 11.

The n-SAT can be solved by recognizing P systems with active membranes
operating under minimal parallelism without polarities, and using evolution
rules, move in and out rules, membrane division and membrane creation. The P
system requires exponential space and linear time [9]. Here the size of the used
alphabet is larger than 5k + 4m.

In [2] polarity is also used. Here the parameter ` refers for the number of
occurrences of literals in the formula (with multiplicities). A uniform family of P
systems with evolution rules, move out rules and membrane divisions; working
in minimally parallel way can solve SAT with four polarizations in a quadratic
number (i.e., (`(m+n))) of steps. The size of the alphabet is larger than 4km(k+
m) + 2`(m+ k) + 2k`+m+ k + k(4`+ 3) +m(4`+ 1).

2.6 Membrane Systems with String Objects

In [33] there is a method for SAT that uses string replication (replicated rewrit-
ing). The process uses approximately 4k kinds of objects in the alphabet and
solves the problem in k +m+ 1 steps.

2.7 P Systems with Contextual Rules

In [16] the SAT is solved in linear time by one-sided contextual rules using an
alphabet of size 3k +m+ 2.
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2.8 Neural-like Membrane Systems

Neural-like membrane systems (or tissue P systems) can solve SAT in linear
time by using an alphabet of chemical objects (or excitations/impulses) with
cardinality 2k+1−1 [34], since the system first generates all the truth-assignments
in the form of strings of length k using letters ti and fi with 1 ≤ i ≤ n.

2.9 Quantum P-systems

In this section we recall a mixed paradigm, the quantum UREM P-systems [19].
Quantum computing is also counted as a new computing paradigm based on some
‘unconventional’ features of quantum mechanics. There is no space here to recall
all details, there are various textbooks for this topic also (see, e.g., [11]). The
main features of this paradigm are the following. A quantum bit (qubit) can have
infinitely many values, technically any unit vector of a four dimensional space
(complex coefficients for both of the possible values |0〉 and |1〉), the quantum
superposition of the two possible states. The used unitary operations (rotations)
can be written by 2 by 2 (complex valued) matrices. However by measurement
only the ‘projection’ of the superposition is obtained, the system reaches one of
the states |0〉 and |1〉 with the probability based on their coefficients. Having
a system with n qubits the dimension of its state (i.e., the stored information)
grows exponentially: the state can be described by a 2n dimensional vector.
The corresponding operators are described by matrices of size 2n by 2n (can be
obtained by tensor product). By special quantum effect, called entanglement,
a state in superposition of some qubits together may not be constructible by
the tensor products of the qubits. In this way exponential ‘space’ can be used.
(Theoretically it is nice, technologically it is very hard task to produce systems
that can use larger (e.g., 30) number of qubits in a system.)

In UPREM P-systems there are unit rules and energy assigned to membranes.
The rules in these systems are applied in a sequential way: at each computation
step, one rule is selected from the pool of currently active rules, and it is applied.
The system further developed by mixing it with quantum computing. Quantum
UPREM P-systems are proved to be universal without priority relation among
the rules [18]. In this way, a quantum computing technique: solution to SAT by
the quantum register machine is simulated. The given semi-uniform algorithm
uses the alphabet to describe the possible quantum states, and as the number
of possible states of the system is exponential on the number of used qubits, the
size of the alphabet is exponential on the input formula.

2.10 Mutual Mobile Membrane Systems

In mutual mobile membrane systems endocytosis and exocytosis work whenever
the involved membranes ‘agree’ on the movement. Actually, in [4] only weak NP-
complete problems, i.e., the knapsack, the subset-sum and the 2-partition are
solved and our main problem, the strong NP-complete SAT does not. However,
this branch of P-systems seems to be interesting and therefore we decided to
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include it here. All the problem solutions in [4] use alphabets depending on the
size of the input: they are solved in a semi-uniform way with larger size alphabet
than 6n, where n is the cardinality of the input set of numbers (weights).

2.11 Asynchronous P Systems

In [38] fully asynchronous parallelism in membrane computing and an asyn-
chronous P systems for the SAT problem is considered. The proposed P system
computes SAT in approximately mn2n sequential steps or in approximately mn
parallel steps using approximately mn kinds of objects.

2.12 Solving SAT by Pre-computed Resources

In [33] one of the fastest algorithms for SAT uses a pre-computation technique.
It is assumed that the initial membrane structure is given “for free”; the pre-
computation (without any costs) give a system that is large enough for the
input formula. (If a larger formula is given, then we need to shift to a larger
pre-computed system.) In this way a membrane structure that one can obtain,
for instance, by membrane divisions, is assumed to ready to use at the beginning
of the process. However the size of the used alphabet is exponential on k.

In some models the cardinality of the alphabet is cubic or exponential with
the number of the variables. Common fact of these approaches that the alphabet
depends on the problem, i.e., it has at least linear size on the number of variables.

3 Solving SAT in Linear Way by Traditional Computing

In the next part of this paper we analyse the SAT in a similar form as the new
computing paradigms solve it (theoretically) in effective ways allowing linear size
alphabet with the number of variables (see also the previous section).

We will prove an interesting and surprising (at least for first sight) result in
a constructive way. The construction goes in two steps. In the next subsection,
the first step, the syntactically correct (CNF) formulae will be described.

3.1 The Syntactic Forms of the SAT Languages

In this part we present the syntax of some of the SAT problems.
How should a word w look like, if the following question is answerable? Is w

is satisfiable, i.e. is w ∈ SAT?
We describe the syntactically correct CNF formulae. We use the signs [, ]

for the real brackets. (Our alphabet is {a, [, ] ,¬,∧,∨} to allow to use the curly
brackets ‘(’ and ‘)’ to show the order of the regular operations of the expression.)

For the (n-)SAT languages we need the CNF forms:
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Proposition 1. Every CNF formula is of the following regular form:

[(a+ ¬a)(∨(a+ ¬a))∗] (∧ [(a+ ¬a)(∨(a+ ¬a))∗])∗.

Every n-ary CNF formula (for the n-SAT languages) is of the form:

[
(a+ ¬a)(∨(a+ ¬a))n−1

] (
∧
[
(a+ ¬a)(∨(a+ ¬a))n−1

])∗
.

Using finite set of variables: {a1, a2, ..., ak}, we should substitute each occurrence
of the symbol a above (in each expression) with the regular expression (a1 +a2 +
...+ ak).

3.2 Deterministic Finite Automaton for the SAT Languages

In this section, we construct the following automata: an automaton which accepts
exactly the SAT-language and automata accepting the n-SAT languages (for any
fixed n).

Let C be the set of subsets of powerset 2k, where k is the number of the
variables in the language. We will interpret the elements of C as the sets of the
values of the variables when the given logical expression is false. We use this
part in this construction to know when the longest prefix of the formula which
is syntactically correct CNF expression is not satisfied.

Let Y be the set of the possible states of a DFA A = (Y, T,MA, y0, {yf})
which accepts the syntactically correct CNF expressions.

Let D be the set of k + 1 dimensional vectors over {0, 1, 2}. This vector will
count which variables are in the new clause. 0 on the i-th place of a vector d ∈ D
means that the i-th variable is not (yet) in the clause currently being read. 1 and
2 on the i-th place mean the occurrence of the i-th variable without negation and
with negation, respectively. The value 1 on the (k + 1)-th element denotes that
there is a variable in the actual clause with both types of occurrences (positive
and negative).

The states of the automaton are given by the Cartesian product of the sets
C, Y and D, where Y refers to the CNF syntax; and the sets C and D hold the
semantical content, i.e., for which values of the variables the formula is false.

Let the initial state σ0 = ({}, y0, 0), where {} is a value from C, y0 is the
initial state of A, and 0 is the k + 1 dimensional nullvector containing only 0’s.

For the input alphabet T of the automaton, we use the same alphabet as at
the CNF expressions: {a1, a2, ..., ak, [, ] ,¬,∧,∨}.

Let the transition function be the following: ((c, y, d), t)→ (c′, y′, d′)

– if t ∈ {∧,∨,¬, [}, then only the syntactical part will change: c′ = c, d′ = d
and y′ is the corresponding state of A, i.e. y′ = MA(y, t).

– if t is a variable, then c′ = c, y′ = MA(y, t) and we have the following cases
for calculating the value of d′:
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• if the previous symbol was ¬ (we know it from part y of the given state),
then there are two possibilities: if the corresponding value of the given
variable in d is 1, then let the k + 1-st value of d′ be 1 (and the other
items can be the same as they were in d); if the corresponding value is
not 1, then let it be 2 in d′ and all other values are the same as they are
in d.

• if the previous symbol is not ¬, then: if the corresponding value of the
given state is 2 in d, then let the k + 1-st item of d′ be 1 and all other
values of d′ can be copied from the corresponding values of d. And if the
corresponding value of d is not 2, then let it be 1 in d′ and each of the
other values will be the same as the corresponding value of d.

– if t =], then let c′ = c if the k + 1-st value of d is 1. In other cases let
c′ = c ∪N , where N is the set containing all k-tuples in which the value of
those variables which have corresponding values of 1 in d is 0 and the value
of those variables which have corresponding values of 2 in d is 1. And let
y′ = MA(y, ]), finally d′ = 0.

Let W be the maximal element of C, i.e., it contains all the 2k possibilities.
For our automaton let the set of final states be the following: all states (c, yf , 0)
for which c 6= W , i.e., c does not contain all the possibilities and yf is the final
state of A.

Since the form of the accepted expressions are correct, and the part c does
not contain all possible evaluation of the variables in the final state, the automa-
ton defined above can recognize exactly the SAT languages, i.e., the satisfiable
Boolean formulae in CNF.

Using a language n-SAT instead of SAT, we modify the automaton above in
the following way. Let a DFA B = (YB , T,MB , y0B , {yfB}) which accepts the
syntactically correct n-ary CNF expressions. Let the states of the new automa-
ton be the elements of the Cartesian product of C, YB and D. (The set YB is
used instead of Y .) And all of the transitions are the same according to the
corresponding elements of YB . Finally, in accepting states we use the final state
of the automaton B instead of the final state of A.

Moreover our automata with their final states (especially with part c ∈ C) tell
us for which values of the variables the formula is true. The formula evaluates to
true if the vectors are not in c. Note here that the SAT languages are infinite even
if the set of variables is finite. We have constructed finite automata accepting
the languages of SAT and n-SAT. Therefore it is proved that:

Theorem 1. The languages of satisfiable Boolean formulae in conjunctive nor-
mal form over any (fixed) finite sets of variables are regular languages. Similarly,
the languages of n-SAT formulae (n ∈ N) over any finite sets of variables are
also regular.
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Due to the deterministic finite automata accepting these languages, one can
decide if a word is in the language in at most as many steps as the length of the
word. So, as an immediate consequence of the previous theorem we state about
the classical computing paradigm the following

Corollary 1. The SAT and n-SAT problems (over any finite sets of variables)
can be solved by deterministic linear time sequential algorithms.

We note here that our solution is a uniform solution. However the size of
our DFA is not necessarily polynomial on the size of the input. Actually, if it
was polynomial, then it would prove that P=NP since the structure of the DFA
cannot change during the computation. Opposite to this fact the structure of
the membrane system can grow (exponentially) during the computation, and
therefore in uniform solution it is usually required that the initial size of the
membrane structure is polynomial on the length of the input. At Boolean circuits
(see [29]) the uniform method is also frequently used, but with a fixed set of gates
(alphabet).

3.3 Complexity Issues

Automata accepting the languages of satisfiable formulae in (n-ary) CNF were
given in the previous subsection. Now we are going to make some short notes on
complexity.

It is an important property of regular languages that they can be recognized
in linear, moreover in “real”-time. With a large enough memory (i.e., number of
possible states) we know the answer immediately after reading the formula. If
there is a correct upper limit to the number of variables for a given CNF/SAT-
formula, then using the DFA respecting this limit, it is linear time decidable
whether the formula is satisfiable or not.

Due to our construction we can say that the language of (n-)SAT over a
finite set of variables is not only an NP, but an L (linear time decidable by a
deterministic Turing Machine) problem. This fact seem to be a very surprising
because there is a big difference: for NP-complete problems there are not any
methods known to compute them in deterministic polynomial time by traditional
sequential machine, while problems in L are the most simplest ones.

Let us say something about the complexity of the constructed automata.
Look the part C of the states, which is the most complex part of our automata.
This element in this DFAs contains elements in the number of the powerset of the

powerset of the variables. For a k element set of variables it means 2(2
k) states

of C. For k = 10 it is 21024 which is about 10308. This number is incredibly huge,
it is much more than the number of atoms in the known Universe. The state-
complexity of our automaton (depending on k) is EXP (EXP (k)), therefore
there is no way to make such automaton which is useful in practice. (For small
values of k there are some efficient programs which can decide the SAT-problem
in reasonable time [5, 37].)
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Note that in this paper we do not try to make minimal DFAs to accept the
examined languages. Our result is more theoretical than practical. However we
note here that in practice automata with high number (over some millions) of
states are used. Sometimes the so-called lazy evaluation mode is used [10], es-
pecially, in natural language processing. From our point of view it means the
following. For a particular problem one do not need all the states of the au-
tomaton, only the reached states are used. Therefore, in some cases only those
states are stored which are already reached from the initial state. Using this
method large memory can be saved. Moreover processing a word at most as
many states are needed as the length of the word (plus 1). The disadvantage of
this method that the computation must compute the automaton as well, estab-
lishing the possible new states which can take much time. This hard computation
was used as a pre-computation at the construction of our DFAs (similarly to the
pre-computation is used in [31]).

4 The SAT over Unbounded Set of Variables

In [8] seven circumstances are given when the power of context-free languages is
not enough to describe some phenomena of the world. One of them is a logical
example: the language of tautologies is not context free, as it is shown in [30].

The complexity of the decision whether a Boolean formula is tautology is
closely connected to the complexity of SAT as we already described.

Let a Boolean formula be given. It is a tautology if and only if its negation
is unsatisfiable. The formula is satisfiable if and only if its negation is not a
tautology.

In [8, 30] the authors use the tautologies over arbitrarily many variables (cod-
ing their names by finite letters) and using the connectives negation, conjunction,
disjunction and implication. It is easy to show that the languages of tautologies
in arbitrary form cannot be regular, because we use brackets. (Using a homo-
morphism to substitute all symbols except the brackets by the empty word, we
get the DYCK language, which is not regular, but it is context-free. Since the
regular languages are closed under homomorphism, the original language cannot
be regular.) Note that we can avoid using the brackets by prefix notation of
formulae, but the language cannot be regular, because a counter is needed to
know how many operands have to follow the operators.

In [23] it is proved that the language of Boolean tautologies over an infinite
alphabet (using coding to a finite alphabet) is not regular and not context-free,
but it is a context-sensitive language, even if only formulae in DNF is used.
It is not a surprising fact, since the membership problem of context-sensitive
languages is a P-SPACE complete problem ([12, 15]), while the word problem
for context-free languages is in P. Therefore, this language can be accepted by
a linear bounded Turing-machine. The dual problems of the SAT and n-SAT
are hard with unbounded number of variables. Knowing that the dual problems
have similarly large complexities, we can say that over arbitrary many variables
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the SAT and n-SAT languages are not regular; they are much more complex
languages/problems.

5 Conclusions, Further Remarks

The most of new computational paradigms, as membrane computing systems,
solve the SAT in effective ways. Usually the alphabet depends on the particular
problem, i.e., on the number of the variables. Due to page limitations we could
not recall all the details of the mentioned solutions to SAT (it could give a nice
survey). We have shown that the SAT and n-SAT languages are regular over any
(fixed) finite set of variables, and therefore it seems that a set of (much) easier
problems is solved (in a uniform way). Actually, our finite automata check all
Boolean combinations and, therefore, they need exponential number of states.
In membrane systems the evaluation process go in a parallel manner in an expo-
nential space that can be obtained in a linear time, hence the initial system do
not need to be exponential on any parameter of the input. Our automata check
also the syntax of the input expressions (words), while in membrane systems it
is usually assumed that the input is in a correct form and therefore the compu-
tation checks only the satisfiability of the input formulae. The regular languages
can be recognized in linear time. If there is a correct upper limit to the number
of variables for a given formula, then using the DFA respecting this limit, it is
linear time decidable whether the formula is a satisfiable. This is a very nice
result about an NP-complete problem, isn’t it? Unfortunately, as we discussed
in Subsection 3.3 our result is more theoretical and mathematical than practical.
Our result shows that in SAT the length of the formulae are not so important
factor. It is interesting, because in complexity theory the measure uses the input-
length as a parameter. In SAT the number of variables of the formula plays a
more essential role.

Let us consider those problems of discrete mathematics (including some NP-
complete problems) in which there are only finitely many possible answers. They
define regular languages over a finite alphabet (with a finite number of variables,
a finite number of nodes in the graph, etc.) if the syntactically correct description
of them is regular. The problem has only finitely many possible states, and we
can use the same method as we presented here to make a finite automaton, which
accepts the solutions, even if the language (set) of the solutions of the problem is
infinite. It can be a useful tool when an upper bound of the used variables/nodes
etc. is given. We may have a fast algorithm (real time) to solve these problems,
even if the arbitrary case is more difficult.

There are several algorithms to solve SAT by various P-systems. With this
paper we wanted to reopen this particular field. We are looking for new ideas,
collaborations to solve SAT by a method with fixed alphabet. Note here that
there is another new computational paradigm, the so-called interval-valued com-
putation (introduced in [24, 25] and further developed in [26, 27]). It offers also
a linear solution to SAT (moreover to q-SAT, also). This ‘uniform’ algorithm
gives the answer for every Boolean formula, independently of its length and of
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the number of variables. This method also uses exponential space of the num-
ber of used variables. The space complexity is measured by the used number of
subintervals of the basic interval [0, 1). The algorithm consists of a linear number
of steps (operations) on the length of the input formula, so that the interval-
values of linear number of subformulae are computed and stored. It could be an
interesting and challenging task to mix the features of interval-valued comput-
ing and P-systems. This mixture could help to develop further highly parallel
algorithms that can solve SAT and other intractable problems in their original
form (as it is discussed in Section 4). We believe that this task could also be
useful for the problem P=NP...
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5. T. Brueggeman, W. Kern, An improved deterministic local search algorithm for
3-SAT, Theoretical Computer Science 329 (1-3), 303–313 (2004)

6. G. Ciobanu, L. Pan, Gh. Paun, M.J. Pérez-Jiménez, P systems with minimal par-
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27. B. Nagy, S. Vályi, Prime factorization by interval-valued computing, Publicationes
Mathematicae Debrecen 79/3–4, 539–551 (2011)

28. L. Pan, A. Alhazov, Solving HPP and SAT by P Systems with Active Membranes
and Separation Rules, Acta Informatica 43 (2), 131–145 (2006)

29. C. H. Papadimitriu, Computational complexity, Addison-Wesley (1994)

30. Gh. Paun The propositional calculus languages versus the Chomsky hierarchy, Stud.
Cerc. Mat. 33, 299–310. (1981) (In Romanian)

31. Gh. Paun, Computing with Membranes, Journal of Computer and System Sciences,
61, 1, 108–143 (2000) and Turku Center for Computer Science-TUCS Report No.
208 (1998)

B. Nagy

338



32. Gh. Paun, P-systems with active membranes: attacking NP complete problems,
Unconventional Models of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen,
eds.) Springer-Verlag, London (2000) 94-115 and CDMTCS Research report No.
102, 1999, Auckland Univ., New Zeland, www.cs.auckland.ac.nz/CDMTCS

33. Gh. Paun, Membrane Computing: An introduction, Springer-Verlag, Berlin (2002)
34. J. Pazos, A. Rodrguez-Patón, A. Silva, Solving SAT in Linear Time with a Neural-

Like Membrane System, Computational Methods in Neural Modeling (IWANN
2003), LNCS 2686, pp. 662–669 (2003)
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37. U. Schöning, A Probabilistic Algorithm for k-SAT Based on Limited Local Search
and Restart, Algorithmica 32 (4), 615–623 (2002)

38. H. Tagawa, A. Fujiwara, Solving SAT and Hamiltonian Cycle Problem Using
Asynchronous P Systems, IEICE TRANSACTIONS on Information and Systems
Vol.E95-D No.3, 746–754 (2012)

39. C. Zandron, C. Ferretti, G. Mauri, Solving NP-complete problems using P systems
with active membranes, Unconventional Models of Computation (I. Antoniou, C.S.
Calude, M.J. Dinneen, eds.), Springer-Verlag, London, 289–301 (2000)

On efficient algorithms for SAT

339





Multigraphical Membrane Systems

Revisited

Adam Obtu lowicz

Institute of Mathematics, Polish Academy of Sciences
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Abstract. A concept of a (directed) multigraphical membrane system
[18], akin to membrane systems in [20] and [17], for modeling complex
systems in biology, evolving neural networks, perception, and brain func-
tion is recalled and its new inspiring examples are presented for linking
it with object recognition in cortex and an idea of neocognitron for mul-
tidimensional geometry.

1 Introduction

Statecharts described in [14] and their wide applications, including applications
in system biology, cf. [10], and the formal foundations for natural reasoning in a
visual mode presented in [24] challenge a prejudice against visualizations in exact
sciences that they are heuristic tools and not valid elements of mathematical
proofs.

We recall from [18] a concept of a (directed) multigraphical membrane sys-
tem to be applied for modelling complex systems in biology, evolving neural
networks, perception, and brain function. A precise mathematical definition of
this concept and its topological representation by Venn diagrams and the usual
graph drawings constitute a kind of visual formalism related to that discussed
in [14]. The concept of a multigraphical membrane system is some new variant
of the notion of a membrane system in [20] and [17]. In Section 3 we present
the new inspiring examples of the concept of multigraphical membrane system
for linking it with object recognition in cortex and an idea of neocognitron for
multidimensional geometry.

2 Multigraphical membrane systems

Membrane system in [20] and [17] are simply finite trees with nodes labelled
by multisets, where the finite trees have a natural visual presentation by Venn
diagrams.

We introduce (directed) multigraphical membrane systems to be finite trees
with nodes labelled by (directed) multigraphs.

We consider directed multigraphical membrane systems of a special feature
described formally in the following way.

A sketch-like membrane system S is given by:
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– its underlying tree TS which is a finite graph given by the set V (TS) of
vertices, the set E(TS) ⊆ V (TS) × V (TS) of edges, and the root r which
is a distinguished vertex such that for every vertex v different from r there
exists a unique path from v into r in TS , where for every vertex v we define
rel(v) = {v′ | (v′, v) ∈ E(TS)} which is the set of vertices immediately related
to v;

– its family (Gv |v ∈ V (TS)) of finite directed multigraphs for Gv given by
the set V (Gv) of vertices, the set E(Gv) of edges, the source function sv :
E(Gv) → V (Gv), and the target function tv : E(Gv) → V (Gv) such that the
following conditions hold:
1) V (Gv) = {v} ∪ rel(v),
2) E(Gv) is empty for every elementary vertex v, i.e. such that rel(v) is

empty,
3) for every non-elementary vertex v, i.e. such that rel(v) is a non-empty

set, we have
(i) Gv(v, v′) is empty for every v′ ∈ V (Gv),

(ii) Gv(v′, v) is a one-element set for every v′ ∈ rel(v),
where Gv(v1, v2) = {e ∈ E(Gv) | sv(e) = v1 and tv(e) = v2}.

For every non-elementary vertex v of TS we define:

– the v-diagram Dg(v) to be that directed multigraph which is the restric-
tion of Gv to rel(v), i.e. E(Dg(v)) =

{
e ∈ E(Gv) | {sv(e), tv(e)} ⊆ rel(v)

}
,

V (Dg(v)) = rel(v), and the source and target functions of Dg(v) are the
obvious restrictions of sv, tv to E(Dg(v)), respectively,

– the v-cocone to be a family (ev′ |v′ ∈ rel(v)) of edges of Gv such that
sv(ev′) = v′ and tv(ev′) = v for every v′ ∈ rel(v).

By a model of a sketch-like membrane system S in a category C with finite
colimits we mean a family of graph homomorphisms hv : Gv → C (v is a non-
elementary vertex of TS) such that hv(v) is a colimit of the diagram hv ↾ Dg(v) :
Dg(v) → C and (hv(ev′) |v′ ∈ rel(v)) is a colimiting cocone for the v-cocone
(ev′ |v′ ∈ rel(v)), where hv ↾ Dg(v) is the restriction of hv to Dg(v). For all
categorical and sketch theoretical notions like graph homomorphism, colimit of
the diagram, and colimiting cocone we refer the reader to [4].

The idea of a sketch-like membrane system and its categorical model is a spe-
cial case of the concept of a sketch and its model described in [4] and [16], where
one finds that sketches can serve as a visual presentation of some data structure
and data type algebraic specifications. On the other hand the idea of a sketch-like
membrane system is a generalization of the notion of ramification used in [7], [8],
[9] to investigate hierarchical categories with hierarchies determined by iterated
colimits understood as in [7]. Hierarchical categories with hierarchies determined
by iterated colimits are applied in [2] and [8] to describe various emergence phe-
nomena in biology and general system theory. The iterated colimits identified
with binding of patterns in neural net systems are expected in [8] and [9] to
be applied in the investigations of binding problems in vision systems (associ-
ated with perception and brain function) in [27] and [28], hence the notion of
sketch-like membrane system is aimed to be a tool for these investigations.
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More precisely, sketch-like membrane systems are aimed to be presentations
of objects of state categories of Memory Evolutive Systems in [7] and [8], where
these state categories are hierarchical categories with hierarchies determined by
iterated colimits. Hierarchical feature of sketch-like membrane systems and their
categorical semantics reflect iterated colimit feature of objects of state categories
of Memory Evolutive Systems [9].

If we drop condition 3) in the definition of a sketch-like membrane system,
we obtain those directed multigraphical membrane systems which appear useful
to describe alternating organization of living systems discussed in [3] with regard
to nesting (represented by the underlying tree TS) and interaction of levels of
organization (represented by family of directed multigraphs Gv (v ∈ V (TS))).
According to [3] the edges in Gv(v′, v) describe integration, the edges in Gv(v, v′)
describe regulation, and the edges of v-diagram Dg(v) describe interaction.

A directed multigraphical (a sketch-like) membrane system is illustrated in
Fig. 1, whose semantics (model) in a hierarchical category is illustrated in Fig. 2.

Fig. 1.
Multigraphical membrane system corresponding to 2-ramification:

.

.

.

.

nodes—membranes, edges—objects,
neurons—membranes, synapses—objects.

Concerning the underlying trees of multigraphical membrane systems we rec-
ommend to read [1] containing a discussion of advantages and disadvantages of
using trees for visual presentation and an analysis of complex systems.
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Fig. 2.
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colim D0

category representing
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diagram,

i.e. graph
homomorphism

the fat arrows are colimiting injections,
i.e. the elements of colimiting cocons,
respectively

3 Inspiring Examples

Following the idea of drawing hypercubesa from [25] we show the examples of
sketch-like multigraphical membrane systems which approach this idea in some
formal way.

For natural numbers n > 0 and i ∈ {1, 2, 3} we define sketch-like multigraph-
ical membrane systems Si

n in the following way:

– the underlying tree Ti
n of Si

n is such that

• the set V (Ti
n) of vertices is the set of all strings (sequences) of length

not greater than n of digits in D1 = {0, 1} for i = 1, in D2 = {0, 1, 2, 3}
for i = 2, and in D3 = {0, 1, 2, 3, 4, 5, 6, 7} for i = 3,

• the set E(Ti
n) of edges of Ti

n is such that E(Ti
n) = {(Γj, Γ ) | {Γj, Γ} ⊂

V (Ti
n) and j ∈ Di} with source and target functions being the projec-

tions on the first and the second component, respectively, where Γj is
the string obtained by juxtaposition a new digit j on the right end of Γ ,

– the family
(
GΓ |Γ ∈ V (Ti

n)
)

of directed graphs of Si
n is such that for every

non-elementary vertex Γ ∈ V (Ti
n) the Γ -diagram Dg(Γ ) is determined in

the following way:

• for i = 1 the diagram Dg(Γ ) is a graph consisting of a single edge
Γ0 → Γ1,

a for a notion of a hypercube see [19], [6], [23]

A. Obtu lowicz

344



• for i = 2 the diagram Dg(Γ ) is the following square:

Γ2 // Γ3

Γ0

OO

// Γ1,

OO

• for i = 3 the diagram Dg(Γ ) is the following cube:

Γ4 //

!!C
CC

CC
CC

C Γ5

||zz
zz
zz
zz

Γ6 // Γ7

Γ2 //

OO

Γ3

OO

Γ0

OO

//

=={{{{{{{{
Γ1.

OO

bbDDDDDDDD

The above sketch-like multigraphical membrane systems drawn by using
Venn diagrams (with discs dΓ corresponding to vertices Γ of Ti

n such that dΓj

is an immediate subset of dΓ ) coincide with the drawings shown in [25].
The following interpretation of Si

n by an i · n-dimensional hypercube [[Si
n]]

(n > 0 and i ∈ {1, 2, 3}) completes the proposed formal approach to the idea of
drawing hypercubes in [25].

We introduce the following notion to define hypercubes [[Si
n]]. For a natural

number n ≥ 0 and a finite directed graph G whose vertices are natural numbers
and the set E(G) of edges of G is such that E(G) ⊆ V (G) × V (G) we define a
new graph G ↑ n, called the translation of G to n, by

V (G ↑ n) = {i + n | i ∈ V (G)},

E(G ↑ n) = {(i + n, j + n) | (i, j) ∈ E(G)}.

The hypercubes [[Si
n]] (n > 0, i ∈ {1, 2, 3}) are defined by induction on n in

the following way:

– for every i ∈ {1, 2, 3} the hypercube [[Si
1]] is the diagram Dg(Λ) of Si

1, where
Λ is the empty string and the digits in V (Dg(Λ)) are identified with corre-
sponding natural numbers,

– for all n > 0 and i ∈ {1, 2, 3} the hypercube [[Si
n+1]] is such that

V ([[Si
n+1]]) =

⋃

0≤j<2i

V
(
[[Si

n]] ↑ (j · 2i·n)
)
,

E([[Si
n+1]]) =

⋃

0≤j<2i

E
(
[[Si

n]] ↑ (j · 2i·n)
)

∪
⋃

(k,m)∈E([[Si
1]])

{
(j + k · 2i·n, j + m · 2i·n) | j ∈ V ([[Si

n]])
}
.
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The correctness of the proposed formal approach to the drawing of hyper-
cubes in [25] is provided by the following theorem.

Theorem. For all natural numbers n > 0 and i ∈ {2, 3}
– [[S1

n]] is an n-dimensional hypercube,
– [[Si

n]] = [[S1
i·n]].

Proof. The proof of the theorem is by induction on n.

One sees that the edges of Γ -diagrams Dg(Γ ) of Si
n are the results of com-

pression or binding the edges linking appropriate disjoint subhypercubes of [[Si
n]],

where the idea of this compression or binding is fundamental for drawing hy-
percubes in [25]. The elements of cocones for Si

n correspond to the embeddings
between appropriate subhypercubes of [[Si

n]].
Thus the sketch-like multigraphical membrane systems Si

n show some internal
fractal-like structure of hypercubes [[Si

n]] which was not visible at first glance,
e.g. in the drawing of 6-dimensional hypercube in Figure 1 in [23].

Conclusion

The sketch-like multigraphical membrane systems play a dual role in object
recognition and visual processing realized in brain neural networks and by arti-
ficial neural network of neocognitron [12]. Namely, they present the “objective”
multilevel featuresb to be represented neuronally (at best by embedding) in
“subjective” multilayer brain neural networksc, cf. e.g. [11], [26], and in artificial
neural networks of neocognitron.

The idea of drawing multidimensional hypercubes outlined in [25] together
with its formal treatment by sketch-like multigraphical membrane systems shown
in Section 3 propose a new approach to feature recognition and visual processing
of multidimensional objects by information compressiond, may be different from
that proposed in [15]. Thus one can ask for reliability of processes of feature
recognition of multidimensional objects by neocognitron in the manner of [13]
and according to this new approach.

The presentation of multidimensional hypercubes by sketch-like multigraph-
ical membrane systems Si

n with their interpretations [[Si
n]], respectively, suggest

a similar presentation of hierarchical networks in [21] (see Fig. 1 in [21]) and [5]
by applying sketch-like multigraphical membrane systems, which is outlined in
Fig. 3 of the present paper, where Fig. 3(a)–(c) is Fig. 1 in [21].

b with respect to e.g. natural abstraction levels: pixel level, local feature level,
structure-level, object-level, object-set-level, and scene characteriztion, or with re-
spect to the levels of subhypercubes (faces) of a multidimensional hypercube.

c like in a classical model of visual processing in cortex which is hierarchy of increas-
ingly sophisticated representations extending in natural way the model of simple to
complex cells (neurons) of Hubel and Wisel, cf. [22].

d realized e.g. by binding some links between subhypercubes of a given multidimen-
sional hypercube.
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The arcs (links) from the peripherical nodes of each cluster to the central
node of the original cluster (in Fig. 3(c)) are compressed to the arcs between
non-elementary membranes (in Fig. 3(d)) corresponding to the clusters. The skin
membrane (root) is omitted in Fig. 3(d).
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Abstract. In this paper we present two approaches, namely correlative
and quantitative causality, to study cause-effect relationships in reac-
tion models and we propose a framework which integrates them in or-
der to study causality by means of transition P systems. The proposed
framework is based on the fact that statistical analysis can be used to
building up a membrane model which can be used to analyze causal-
ity relationships in terms of multisets of objects and rules in presence
of non-determinism and parallelism. We prove that the P system which
is defined by means of correlation analysis provides a correspondence
between quantitative and correlative notions of causality.

1 Introduction

Since their first introduction, membrane systems [15], also known as P sys-
tems, have been widely investigated in the framework of formal language theory
as innovative compartmentalized parallel multiset rewriting systems, and differ-
ent variants have been analyzed along with their computational power (for a
complete list of references, see http://ppage.psystems.eu). Although they were
originally introduced as computational models, their biologically inspired struc-
ture and functioning, together with their feasibility as models of cellular and
biomolecular processes, turned out to be a widely applicable modeling technique
in several domains.

If we see P systems as biochemical reaction models1, then it is possible to
apply them to study causality in living cells, that is, the ways that entities of a
reaction system influence each other. In particular, cause-effect relationships can
be analyzed by following two ways: i) a statistical approach, and ii) a quantitative
approach.

1 These models are a formal representation of interactions between biochemical reac-
tions.
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From a statistical point of view, causality is the relationship between an
event, the cause, and a second event, the effect, where the second event is under-
stood as a consequence of the first. Causality can also be seen as the relationship
between a set of factors and a phenomenon. The statistical notion can be esti-
mated directly by observational studies and experimental data, for which causal
direction can be inferred if information about time is available. This is due to
the fact that causes must precede their effects in the time line. Then the use of
temporal data can permit to discover causal direction.

Differently, from a quantitative point of view, causality is studied in terms
of multisets of objects and of multisets of rules in presence of non-determinism
and parallelism. To this goal, several approaches have been proposed to translate
them into different formalisms to study cause-effect relationships, as for example
[3,5,11]. The main drawback of these approaches is that they neglect quantita-
tive aspects involved in the definition of evolution for membrane systems. For
this reason, a quantitative approach to causality was started in [1] and has been
extended in [2]. This approach requires a reaction model representing the mem-
brane system under consideration. Along this research line, if a set of rules is not
known, a question arises: “is it possible to study quantitative causality starting
from a set of experimental data”?

The aim of this work is twofold. Firstly, it introduces the two approaches
that we developed to study cause-effect relationships. Secondly, it proposes a
framework which integrates the two approaches in order to study quantitative
causality by means of membrane systems, from temporal series of data collected
on the concentration of different reactants. It integrates two different methods.
In a first step, interrelations between elements are interpreted by means of cor-
relation analysis and measures of similarity based on time-lagged time series. In
this way, a set of rules modelling statistical causalities is inferred. This set can
give us indication about the network topology of the reactions and the regulative
mechanisms in the phenomena under study. In a second step, this set of rules is
used to building up a reaction model useful to study quantitative causality by
means of membrane systems.

The paper is organized as follows. Section 2 recalls the concepts of mem-
brane systems and multisets, and introduces causality over multisets of objects.
In Section 3, a theoretical network analysis which can be used to distinguish sta-
tistical causal interactions in biological pathways starting from pure observations
of species dynamics is described. Section 4 proposes a procedure to integrate the
two approaches, while Section 5 considers two case studies. Finally, Section 6
ends the paper by some discussions on the proposed approach and some possible
future theoretical studies useful to analyze the relationships between quantita-
tive and correlative causality.

2 Quantitative Causality in Membrane Systems

Membrane computing is a branch of natural computing, the area of research
concerned with computation taking place in nature and with human-designed
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computing inspired by nature. Membrane computing abstracts computing mod-
els from the architecture and the functioning of living cells, as well as from the
organization of cells in tissues, organs and, brain.

A transition P system is the simplest form of membrane system consisting
of a hierarchy of nested membranes, each membrane containing objects, rules
and possibly other membranes. The hierarchy of membranes models the com-
partments of the biological pathway, the objects represent the species in each
compartments, and the rules correspond to the biochemical reactions forming
the pathways. The rules are considered to be applied in a maximally parallel
manner. The simplest form of transition P system is the one with only one mem-
brane, which basically consists of a set of rules and possibly an initial multiset
of objects.

A multiset w over a set A is a function w : A → N from A to the set of
natural numbers N; the multiplicity of an element a ∈ A is w(a). We denote
the empty multiset having multiplicity 0 for all a ∈ A by 0A, or simply by 0 if
the set A is clear from the context. When describing a multiset characterized
by, for example, w(a) = 4, w(b) = 2 and w(c) = 0 for c ∈ A\{a, b}, we use the
representation 4a+ 2b. For two multisets v, w over A we say that v is contained
in w if v(a) ≤ w(a) for all a ∈ A, and we denote this by v ≤ w. If v ≤ w, we
can define w − v by (w − v)(a) = w(a) − v(a). For two multisets v and w we
use the notation v ∩ w for the largest multiset contained in both v and w. In
other words, v ∩w is defined by (v ∩w)(a) = min{v(a), w(a)}, for all a ∈ A. We
denote by v\w the multiset v − v ∩ w. We sometimes use the notation a ∈ w to
denote the fact that w(a) > 0, i.e., the multiset w contains at least one a.

Formally, a transition P system with only one membrane is a tuple Π =
(O,R, u0), where O is an alphabet of objects, R is a set of rules, while u0 is a
multiset of objects which is initially in the membrane. Each rule r has the form
r : u→ v, where u and v are multisets of objects and u is non-empty.

We use multisets of objects over O to represent resources available or being
produced inside the membrane. Then, u0 evolves by applying the rules in R. We
use the notation lhs(r) for the left hand side u of a rule of form r : u → v and
similarly rhs(r) for the right hand side v. Therefore, by the application of the
rule r the lhs(r) is being subtracted from u0, if possible, and the rhs(r) is added.
In this way, the rules application models biological reactions. These notations
are extended naturally to multisets of rules.

We define causality directly, for a multiset of objects v. Note that this defi-
nition differs from the presentation found in [2], where it has been obtained as a
theorem describing (global) causality. Here we present it directly as a definition,
in the interest of brevity.

Definition 1 (Quantitative Causality) A multiset of rules G is called a cause
for a multiset of objects v whenever the following hold:

– there is no rule r such that lhs(r) ≤ v\rhs(G);

– rhs(G) ∩ v > rhs(G− r) ∩ v for any rule r ∈ G.
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The underlining idea for this definition is that when some (multiset of) ob-
jects v appear during the course of an evolution of a P system, we look for some
(multiset of) rules G which have produced them. By producing we understand

that we have an evolution step u
F

=⇒ u′ in which u′ ≥ v and F ≥ G such
that exactly the rules in G are those responsible for the apparition of v. Note
that v can be written as the sum of v ∩ rhs(G) and v\rhs(G). The v ∩ rhs(G)
part is the one produced by G since it is included in rhs(G); for the remainder
v\rhs(G) we require that it is composed only of objects which do not evolve in
the considered evolution step (this is what the first condition amounts to). In
other words, all the objects of v are either produced by rules of G or are not
interacting with any rule. The second condition is equivalent to saying that no
rule r can be subtracted from G such that the part of v produced by G remains
the same - there are no “useless” rules in G with respect to producing elements
of v.

To view the notions above introduced, let us consider the following example
of a transition P system with only one membrane, with rules

r1 : x→ a+ b, r2 : y → b, r3 : a+ b→ y

and an initial multiset of objects u0 = x+y+2a. The only possible evolution
is

x+ y + 2a
r1+r2=⇒ 3a+ 2b

2r3=⇒ a+ 2y
2r2=⇒ a+ 2b

r3=⇒ b+ y
r2=⇒ 2b

In [2], a general inductive procedure for finding the causes of a multiset has
been introduced. Here we reason directly over the example considered, loosely
following the inductive procedure.

Let v = a + b be the multiset for which we intend to find its causes. We
start by considering the empty multiset 0 as a potential cause for v. The empty
multiset is discarded because lhs(r3) ≤ v\rhs(0) = v\0 (they are actually equal)
which contradicts the first part of Definition 1. The next possible candidates for
causes of v are either r1 or r2 or r3. Clearly r3 suffers from the same problem as
0, it does not fulfill the first condition of Definition 1. However, both r1 and r2
verify the conditions to be causes of v. The next step is to add rule r3 to either
multiset r1 or r2, i.e., we consider as potential causes r1 +r3 and r2 +r3. We find
that rule r3 is actually “useless” as it does not produce any object of v. In other
words, r3 has the problem that rhs(G) ∩ v = rhs(G − r3) ∩ v for G = r1 + r3
or G = r2 + r3. Moreover, this happens for any G ≥ r1 + r3 or G ≥ r2 + r3.
This means that no cause of v can contain r3. If we try G = r1 + r2, then r2
becomes the “useless” rule: rhs(G) ∩ v = rhs(G − r2) ∩ v. This also happens
for G ≥ r1 + r2. All we have left to check are either G = k · r1 or G = k · r2,
for k ≥ 2. When G = k · r1 we have that an instance of r1 is a “useless” rule:
rhs(G)∩v = rhs(G−r1)∩v; in other words, any additional r1 besides a single r1
are “useless”. The case of G = k · r2 for k ≥ 2 is similar. Thus the only possible
causes for v = a+ b are either r1 or r2.
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3 Correlative Causality

Associations among time-series of biological entities represent at least the
strength of relation between two species xi and xj . They can be measured by
several coefficient types, which can be classified into similarity and dissimilarity
measures. The first ones reflect the extent of similarity between species. The
larger the similarity between xi and xj , the more they are similar. In contrast,
dissimilarity measures reflect dissimilarities between xi and xj .

Correlation coefficients belong to the group of similarity measures and de-
scribe at least the magnitude of the relation between two species. As a corollary
of the Cauchy-Schwarz inequality, the absolute value of each correlation coeffi-
cient cannot exceed 1. However, these coefficients can be extended in order to
describe both magnitude and direction. Magnitude of a correlation represents
the strength of the relation: the strength of the tendency of variables to move
in the same or the opposite direction or how strong they covary across the set
of observations. The larger the absolute correlation, the stronger the variables
are associated. The direction of a correlation coefficient describes how two vari-
ables are associated. If such a coefficient is positive, then the two variables move
in the same direction. Differently, if it is negative, then they move in opposite
directions.

Consider m to be the length of time-series available for each species of a set
X = {x1, x2, . . . , xn}. The time-series of xi and xj can be correlated directly to
compute the pairwise Pearson correlation coefficient given by:

ρ(xi, xj) =

∑m
t=0 ((xi[t]− x̄i)(xj [t]− x̄j))√

(
∑m
t=0 (xi[t]− x̄i)2)(

∑m
t=0 (xj [t]− x̄j)2)

(1)

where x̄i and x̄j are the averages of xi[t] and xj [t], respectively. However, let
us suppose that at least one between xi and xj is in a stable-state, and then
ρ(xi, xj) can not be defined. In this case, we assume that ρ(xi, xj) = 0 because
no interesting relationships can be found between the two species.

A high Pearson correlation is an indication of coordinate and concurrent
behaviours, and can be used to gain knowledge about the regulative mechanisms
and then regarding cause-effect relationships. Pearson correlation values close to
1 indicate positive linear relationships between xi and xj , correlations equal to
0 indicate no linear associations, while correlations near to −1 indicate negative
linear relationships. Namely, the closer the coefficient is to either −1 or 1, the
stronger is the correlation between the variables (Figure 1).

In particular, a high correlation between two time-series may indicate a direct
interaction, an indirect interaction, or a joint regulation by a common unknown
regulator (Figure 2). However, only the direct interactions are of interest to infer
the regulatory mechanisms of a biological network.

For a better illustration, let us consider a simple example consisting of three
species: x1, x2 and x3. Let us assume that, as represented in Figure 3 (a),
the reactions x1 → x2 and x1 → x3 exist, and that these reactions induce
strong correlations for the pairs (x1, x2) and (x1, x3). Therefore, we also observe
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Fig. 1. Several sets of (xi, xj) points, with the Pearson correlation of xi and xj for each
set. Note that the correlation reflects the noisiness and direction of a linear relationship
(top row), but not the slope of that relationship (bottom row).

Fig. 2. Elementary interaction patterns. (a): direct interaction between two species;
(b): regulation of two species by a common regulator; (c) regulative chain via an
intermediate regulator; (d): co-regulation of a species by two regulators.

a strong correlation of the pair (x2, x3), which might jeopardize downstream
network analysis by putting an (non oriented) edge between x2 and x3, Figure 3
(b), because there will be more weight placed to the nodes x2 and x3 than there
actually is.

Fig. 3. (a) Illustration of causal relationships between variables (x1, x2) and (x1, x3),
and (b) the resulting network derived by correlation analysis.

Since Pearson correlation alone cannot distinguish between direct and indi-
rect interactions, the use of partial correlation can be useful to analyze if a direct
interaction between two time-series exists [10]. The minimum first order partial
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correlation between xi and xj is defined as:

ρC1
(xi, xj) = min

k 6=i,j
|ρ(xi, xj | xk)| (2)

where

ρ(xi, xj | xk) =
ρ(xi, xj)− ρ(xi, xk)ρ(xj , xk)√
(1− ρ(xi, xk)2)(1− ρ(xj , xk)2))

. (3)

If there is xk 6= xi, xj which explains all the correlation between xi and xj ,
then ρC1

(xi, xj) ∼= 0 and the pair (xi, xj) is conditionally independent given xk.
In this case, we say that on an undirected graph xi and xj are not adjacent but
separated by xk. Therefore, if ρC1

(xi, xj) is smaller than a given threshold, then
we consider that there isn’t a significant interaction between xi and xj . From
the definition, we have that if xi[t] = xk[t] or xj [t] = xk[t], for all t, then (3) is
not defined. In this case, we set ρ(xi, xj | xk) = 0.

The first order partial correlation allows us to remove many false positives
computed by Pearson correlation alone. However, low values of the coefficients
(1) and (2) guarantee that an interaction between two time-series is missing,
while high values of (2) do not guarantee that two time-series interact. Therefore,
we consider ρCall

(xi, xj), which describes the partial correlation between xi and
xj conditioned on all the other n− 2 species. We follow this strategy because it
is possible that the correlation conditioned to a single species is high, but the
correlation conditioned to all the other species is low. Let Ω be the correlation
matrix of the n species of X, that is the n × n matrix whose (i, j)-th entry is
ρ(xi, xj). A very powerful result allows us to compute ρCall

(xi, xj) by using Ω−1

[13]. In fact, we have

ρCall
(xi, xj) = − ωi,j√

ωi,iωj,j
(4)

where ωi,j is the (i, j)-th entry of Ω−1. The critical step in the application of
(4) is the reliable estimation of the inverse of the correlation matrix when Ω is
either singular or else numerically very close to singularity. We apply the spectral
decomposition, which is based on the use of eigenvalues and eigenvectors, to
compute Ω−1. According to the spectral decomposition, a rank-deficient matrix
can be decomposed into a smaller number of factors than the original matrix
and still preserve all of the information in the matrix.

The following definition provides the rules to infer direct interactions among
species and represents the first step in order to study correlative cause-effect
relationships among them.

Definition 2 (Directed Correlation) We say that two time-series xi and xj
are directly correlated if indexes |ρ(xi, xj)| and |ρCall

(xi, xj)| are above two fixed
thresholds.

Although a combination in the use of Pearson and partial correlation can
be viewed as a technique to develop new hypothesis of interactions among bio-
chemical components [7], we point out that the study of time-shifts in biological
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data-sets can be useful to infer causality interactions. With the term causal-
ity, we intend that the analysis of interactions establishes a directional pat-
tern in which species action may trigger or suppress and be triggered or sup-
pressed by the actions of other species in the network. Although this causal
connectivity alone is not sufficient to fully describe the dynamics of a network,
it reveals the logic of the systems which constraints its potential behaviour.
In more detail, a direct causal relationship x1 → x2 implies that the time-
series of x1 “influences” the time-series of x2. An indirect causal relationship
x1 → xi1 → xi2 → . . .→ xik → x2 is a link from x1 to x2 through a sequence of
direct casual relationships involving a set of one or more intermediates species
xi1 , xi2 , . . . xik .

Usually, cell biologists use perturbations to prove the existence of cause-effect
relationships in biological pathways. An interesting hypothesis is that biologi-
cal networks constitute dynamical systems which are continuously subjects to
fluctuations and oscillations due to changes in the environment as well as to
patterns of regulations [17,18]. Dynamics changes induce variability in species
concentrations, propagate through the networks and generate emergent patterns
of time-lagged correlations. Therefore time-lags are ubiquitous in biological sys-
tems. As a simple example, Figure 4 shows an experimental result in which a
time delay τ1 between two genes is present. This implies that biological network
topologies, and then causality, involve many interlocked network motifs which
have inherent delays.

Fig. 4. A gene expression experimental result where time lag τ1 could be an indication
of an underlying cascade of biochemical reactions.

Then, if we conduce computational experiments which allow the comparison
of shifted behaviours, it could be possible to identify directed causal-effect re-
lationships between time-series. This is rooted on the fact that time indicates
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directionality: what happens first ought to be upstream of what happens next
[20].

Cross-correlation can be applied to infer causal-effect relationships among
time-series. It extends Pearson correlation [6] by determining the best correla-
tions among variables shifted in time. For time-series xi and xj of length m, the
cross-correlation at lag τ is defined as:

φ(xi, xj , τ) =

∑m−τ
t=0 ((xi[t]− x̄i)(xj [t+ τ ]− x̄j))√

(
∑m
t=0 (xi[t]− x̄i)2)(

∑m
t=0 (xj [t]− x̄j)2)

. (5)

In particular, if at least one between xi and xj is in a stable-state, then we
set φ(xi, xj , τ) = 0 because stable-state is an indication that a species is not
involved in a cause-effect relationships.

By using the cross-correlation we introduce a definition of cause-effect be-
tween time-series which extends that of directed correlation. This concept of
causality rests on the fact that predictability can be tested by determining if
one time-series is related to past or current values of another time-series.

Definition 3 (Cross-Correlation Causality) We say that a time-series xi
causes another time-series xj with lag τ if

max
θ
{|φ(xi, xj , θ)|} = |φ(xi, xj , τ)| . (6)

Let us assume that xi causes xj with a lag τ1, xi
τ1→ xj , but that there is

xz such that an indirect causal relationship xi → xz → xj exists. Given τ1, we
consider the first order partial cross-correlation to correct for the delayed effect
of xz on the cross-correlation between xi and xj :

φC1
(xi, xj) = min

0≤τ2<τ1
|ψ(xi, xj , τ1 | xz, τ2)| (7)

where

ψ(xi, xj , τ1 | xz, τ2) =
φ(xi, xj , τ1)− φ(xi, xz, τ2)ρ(xτ1j , x

τ2
z )

√
(1− φ(xi, xz, τ2)2)

(
1− ρ(xτ1j , x

τ2
z )2

) (8)

with
(xk[t] | t = 0, 1, . . . ,m− τ1, k = i, j, z),

(xτ1j [t] | t = τ1, τ1 + 1, . . . ,m),

(xτ2z [t] | t = τ2, τ2 + 1, . . . ,m− τ1 + τ2).

Extending the observation introduced for partial-correlation, we have that if
xi and xj are correlated with a certain lag τ1, and if there is xz 6= xi, xj which
explains all the correlation between xi and xj by considering a lag τ2 < τ1, then
φC1(xi, xj) ∼= 0 and the pair (xi, xj) is conditionally independent given xk. In

this case, we say that xi does not directly cause xj , xi
τ1→ xj , but that an indirect

An analysis of correlative and quantitative causality in P systems

359



causal relationship between them exists, that is, xi
τ2→ xz

τ1−τ2→ xj . Therefore, if
ρC1

(xi, xj) is smaller than a given threshold, then we consider that there isn’t a
significant direct cause-effect relationship between xi and xj . From the definition,
we have that if xi[t] = xz[t + τ2] or xj [t] = xz[t + τ2], for t = 0, 1,m − τ1, then
(8) is not defined. In this case, we set ψ(xi, xj , τ1 | xz, τ2) = 0.

As in the case of partial correlation, we can start from (7) and (8) to obtain
the partial cross-correlation between xi and xj conditioned on all the other n−2
species in the set Z = X − {xi, xj}:

φCall
(xi, xj) = min

0≤τ2<τ1
|ψ(xi, xj , τ1 | Z, τ2)| . (9)

Also in this case, we apply the spectral decomposition to compute φCall
(xi, xj),

whereΩ is the correlation matrix of the n columns of the matrix Ψ ∈ R(1+m−τ1+1)×n

obtained in this way. The first column represents the time-series of xi, that
is, (xi[t] | t = 0, 1, . . . ,m − τ1), the second one the time-series of xj , namely,
(xj [t] | t = τ1, τ1 + 1, . . . ,m), while the last n − 2 columns are related to the
time-series of the species in Z, that is, (xz[t] | t = τ2, τ2 + 1, . . . ,m− τ1 + τ2)
for each z ∈ Z.

Starting from the introduced analysis, we can give the definition of directed
cross-correlation causality. It provides us with an intuitive way to express causal
knowledge by extending the definition of directed correlation.

Definition 4 (Directed Cross-Correlation Causality) We say that a time-
series xi directly causes another time-series xj with lag τ1 if: i) xi causes xj with
lag τ1 as in Definition 3; ii) φCall

(xi, xj) is above a fixed threshold.

The directed cross-correlation causality relies on two piece of information
to infer a cause-effect relationship. The first one is the time, which indicates
directionality. The second one is the partial cross-correlation, which gives us
knowledge about the existence of a directed relation of cause-effect.

4 From Correlative to Quantitative Causality

In this section, we integrate the two approaches introduced in Section 2 and
3 to study causalities in membrane systems.

Let us suppose to have a set X = {x1, x2, . . . , xn} of species for which time-
series of length m are available. In a first phase, correlative causality is used
to infer a set R of rules for a transition P system as follows. For each xi ∈ X,
a set Cxi , that we call direct correlation set, is obtained by using Definition
2. Namely, Cxi

contains all the species in the set X − {xi} which are directly
correlated with xi. Moreover, a set Dxi

, named direct causality set, is obtained
by applying Definition 4. That is, xj ∈ X − {xi} is in Dxi

if xi directly causes
xj for some lag τ1. Then the set R contains exactly the following rules:

1. {ri : xi → αi}, for each xi ∈ X such that Cxi 6= ∅, where αi is the multiset
corresponding to the set Cxi , with multiplicity one for each element;
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2.
{
ri : αi → xi

}
, for each xi ∈ X such that Cxi

6= ∅, where αi is equal to the
one introduced in the previous point;

3. {rij : xi → βj}, for each xi ∈ X and each xj ∈ Dxi such that Dxi 6= ∅, where
βj is the multiset corresponding to the set {xj} ∪Cxj , with multiplicity one
for each element.

Note that there can be rules which have different labels but are identical, for
example if Cx = {y} then rx = ry and rx = ry.

By applying the above procedure to preliminary case studies, we inferred the
network topology of the reactions and the regulative mechanisms from time-series
of reaction models modelling synthetic metabolic phenomena. In particular, since
experiments conducted under identical conditions do not necessarily lead to iden-
tical results, we also focused on different factors causing this variability, such as,
enzymatic variability, intrinsic variability, and environmental variability2. This
is due to the fact that the rules that constitute the set R reflect the meanings of
the statistical indexes that we introduced in Section 3. The rules introduced at
the first two points represent the fact that correlation and cross-correlation do
not give information about the direction of cause-effect interactions, and then we
have to consider both the verses of the possible relationships. From a biological
point of view, these types of cause-effects interactions can be the result of regu-
lative mechanisms governing the behaviours of the system under investigation.
Differently, the rules introduced at the third point model the causality relation-
ships due both to the biological network topology and regulative mechanisms.
This combination induces dynamic changes and variability in species concentra-
tions which have inherent delays, giving us knowledge about the existence of
directed relations of cause-effect.

In a second phase, the sets X and R are used for building up a model useful to
associate correlative causality and quantitative causality by means of membrane
systems, namely a transition P system Π = (X,R, u0) with one membrane.
Using it we can analyze the situations which lead to at least one xi to appear
and compare them to their correlative counterpart.

Proposition 1. Consider xi ∈ X. Then any possible cause for xi is either 0R
(the empty multiset of rules) or it is a multiset r with just one element.

Proof. We show that any cause G for the multiset xi in Π has at most one
element. Suppose that G has at least two elements. From Definition 1 we have
that rhs(G) ∩ xi > rhs(G − r) ∩ xi for any r ∈ G. By the definition of ∩,
rhs(G) ∩ xi is either xi or 0. From the previous inequality, rhs(G) cannot be 0;
thus rhs(G) = xi. Hence xi is an element of the right hand side of some rule

2 To mimic enzymatic variability a random variation of approximately ±10% has been
introduced by multiplying each metabolic flux values with a random number from a
normal distribution with unit mean and 0.05 standard deviation. To induce intrinsic
variability we add a stochastic term to each substance of the system. This term is a
random number from unit Normal distribution. In order to generate data subject to
environmental variability, we add a stochastic term only to the flux associated with
the reactions which introduce matter in the system.
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s ∈ G. Since G has at least two elements there exists some s′ ∈ R, not necessarily
different from s, such that G ≥ s+s′, which is equivalent to G−s′ ≥ s. Therefore
rhs(G) ∩ xi = xi = rhs(G− s′) ∩ xi which contradicts G being a cause for xi.

We show that each possible cause of xi corresponds to a certain correlation
of xi as a time-series with the other time-series in X. In Proposition 2 we show
that for a time-series xi not to be cross-correlated with any other time-series nor
to cause any other time-series is equivalent to the object xi having the empty
multiset of rules as cause in Π.

Proposition 2. The empty multiset of rules 0R is a cause for xi in Π if and
only if both Cxi

and Dxi
are empty.

Proof. If 0R is a cause for xi then it follows that there is no rule r ∈ R such that
lhs(r) ≤ xi, which is equivalent to saying that xi cannot be the left hand side
of any rule, therefore both Cxi and Dxi are empty.

If both Cxi
and Dxi

are empty then there is no rule r ∈ R such that lhs(r) ≤
xi\rhs(0R) = xi therefore the first condition of Definition 1 is fulfilled. The
second condition follows immediately since there is no rule r such that r ∈ 0R.

In the next proposition we show that having certain rules which correspond
to a time-series xj as causes for xi is equivalent to xi i) being directly correlated
with xj , ii) being directly caused by xj or iii) being directly correlated with a
time-series directly caused by xj .

Proposition 3. Consider xi ∈ X. Then the following hold:

1. rj is a cause for xi ⇔ xi ∈ Cxj
⇔ ri is a cause for xj;

2. rj is a cause for xi ⇔ i = j and Cxi 6= ∅;
3. rjk is a cause for xi ⇔ xi ∈ Cxk

, or i = k and xi ∈ Dxj
.

Proof. We start by showing that for any rule s, the multiset G = s is a cause
for xi in Π if and only if xi ∈ rhs(s).

If xi ∈ rhs(s) then the first condition of Definition 1 is always fulfilled, since
xi\rhs(G) = 0 and therefore there exists no rule r such that lhs(r) ≤ xi\rhs(G).
The second condition follows from r ∈ G implies r = s, thus rhs(G− r) ∩ xi =
0 < rhs(G) ∩ xi = xi.

If G = s is a cause for xi then rhs(s) ∩ xi > 0 (supposing otherwise would
contradict the second condition of Definition 1), i.e., xi ∈ rhs(s).

Therefore rj is a cause for xi iff xi ∈ αj , which is equivalent to xi ∈ Cxj
.

However direct correlation is symmetrical therefore it is equivalent to xj ∈ Cxi
.

The latter is equivalent to xj ∈ αi = rhs(ri), which is equivalent to ri is a cause
for xj .

We have that rj is a cause for xi iff xi = xj and Cxj
= Cxi

6= ∅. We have
that rjk is a cause for xi iff xi ∈ {xk} ∩ Cxk

, which amounts to xi ∈ Cxk
, or

i = k and xi ∈ Dxj
.
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When we consider just one time-series, quantitative causality corresponds to
both direct correlation and to direct causality in the correlative causality frame-
work. For the case of several time-series considered together with multiplicities,
we need more data regarding the sets Cxi and Dxi to advance the correspon-
dences between correlative and quantitative causalities. A start towards estab-
lishing such correspondences is made in the following section by analyzing two
case studies.

5 Case Studies

In this section we consider two examples which indicate how we can study in
a more general manner quantitative causality starting from correlative causality.
For the second one, we set 0.7 (a value indicating high correlation) as threshold
for correlations and cross-correlations, and 0.2 as threshold for partial correla-
tions.

5.1 The Yeast Glycolytic Network

Glycolysis is at the heart of classical biochemistry and, as such, it has been
thoroughly studied. Glycolysis is the metabolic pathway that converts glucose
into pyruvate. The free energy released in this process is used to form the high-
energy compounds, ATP (adenosine triphosphate) and NADH (reduced nicoti-
namide adenine dinucleotide). It is a definite sequence of ten reactions involving
several intermediate compounds. The intermediates provide entry points to gly-
colysis. For example, most monosaccharides, such as fructose, glucose, and galac-
tose, can be converted to one of these intermediates. The intermediates may also
be directly useful. For instance, the intermediate dihydroxyacetone phosphate is
a source of the glycerol that combines with fatty acids to form fat.

We applied our framework on the first reactions from the upper part of
glycolysis pathway of Saccharomyces cerevisiae. These reactions represent the
pathway which leads to the degradation of glucose in order to yield energy
and building blocks for cellular processes. In [14], this pathway, as well as
the reactions balancing the energy currency ATP and ADP, have been trans-
lated into a Metabolic P system 3. This formulation provided us dynamics
in accordance with experimental values observed in [19] and differential mod-
els developed in [9]. Starting from these dynamics, we applied the correlative
framework to infer a set R of rules modelling statistical causality associated
with the glycolisis pathway. Entering into the details, we have a set of species
X = {Fruc6P,Gluc6P, Fruc16P2, AMP,ATP,ADP} having the following di-
rected correlation sets: CFruc6P = {Gluc6P, Fruc16P2}, CGluc6P = {Fruc6P},
CFruc16P2 = {Fruc6P}, CATP = {AMP}, CAMP = {ATP}, CADP = ∅.
Moreover, we inferred the following sets expressing cause-effect relationships:

3 Metabolic P systems [12] are a class of deterministic P systems introduced for ex-
pressing biological phenomena.
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DFruc6P = {ATP,AMP}, DGluc6P = {ATP,AMP}, DFruc16P2 = {ADP},
DATP = ∅, DAMP = ∅, DADP = ∅.

After that, the set R composed by the rules reported in Table 1 has been
obtained by applying the procedure introduced in Section 4, and the transition
P system Π = (X,R) has been used as starting point to analyze quantitative
causality according with the approach described in Section 2.

rFruc6P : Fruc6P → Fruc16P2 +Gluc6P
rFruc6P : Fruc16P2 +Gluc6P → Fruc6P
rGluc6P : Gluc6P → Fruc6P

rGluc6P : Fruc6P → Gluc6P
rFruc16P2 : Fruc16P2 → Fruc6P
rFruc16P2 : Fruc6P → Fruc16P2
rATP = rAMP : ATP → AMP
rATP = rAMP : AMP → ATP
rFruc6P,ATP = rFruc6P,AMP : Fruc6P → ATP +AMP
rGluc6P,ATP = rGluc6P,AMP : Gluc6P → ATP +AMP
rFruc16P2,ADP : Fruc16P2 → ADP

Table 1. The set of rules modelling correlative causality of the yeast glycolytic network.

Let us consider v = ATP + AMP . We look for the possible causes for this
multiset, which corresponds to considering two time-series together. To find its
causes, we start by considering G = 0R as a potential cause. Then we proceed by
adding rules to 0R, one by one, until no more are needed to make v appear. More
details regarding this inductive procedure for finding the cause of a multiset can
be found in [2].

For G = 0R the condition lhs(r) ≤ v\rhs(G) does not take place for r =
rATP ; from the point of view of correlative causality, this corresponds to saying
that ATP is directly correlated with another time-series therefore it cannot have
an empty cause. We continue by adding to the (now discarded) potential cause
0R rules r which have in the right hand side rhs(r) at least one common element
with v. The set of these rules is S = {rATP , rAMP , rFruc6P,ATP }. For G1 = G+s,
s ∈ S\{rFruc6P,ATP } the condition lhs(r) ≤ v\rhs(G1) remains unfulfilled, since
either ATP or AMP will appear in v\rhs(G1) and both of them are left hand
sides of rules. So we choose G1 = rFruc6P,ATP and it verifies that it is a cause
for v. To find the other causes, we look at the discarded causes with one element
(i.e., to the rules from S) and add one element from S to each of them, namely
we consider all the multisets with two elements of S. By checking all of them
we find that rATP + rAMP is a cause for v. Note that rFruc6P,ATP cannot be a
part of a cause with two elements since that rule alone is sufficient in producing
v. Moreover, there is no cause with more than two elements since having three
or more rules in G would mean that one of them does not contribute to the
appearance of the two elements of v. In the end, we have obtained that the
causes of v are rFruc6P,ATP and rATP + rAMP . This corresponds to the time-
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series Gluc6P and Fruc6P being direct causes for ATP and AMP (recall that
rFruc6P,ATP = rGluc6P,ATP ) and to ATP being directly correlated with AMP .

5.2 The Signal Transduction Cascades

Cyclic motifs are extremely common in biochemical networks. They can be
found in metabolic, genetic, and particularly signaling pathways. These motifs
are often composed in order to form a vertical signaling cascade, which have
been used in [8] to model the mitotic oscillator in early amphibian embryos in-
volving cyclin and cdc2 kinase, Figure 5. Cyclin is synthesized at a constant rate,
vi, and triggers, in a first cycle, the transformation of inactive (i.e., phosphory-
lated), m+, into active, m (i.e., dephosphorylated), cdcd2 kinase by enhancing
the rate of a phosphatase. A kinase reverts this modification by allowing the
transformation from m to m+. In the second cascade cycle, cdc2 kinase drives
the transformation from the inactive, x+, into the active, x, form of a protease
which degrades the cyclin. This second cycle is closed by a reaction regulated by
a protease, which elicits the transition from x to x+. The constants Vi, 1 ≤ i ≤ 4,
represent the kinetics of the enzyme involved in the two cycles of post-translation
modification. The dynamics of this model, obtained by a numerical solution of

Fig. 5. The Goldbter’s cascade model for mitotic oscillation in early amphibian em-
bryos [8].

the set of differential equations proposed in [8], considering the initial conditions
c = 0.01µM and m = x = 0.01, shows an oscillatory behaviour in the activation
of the three model’s substances, that repeatedly go through a state in which
cells enter in a mitotic cycle. We sampled the dynamics with τ = 1 minute to
obtain 100 macro observation of the substances’ dynamics. After that, we stud-
ied correlative causality among the substances. As it was expected, since in a
cyclic motif the concentration of species activated by a stimulus have a constant
amount, we obtained that both ρ(m+,m) and ρ(m+,m) are approximately equal
to −1, and both |ρCall

(m+,m)| and |ρCall
(m+,m)| are above 0.2. Moreover, we
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rx = rx
+

: x → x+

rx+ = rx : x+ → x

rm = rm
+

: m → m+

rm+ = rm : m+ → m
rc,m = rc,m+ : c → m+m+

rm,x = rm,x+ : m → x+ x+

rm+,x = rm+,x+ : m+ → x+ x+

Table 2. The set of rules modelling correlative causality in the mitotic oscillation in
early amphibian embryos.

found a statistical significant cross-correlation, with τ = 3 minutes between c
and m, and between m and x. These results are in accordance with the cascade
model for mitotic oscillation in early amphibian embryos, and allowed us to ob-
tain the set R of rules modelling statistical cause-effect relationships reported in
Table 2.

We consider the multiset v = 2x + x+ which corresponds to considering
the time-series x with doubled values together with the time-series x+. Since
x and x+ are left hand sides for some of the rules in R it follows that for any
cause G we must have v\rhs(G) = 0 which implies v ≤ rhs(G). As reasoned
before, G can have at most three elements since a fourth element would not
contribute anything to the appearance of v. These elements must belong to the
set S = {rx, rx+ , rm,x, rm+,x} since their right hand side must have at least one
object in common with v. By analyzing all possibilities we obtain that the causes
of v are rx+ +rm,x; rx+ +rm+,x; rm,x+rm+,x; 2rm,x; 2rm+,x and 2rx+ +rx. This
corresponds, according with the biological point of view of the mitotic cascade,
to the time-series m and m+ being direct causes for x and x+ (which indicates
that x+ is directly correlated with x).

6 Conclusions and Discussions

In this paper we introduced two approaches to analyze cause-effect relation-
ships in reaction models and we proposed a way to integrate them in order to
study causality in terms of multisets of objects and multisets of rules in presence
of non-determinism and parallelism. Our approach is based on the fact that sta-
tistical analysis can be used to build up a transition P system in a polynomial
complexity time. In fact, the computation of the different correlation indexes
that we use has polynomial order on the number n of species. From a computa-
tional point of view, this means that it can become time expensive for n of the
order of thousands. However, this problem can be circumvent by using a parallel
implementation of the procedure, but it is not the aim of the paper to analyse
this point.

An important point is that the inferred transition P systems can be analyzed
by means of quantitative causality. The statistical approach that we proposed
starts from the fact that dynamics changes induce variability in species con-
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centrations, propagate through the networks and generate emergent patterns of
correlations. It combines several correlation coefficients to develop similarity in-
dexes which can be interpreted as fingerprint of underlying cause-effect events in
biological pathways. In particular, since experiments conducted under identical
conditions do not necessarily lead to identical results, we also focused, in Section
4, on different factors causing this variability. In fact, the computation of corre-
lation indexes from experimental data is necessarily complicate by uncertainty
due to measurements errors, natural fluctuations, noise, artifacts, unexpected ex-
ternal variations effecting the experiment and missing data. As a consequence,
noise can affect the correlative signals, by making it weak. Therefore, the cor-
relative analysis that we described should take these uncertainties into account
as it could influence the correlation estimates and the predictive accuracy of the
resulting P system model.

As an ulterior step, to fix this problem, an initial phase of data prepara-
tion and preprocessing could be applied [4]. It has to involve the elimination of
both noise and artifacts from experimental data. Let us consider a set of ex-
perimental data obtained by sampling, possibly at a constant rate τ , substance
concentrations and chemo-physical parameter values of a certain biochemical
system. To remove artifacts from substance and parameter time-series, we can
consider curve fitting methods4 which are often employed to find a smooth curve
which fits noisy data by reducing their random component while preserving the
main trend of the dynamics under investigation. Of course, if data are affected
by other kinds of errors regarding, for instance, consistency, integrity, or outliers,
then ad hoc techniques must be used [16], but it is out of the scope of this paper
to consider particular methods to process raw data. After such a preprocessing
of experimental data, we assume that fluctuations and measurement errors are
normally distributed around the average trend of the system dynamics, there-
fore each observed substance and parameter time-series is fitted by a smooth
function using least-squares theory.

The transition P system Π which is defined based on the correlative causality
relations provides a correspondence between quantitative and correlative notions
of causality. When considering a time-series as an object of the transition P
system, its causes can either be nonexistent, which shows that the time-series is
not correlated to any other or it can be a single rule, which serves to pinpoint
the set of directly correlated or directly caused time-series. It remains to be
seen how these results presented in Section 4 can be extended to a more varied
combination of time-series (which corresponds to a generic multiset in Π). The
case studies in Section 5 present the quantitative-correlative correspondence for
more general cases.

Finally, we would like to point out that when causality is extracted by means
of correlative relations between time-series, then it has to be present between

4 Curve fitting is the process of constructing a curve which has the best fit to a series
of data points. Curve fitting can involve either interpolation, where an exact fit to
the data is required, or smoothing, in which a “smooth” function is constructed that
approximately fits the data.
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variables generating the observed data. This does not imply that all the cases of
causality can be discovered in this way. Of course, other more complex relations
can remain hidden or misunderstood. However, when observed phenomena are
produced by big population dynamics, the methods is statistically reliable. This
is the case of a lot of important biological processes due to the molecule popula-
tion interactions. When causes depend on the actions of single or few molecules,
of course, statistics is out of order.
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Abstract. We introduce a weak uniformity condition for families of
P systems, DLOGTIME uniformity, inspired by Boolean circuit com-
plexity. We then prove that DLOGTIME-uniform families of P systems
with active membranes working in logarithmic space (not counting their
input) can simulate logarithmic-space deterministic Turing machines.

1 Introduction

Research on the space complexity of P systems with active membranes [4] has
shown that these devices, when working in polynomial and exponential space,
have the same computing power of Turing machines subject to the same restric-
tions [7, 1]. In this paper we investigate the behaviour of P systems working in
sublinear space.

This requires us, �rst of all, to de�ne a meaningful notion of sublinear space
in the framework of P systems, inspired by sublinear space Turing machines,
where the size of the input is not counted as work space.

Since sublinear-space Turing machines are weaker (possibly strictly weaker)
than those working in polynomial time, we also de�ne a uniformity condition
for the families of P systems that is weaker than the usual P uniformity, i.e.,
DLOGTIME uniformity, as usually employed for families of Boolean circuits [2].

Using these restrictions, we show that logarithmic-space P systems with ac-
tive membranes are able to simulate logarithmic-space deterministic Turing ma-
chines, and thus to solve all problems in L.

2 De�nitions

Here we recall the basic de�nition of P systems with active membranes, while
at the same time introducing an input alphabet with speci�c restrictions.

De�nition 1. A P system with (elementary) active membranes of initial degree
d ≥ 1 is a tuple Π = (Γ,∆,Λ, µ,w1, . . . , wd, R), where:

� Γ is an alphabet, i.e., a �nite non-empty set of symbols, usually called ob-
jects;
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� ∆ is another alphabet, disjoint from Γ , called the input alphabet;
� Λ is a �nite set of labels for the membranes;
� µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes enumerated by 1, . . . , d; fur-
thermore, each membrane is labeled by an element of Λ in a one-to-one way;

� w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of µ;

� R is a �nite set of rules over Γ ∪∆.

Each membrane possesses, besides its label and position in µ, another at-
tribute called electrical charge (or polarization), which can be either neutral (0),
positive (+) or negative (−) and is always neutral before the beginning of the
computation.

A description of the available kinds of rule follows. This description di�ers
from the original de�nition [4] only in that new input objects may not be created
during the computation.

� Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w). At most one input object b ∈ ∆ may appear in w, and only if
it also appears on the left-hand side of the rule (i.e., if b = a).

� Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β. If b ∈ ∆ then a = b must hold.

� Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β. If b ∈ ∆ then a = b must hold.

� Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and
containing an occurrence of the object a; the membrane h is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b. If b ∈ ∆ then a = b must hold.

� Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having charge α, containing
an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.
If b ∈ ∆ (resp., c ∈ ∆) then a = b and c /∈ ∆ (resp., a = c and b /∈ ∆) must
hold.
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Each instantaneous con�guration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current con�guration according to the following set of princi-
ples:

� Each object and membrane can be subject to at most one rule per step,
except for object evolution rules (inside each membrane several evolution
rules can be applied simultaneously).

� The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary divi-
sion rules must be subject to exactly one of them (unless the current charge
of the membrane prohibits it). The same principle applies to each membrane
that can be involved to communication, dissolution, or elementary division
rules. In other words, the only objects and membranes that do not evolve
are those associated with no rule, or only to rules that are not applicable
due to the electrical charges.

� When several con�icting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
con�gurations can be reached after a computation step.

� In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication, dissolution and division rules in-
volving the membranes themselves; this process is then repeated to the mem-
branes containing them, and so on towards the root (outermost membrane).
In other words, the membranes evolve only after their internal con�guration
has been updated. For instance, before a membrane division occurs, all cho-
sen object evolution rules must be applied inside it; this way, the objects
that are duplicated during the division are already the �nal ones.

� The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of the P systemΠ is a �nite sequence of con�gurations
C = (C0, . . . , Ck), where C0 is the initial con�guration, every Ci+1 is reachable
by Ci via a single computation step, and no rules can be applied anymore in
Ck. A non-halting computation C = (Ci : i ∈ N) consists of in�nitely many
con�gurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

P systems can be used as recognisers by employing two distinguished objects
yes and no; exactly one of these must be sent out from the outermost membrane
during each computation, in order to signal acceptance or rejection respectively;
we also assume that all computations are halting. If all computations starting
from the same initial con�guration are accepting, or all are rejecting, the P sys-
tem is said to be con�uent. If this is not necessarily the case, then we have a

Sublinear-space P systems with active membranes

371



non-con�uent P system, and the overall result is established as for nondetermin-
istic Turing machines: it is acceptance i� an accepting computation exists. All
P systems we will consider in this paper are con�uent.

In order to solve decision problems (i.e., decide languages), we use families
of recogniser P systems Π = {Πx : x ∈ Σ?}. Each input x is associated with
a P system Πx that decides the membership of x in the language L ⊆ Σ? by
accepting or rejecting. The mapping x 7→ Πx must be e�ciently computable for
each input length [3].

De�nition 2. Let E and F be classes of functions. A family of P systems Π =
{Πx : x ∈ Σ?} is said to be (E,F )-uniform if and only if

� There exists a function f ∈ F such that f(1n) = Πn, i.e., mapping the
unary representation of each natural number to an encoding of the P system
processing all inputs of length n.

� There exists a function e ∈ E mapping each string x ∈ Σ? to a multiset
e(x) = wx (represented as a string) over the input alphabet of Πn, where
n = |x|.

� For each x ∈ Σ? we have Πx = Πn(wx), i.e., Πx is Πn with the multiset
encoding x placed inside the input membrane.

Generally, the above mentioned classes of functions E and F are complexity
classes; in the most common uniformity condition E and F denote polynomial-
time computable functions.

Any explicit encoding of Πx is allowed as output of the construction, as
long as the number of membranes and objects represented by it does not exceed
the length of the whole description, and the rules are listed one by one. This
restriction is enforced in order to mimic a (hypothetical) realistic process of
construction of the P systems, where membranes and objects are presumably
placed in a constant amount during each construction step, and require actual
physical space proportional to their number; see also [3] for further details on
the encoding of P systems.

Finally, we describe how space complexity for families of recogniser P systems
is measured, and the related complexity classes. The following de�nition di�ers
from the standard one [6] in one aspect: the input objects do not contribute to
the size of the con�guration of a P system. This way, only the actual working
space of the P system is measured, and P systems working in sublinear space
may be analysed. To the best knowledge of the authors, no previously published
space complexity result is invalidated by assuming that the input multiset is not
counted (the two space measures di�er only by a polynomial amount).

De�nition 3. Let C be a con�guration of a P system Π. The size |C| of C
is de�ned as the sum of the number of membranes in the current membrane
structure and the total number of objects in Γ (i.e., the non-input objects)
they contain. If C = (C0, . . . , Ck) is a halting computation of Π, then the space
required by C is de�ned as

|C| = max{|C0|, . . . , |Ck|}
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or, in the case of a non-halting computation C = (Ci : i ∈ N),

|C| = sup{|Ci| : i ∈ N}.
Non-halting computations might require an in�nite amount of space (in sym-
bols |C| = ∞): for example, if the number of objects strictly increases at each
computation step.

The space required by Π itself is then

|Π| = sup{|C| : C is a computation of Π}.
Notice that |Π| = ∞ might occur if either Π has a non-halting computation
requiring in�nite space (as described above), or Π has an in�nite set of halting
computations requiring unbounded space.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recogniser P systems, and let
f : N → N. We say that Π operates within space bound f i� |Πx| ≤ f(|x|) for
each x ∈ Σ?.

By (E,F )-MCSPACED(f(n)) we denote the class of languages which can
be decided by (E,F )-uniform families of con�uent P systems of type D where
each Πx ∈Π operates within space bound f(|x|). The class of problems solvable
in logarithmic space is denoted by (E,F )-LMCSPACED.

3 DLOGTIME-uniform Families of P Systems

When using uniformity conditions for a family of devices, one should ensure that
the chosen uniformity condition is less powerful than the devices themselves if
the results deriving from the existence of such family are to be meaningful.
For instance, polynomial-time uniformity [5] is acceptable when the resulting
family of P systems is able to solve NP or PSPACE-complete problems (which
are conjectured to be outside P) in polynomial time. Indeed, in this case the
constructed P systems are stronger than the Turing machine constructing them
(assuming P 6= NP or P 6= PSPACE, respectively). On the other hand, a
polynomial-time uniformity condition is not appropriate when solving a problem
in P, as the entire computation can be carried out during the construction of
the family (by encoding the input instance as a yes or as a no object, which can
be done in polynomial time by hypothesis), and the P systems themselves can
accept or reject immediately by sending out the aforementioned object during
their �rst computation step.

Choosing an appropriate uniformity condition is thus very important when
the family of devices is, in some sense, �weak�. The question has already been
investigated in the setting of membrane computing by Murphy and Woods [3],
where AC0 circuits (or, equivalently, a variant of constant-time concurrent ran-
dom access machines) are used. Here we propose deterministic log-time Turing
machines (the usual uniformity condition for AC0 circuits) themselves as a uni-
formity condition for P systems. In a later section we shall argue that this par-
ticularly weak construction is probably su�cient to replicate most solutions in
the literature without requiring major changes.
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De�nition 4 (Mix Barrington, Immerman [2]). A deterministic log-time
(DLOGTIME) Turing machine is a Turing machine having a read-only input
tape of length n, a constant number of read-write work tapes of length O(log n),
and a read-write address tape, also of length O(log n). The input tape is not
accessed by using a sequential tape head (as the other tapes are); instead, during
each step the machine has access to the i-th symbol on the input tape, where i is
the number written in binary on the address tape (if i ≥ |n| the machine reads
an appropriate end-of-input symbol, such as a blank symbol). The machine is
required to operate in time O(log n).

Notice how only O(log n) bits of information of the input may be read
during a DLOGTIME computation. These machines are able to compute the
length of their input, compute sums, di�erences and logarithms of numbers of
O(log n) bits, decode simple pairing functions on strings of length O(log n) and
extract portions of the input of size O(log n) [2]. Due to their time restrictions,
DLOGTIME machines are not used to compute the whole representation of
a circuit, but rather to describe the �local� connections between the gates (by
deciding the immediate predecessors and the type of a single gate [8]).

As P systems are more complicated devices than Boolean circuits, we de�ne
a series of predicates describing the various features. These predicates will de�ne
a function 1n 7→ Πn for n ∈ N. Let Πn = (Γ,∆,Λ, µ,w1, . . . , wd, R).

Alphabet. The predicate alphabet(1n,m) holds for a single integer m such
that Γ ∪∆ ⊆ {0, 1}m, i.e., each symbol of the alphabets of Πn (whose index is
provided in unary notation) can be represented as a binary number of m bits.
Here m is not necessarily the minimum number of bits needed; we can choose
a larger number of bits for simplicity, but the number must be O(log n) as the
alphabet is at most polynomial in size with respect to n.

Labels. Analogously, the predicate labels(1n,m) is true for a single integer m
such that Λ ⊆ {0, 1}m, with the same restrictions as the alphabet predicate.

Membrane structure. The predicate inside(1n, h1, h2) holds i� the mem-
brane labelled by h1 is immediately contained in h2 in the initial con�guration
of Πn. The resulting graph µ = (V,E), where

V = {h1 : inside(1n, h1, h2) or inside(1n, h2, h1) for some h2}
E = {{h1, h2} : inside(1n, h1, h2)},

must be a tree; the root of the tree (representing the outermost membrane) is the
only h1 ∈ V such that inside(1n, h1, h2) is false for all h2 ∈ V . Furthermore, µ
must be polynomial in size with respect to n. Here the labels h1, h2 are provided
as strings of bits of appropriate length, as described above.

The predicate input(1n, h) holds i� the input membrane of Πn is h.

Initial multisets. For each multiset in the initial con�guration of Πn choose a
�xed string w ∈ Γ ? representing it. The predicate multiset(1n, h, i, a) holds i�
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the i-th symbol of the string representing the multiset contained in membrane h
is a, where the symbol a is provided as a string of bits as described above. The
predicate is always false for i ≥ |w|. The length of w must be at most polynomial
with respect to n.

Evolution rules. The predicate #evolution(1n, h, α, a,m) holds i� Πn has
m object evolution rules of the form [a→ w]αh , where m is polynomial in n.

The right-hand side of each rule can be recovered by evaluating the predi-
cate evolution(1n, h, α, a, i, j, b), which is true when the i-th rule of the form
[a→ w]αh (under any chosen, �xed total order of the rules) has wj = b (and is
false for j ≥ |w|). Once again, |w| must be polynomial in n.

Other kinds of rules. The following predicates describe the communication,
dissolution and elementary division rules of Πn:

send-in(1n, h, α, a, β, b) ⇐⇒ a [ ]αh → [b]βh ∈ R;

send-out(1n, h, α, a, β, b) ⇐⇒ [a]αh → [ ]βh b ∈ R;

dissolve(1n, h, α, a, b) ⇐⇒ [a]αh → b ∈ R;

elem-divide(1n, h, α, a, β, b, γ, c) ⇐⇒ [a]αh → [b]βh [c]γh ∈ R.

A membrane h satisfying the elem-divide predicate must be elementary.

These predicates completely describe a mapping 1n 7→ Πn for every n ∈ N.

De�nition 5. The mapping 1n 7→ Πn is said to be DLOGTIME-computable if
all the predicates labels, alphabet, inside, input, multiset, #evolution,
evolution, send-in, send-out, dissolve, and elem-divide are DLOGTIME-
computable.

Each P system Πn will be used to process all inputs x ∈ Σn, once they have
been suitably encoded as a multiset wx over the input alphabet of Πn.

Input multiset. The predicate encoding(x, i, a) holds when the i-th object
of the input multiset encoding x is a (the predicate is false if there is no i-th
object). The multiset size must be polynomial with respect to n = |x|.

De�nition 6. The mapping x 7→ wx is said to be DLOGTIME-computable i�
the predicate encoding is DLOGTIME-computable.

We are now �nally able to de�ne (DLOGTIME,DLOGTIME)-uniform (or
(DLT,DLT)-uniform for brevity) families of P systems according to De�nition 2.

4 Simulating Logspace Turing Machines

In this section we prove that logarithmic-space Turing machines can be simulated
by logarithmic-space families of P systems with active membranes even if we use
a (DLT,DLT) uniformity condition.

Sublinear-space P systems with active membranes

375



Theorem 1. Let M be a deterministic Turing machine with an input tape (of
length n) and a work tape of length O(log n). Then, there exists a (DLT,DLT)-
uniform family Π of con�uent recogniser P systems with active membranes work-
ing in logarithmic space such that L(M) = L(Π).

Proof. Let s(n) = k log n be an upper bound on the length of the work tape of
the Turing machine M , let Σ be the alphabet of M (including the blank symbol
t) and Q its set of non-�nal states. Also, for all n ∈ N, let `(n) be the minimum
number of bits required in order to represent the integers {0, . . . , n− 1}, that is,
`(n) = blog(n− 1)c+ 1.

The initial con�guration of Πn, the P system simulating M on inputs of
length n, consists of:

� An outermost membrane labelled by h. This membrane contains the object
q0,0, whose subscripts are written using `(n) and `(s(n)) bits respectively.
This is called the state object. In general, the existence of the object qi,w for
some q ∈ Q and i, w ∈ N indicates that the simulated Turing machine M is
currently in state q and its tape heads are located on the i-th symbol on the
input tape and on the w-th symbol of the work tape.

� `(n) nested membranes labelled by i0, . . . , i`(n)−1 (where the subscripts are
all represented in binary with exactly `(`(n)) bits), called the input tape
membranes. The innermost membrane i0 is the input membrane of Πn.

� s(n) membranes placed inside h and labelled by w0, . . . , ws(n)−1 (using `(s(n))
bits for the subscripts), called the work tape membranes. Each membrane ww
initially contains the object t, indicating that the w-th cell of the work tape
of M is blank.

� Two sets of membranes {ai : a ∈ Σ} and {aw : a ∈ Σ}, placed inside h

and respectively called input tape symbol membranes and work tape symbol
membranes.

The input x ∈ Σ? of Πn is encoded as a multiset by subscripting each symbol
with its position inside x, counting from 0 and using `(n) bits. This multiset is
then placed inside membrane i0. (See Fig. 1.)

Now assume that a few steps of M have been simulated by Πx. The current
con�guration of the P system will be similar to the initial one, except that
the initial state object q0,0 is replaced by some qi,w (with q ∈ Q, 0 ≤ i < n,
0 ≤ w < s(n)) and the membranes w0, . . . , ws(n)−1 contain objects corresponding
to the symbols on the work tape of M . (See Fig. 2.)

The state object now enters the membranes i`(n)−1, . . . , i0 in that order; at
the same time, it sets the charge of membrane ij to negative, if the j-th least
signi�cant bit (counting from 0) of its subscript i is 0, and to positive if that bit
is 1. The following rules are used in order to perform this process:

qi,w [ ]0ij → [qi,w]−ij if the j-th least signi�cant bit of i is 0 (1)

qi,w [ ]0ij → [qi,w]+ij if the j-th least signi�cant bit of i is 1. (2)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 < j < `(n).
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For the innermost membrane i0 instead we use the following rules, which
add a binary counter of `(n) bits (starting from 0) as a superscript to the state
object:

qi,w [ ]0i0 → [q0i,w]−i0 if the least signi�cant bit of i is 0 (3)

qi,w [ ]0i0 → [q0i,w]+i0 if the least signi�cant bit of i is 1. (4)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n).
When membrane i0 becomes non-neutral, the input objects ai (for 0 ≤ i < n)

are sent out. Membranes i0, . . . , i`(n)−1 behave as ��lters� in the following sense:
object ai may pass through ij only if the charge of the membrane corresponds to
the j-th bit of i (where positive denotes a 1, and negative a 0). Only one object
will traverse all of them and reach the outermost membrane, namely, the object
corresponding to the symbol under the tape head in the current con�guration
of M . Formally, the required rules are:

[ai]
−
ij
→ [ ]−ij ai if the j-th bit of i is 0 (5)

[ai]
+
ij
→ [ ]+ij ai if the j-th bit of i is 1. (6)

These rules are replicated for all a ∈ Σ, 0 ≤ i < n, 0 ≤ j < `(n).
The single object that reaches the outermost membrane h is then used in

order to set to positive the charge of the corresponding membrane ai (thus
signalling that the symbol under the input tape head is a):

ai [ ]0ai → [ai]
0
ai (7)

[ai]
0
ai → [ ]+ai ai (8)

These rules are replicated for all a ∈ Σ, 0 ≤ i < n.
It can be shown that the number of steps required for these operations to

be carried out (starting from the moment membrane i0 becomes non-neutral) is
bounded by n

2 + `(n) + 1. During this time, the head object waits inside i0 by
using the following rules:

[qti,w → qt+1
i,w ]αi0 for 0 ≤ t < n

2
+ `(n) + 1 (9)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), α ∈ {+,−}.
(See Fig. 3.)

When the superscript t reaches n
2 + `(n) + 1, the state object travels back to

membrane h while resetting the charges of i0, . . . , i`(n)−1 to neutral:

[qni,w]αi0 → [ ]0i0 q
′
i,w (10)

[q′i,w]αij → [ ]0ij q
′
i,w (11)

[q′i,w]αi`(n)−1
→ [ ]0i`(n)−1

q0i,w (12)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 < j < `(n)−1,
α ∈ {+,−}.
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When membranes ij revert to neutral, the input objects ai are sent back in,
all the way to the input membrane h0:

ai [ ]0ij → [ai]
0
ij

(13)

These rules are replicated for all 0 ≤ i < n, 0 ≤ j < `(n), a ∈ Σ.

Once again, the state object waits n
2 + `(n) + 1 steps (this time, inside mem-

brane h) for this process to complete:

[qti,w → qt+1
i,w ]0h for 0 ≤ t < n

2
+ `(n) + 1 (14)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n).

Next, the state object qni,w enters membrane ww and changes its charge, thus
causing the object a inside it to be sent out.

qni,w [ ]0ww → [q′′i,w]+ww (15)

[a]+ww → [ ]−ww a (16)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a ∈ Σ.

When the charge of ww becomes negative, the state object is sent out to
h, while object a enters the corresponding membrane aw and sets its charge to
positive.

[q′′i,w]−ww → [ ]−ww q′′i,w (17)

a [ ]0aw → [a]+aw (18)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a ∈ Σ.

Now the con�guration of Πx (see Fig. 4) has the following properties:

� Exactly one membrane among w0, . . . , ws(n)−1 is negatively charged (this is
the membrane corresponding to the work tape cell currently scanned by M)
while the others are neutral.

� Exactly one membrane ai is positively charged (the one corresponding to
the input tape symbol currently read by M), while bi is neutral for all
b ∈ Σ − {a}.

� Exactly one membrane aw is positively charged (the one corresponding to the
work tape symbol currently read byM), while bw is neutral for all b ∈ Σ−{a}.

While the object a inside membrane aw is deleted by the following rule,
replicated for all a ∈ Σ:

[a→ λ]+aw (19)

the state object can identify the symbols currently read by M by checking the
charges of the corresponding membranes (resetting them to neutral), and store
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those symbols as superscripts:

q′′i,w [ ]+ai → [q′′i,w]+ai (20)

[q′′i,w]+ai → [ ]0ai q
a
i,w (21)

qai,w [ ]+bw → [qai,w]+bw (22)

[qai,w]+bw → [ ]0bw q
a,b
i,w (23)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
Now the state object possesses all the information needed in order to simu-

late the transition of M , namely, the state itself and the two symbols currently
scanned by the Turing machine. Let

δ : Q×Σ2 → Q×Σ × {+1,−1}2

be the transition function of M ; here we assume δ is only de�ned for non-�nal
states, and that the head movements are represented by ±1. Assume that

δ(q, a, b) = (r, c, d1, d2).

Then, the following rules produce the object representing the new work tape
symbol that replaces a:

[qa,bi,w → q̂a,bi,w c
′]0h (24)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
The object c′ is sent to the membrane simulating the tape cell it is written

on, i.e., the only negatively charged membrane ww, and it resets its charge to
neutral (while losing the prime):

c′ [ ]−ww → [c]0ww (25)

This rule is replicated for all 0 ≤ w < s(n), c ∈ Σ.
Simultaneously, the state object has to update three pieces of information

(state and positions on the tapes) in order to complete the simulation of the
current step of M :

[q̂a,bi,w → ri′,w′ ]
0
h where i′ = i+ d1, w

′ = w + d2 (26)

These rules are replicated for all q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), a, b ∈ Σ.
The con�guration of Πx now encodes the con�guration of M after having

simulated the step performed by the Turing machine. The simulation may now
proceed with the next step of M .

If M reaches an accepting state q, then the following rule is applied:

[qi,w]0h → [ ]0h yes (27)

while the following one is applied for a rejecting state:

[qi,w]0h → [ ]0h no (28)
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These rules are replicated for all 0 ≤ i < n, 0 ≤ w < s(n).
This completes the description of the family of P systemsΠ = {Πx : x ∈ Σ?}

simulatingM . Each P systemΠx only requires O(log |x|) membranes and objects
besides the input objects (and these are not modi�ed nor created during the
computation).

In order to prove Theorem 1 we still need to show that the familyΠ is indeed
(DLT,DLT)-uniform. Here we provide a proof sketch for this result.

Consider the mapping x 7→ wx, encoding each input string ofM as a multiset
over the alphabet of Πn (with n = |x|): each symbol of x has to be subscripted
with an index of `(n) bits representing its position in x. The corresponding
encoding predicate is

encoding(x, i, aj) ⇐⇒ j = i ∧ xi = a.

It is easy to check in DLOGTIME if the predicate holds for each (x, i, aj). First,
we copy the portions of the input representing i and aj (of length O(log n)) on
auxiliary work tapes and we check if the third argument is indeed of the form
aj for some a ∈ Σ by simulating a �nite state automaton. By scanning i and
j we can ensure that i = j. Then, we extract the i-th symbol of x by copying
i on the address tape of the machine, and we check if that symbol is a. Since
symbol-by-symbol comparisons require linear time with respect to the length of
the strings, the evaluation of encoding can be carried out in logarithmic time.

The alphabet of Πn can be represented by using O(`(n)) bits, where the
hidden constants also depend on the size of the alphabet Σ ofM . For simplicity,
we can use k`(n) for some appropriate k as an upper bound, and set

alphabet(1n,m) ⇐⇒ m = k`(n).

This predicate can be checked in DLOGTIME, as multiplication by a con-
stant can be implemented by repeated additions. The reasoning for the predicate
labels is similar.

The membrane structure of Πn (see Fig. 1 for an example with n = 5) is
described as follows:

inside(1n, h1, h2) ⇐⇒ (h1 = i`(n)−1 ∧ h2 = h) ∨
(h1 = ij ∧ h2 = ij+1 ∧ 0 ≤ j < `(n)− 1) ∨
(h1 = wj ∧ h2 = h ∧ 0 ≤ j < s(n)) ∨
(h1 = ai ∧ h2 = h ∧ a ∈ Σ) ∨
(h1 = aw ∧ h2 = h ∧ a ∈ Σ)

that is, by a disjunction of a constant number of conjuncts, each one consisting
of a constant number of terms whose truth can be veri�ed in DLOGTIME by
executing comparisons or simple computations on numbers of O(log n) bits. The
input membrane is identi�ed by

input(1m, h) ⇐⇒ h = i0.
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The initial multisets are described by

multiset(1n, h, i, a) ⇐⇒ (h = h ∧ i = 0 ∧ a = q0,0) ∨
(h = wj ∧ i = 0 ∧ a = t ∧ 0 ≤ j < s(n))

which is also decidable in DLOGTIME.
We shall not describe in detail the predicates for the rules of Πx. As an

example, consider the rules of kind (14) on page 10:

[qti,w → qt+1
i,w ]0h for 0 ≤ t < n

2
+ `(n) + 1

It is easy to see that

#evolution(1n, h, 0, a, 1)

holds for a = qti,w, q ∈ Q, 0 ≤ i < n, 0 ≤ w < s(n), 0 ≤ t < n
2 + `(n) + 1; this is

one of the conjuncts of the full de�nition of#evolution. The value n
2 +`(n)+1

can be computed from 1n in DLOGTIME. The part of the predicate evolution
dealing with rules of kind (14)

evolution(1n, h, 0, qti,w, 0, j, b)

then holds when j = 0 and b = qt+1
i,w , and this can be checked in DLOGTIME

as described before.
The full de�nition of evolution (and of all the other predicates for the rules

of Πn) is a disjunction of a constant number of conjuncts (each one dealing with
a di�erent kind of evolution rules, depending on the elements on the left-hand
side of the rule) where each conjunct can be checked in DLOGTIME. ut

An immediate corollary of Theorem 1 is that the class of problems solved by
logarithmic-space Turing machines is contained in the class of problems solved
by (DLT,DLT)-uniform, logarithmic-space P systems with active membranes.

Corollary 1. L ⊆ (DLT,DLT)-LMCSPACEAM. ut
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Fig. 1. The initial con�guration of Πx, that is Πn with n = 5 and input x = abbaa,
assumingM uses logn space, has Σ = {a, b,t} as its alphabet and q as its initial state.
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Fig. 2. A possible con�guration of the P system Πx (see Fig. 1) simulating the Turing
machine M after a few computation steps have been simulated. Here the current state
ofM is r, the work tape contains the string ba, the input tape head is on cell 2 (binary
010), and the work tape head is on cell 1 (binary 01).
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Fig. 3. Con�guration of Πx (from Fig. 1) after the object b010 (corresponding to the
symbol under the input tape head) has set the charge of membrane bi to positive,
allowing the state-object to identify it.
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Fig. 4. Con�guration of Πx after the object a has set the charge of membrane aw to
positive, thus identifying the symbol under the work tape head.
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5 Conclusions

In this paper we extended the de�nition of space complexity for P systems [6] in
order to consider sublinear-space computations and compare them to logarithmic-
space Turing machines.

To ensure that the P systems themselves perform the actual computation
(as opposed to letting the uniformity machine solve the problem), we needed
to weaken the usual polynomial-time uniformity condition (as L ⊆ P). We
showed how a variant of a common uniformity condition for Boolean circuits,
DLOGTIME uniformity, may also be used to de�ne families of P systems with
active membranes.

We were then able to de�ne DLOGTIME-uniform families of P systems
working in logarithmic space and simulating logarithmic-space Turing machines,
thus showing that the former devices are at least as computationally powerful
as the latter ones, in symbols L ⊆ (DLT,DLT)-LMCSPACEAM.

Although the DLOGTIME uniformity condition we proposed, like the AC0

uniformity already considered in the literature [3], is weaker than the usual P
uniformity, it nevertheless seems powerful enough to be applied to many already
published results. Indeed, we conjecture that most previously de�ned P-uniform
families of P systems can be adapted to DLOGTIME uniformity.

It remains to be established whether (DLT,DLT)-LMCSPACEAM = L, or
if that class includes harder problems like, for instance, those in NL.
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Modelling Ecological Systems with the
Calculus of Wrapped Compartments?
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Abstract. The Calculus of Wrapped Compartments is a framework
based on stochastic multiset rewriting in a compartmentalised setting
originally developed for the modelling and analysis of biological interac-
tions. In this paper, we propose to use this calculus for the description
of ecological systems and we provide the modelling guidelines to encode
within the calculus some of the main interactions leading ecosystems
evolution. As a case study, we model the distribution of height of Croton
wagneri, a shrub constituting the endemic predominant species of the
dry ecosystem in southern Ecuador. In particular, we consider the plant
at different altitude gradients (i.e. at different temperature conditions),
to study how it adapts under the effects of global climate change.

Keywords: Calculus of Wrapped Compartments, Stochastic Simula-
tions, Computational Ecology

1 Introduction

Answers to ecological questions could rarely be formulated as general laws: ecol-
ogists deal with in situ methods and experiments which cannot be controlled in
a precise way since the phenomena observed operate on much larger scales (in
time and space) than man can effectively study. Actually, to carry on ecological
analyses, there is the need of a “macroscope”!

Theoretical and Computational Ecology, the scientific disciplines devoted to
the study of ecological systems using theoretical methodologies together with
empirical data, could be considered as a fundamental component of such a
macroscope. Within these disciplines, quantitative analysis, conceptual descrip-
tion techniques, mathematical models, and computational simulations are used
to understand the fundamental biological conditions and processes that affect
populations dynamics (given the underlying assumption that phenomena ob-
servable across species and ecological environments are generated by common,
mechanistic processes) [39].

Ecological models can be deterministic or stochastic [18]. Given an initial
system, deterministic simulations always evolve in the same way, producing a

?
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unique output [43]. Deterministic methods give a picture of the average, expected
behaviour of a system, but do not incorporate random fluctuations. On the other
hand, stochastic models allow to describe the random perturbations that may
affect natural living systems, in particular when considering small populations
evolving at slow interactions. Actually, while deterministic models are approxi-
mations of the real systems they describe, stochastic models, at the price of an
higher computational cost, can describe exact scenarios.

A model in the Calculus of Wrapped Compartments (CWC for short) con-
sists of a term, representing a (biological or ecological) system and a set of
rewrite rules which model the transformations determining the system’s evolu-
tion [27,24]. Terms are defined from a set of atomic elements via an operator of
compartment construction. Each compartment is labelled with a nominal type
which identifies the set of rewrite rules that may be applied into it. The CWC
framework is based on a stochastic semantics and models an exact scenario able
to capture the stochastic fluctuations that can arise in the system.

The calculus has been extensively used to model real biological scenarios, in
particular related to the AM-symbiosis [24,19].3 An hybrid semantics for CWC,
combining stochastic transitions with deterministic steps, modelled by Ordinary
Differential Equations, has been proposed in [25,26].

While the calculus has been originally developed to deal with biomolecular in-
teractions and cellular communications, it appears to be particularly well suited
also to model and analyse interactions in ecology. In particular, we present in
this paper some modelling guidelines to describe, within CWC, some of the main
common features and models used to represent ecological interactions and popu-
lation dynamics. A few generalising examples illustrate the abstract effectiveness
of the application of CWC to ecological modelling.

As a real case study, we model the distribution of height of Croton wagneri,
a shrub in the dry ecosystem of southern Ecuador, and investigate how it could
adapt to global climate change.

2 The Calculus of Wrapped Compartments

The Calculus of Wrapped Compartments (CWC) (see [27,25,26]) is based on a
nested structure of compartments delimited by wraps with specific proprieties.

2.1 Term Syntax

Let A be a set of atomic elements (atoms for short), ranged over by a, b, ..., and
L a set of compartment types represented as labels ranged over by `, `′, `1, . . .

3 Arbuscular Mycorrhiza (AM) is a class of fungi constituting a vital mutualistic
interaction for terrestrial ecosystems. More than 48% of land plants actually rely on
mycorrhizal relationships to get inorganic compounds, trace elements, and resistance
to several kinds of pathogens.
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Definition 1 (CWC terms). A CWC term is a multiset t of simple terms t
defined by the following grammar:

t ::= a
∣∣ (a c t′)`

A simple term is either an atom or a compartment consisting of a wrap (rep-
resented by the multiset of atoms a), a content (represented by the term t′) and
a type (represented by the label `). Multisets are identified modulo permutations
of their elements. The notation n ∗ t denotes n occurrences of the simple term t.
We denote an empty term with •.

In applications to ecology, atoms can be used to describe the individuals of
different species and compartments can be used to distinguish different ecosys-
tems, habitats or ecological niches. Compartment wraps can be used to model
geographical boundaries or abiotic components (like radiations, climate, atmo-
spheric or soil conditions, etc.). In evolutionary ecology, individuals can also be
described as compartments, showing characteristic features of their phenotype
in the wrap and keeping their genotype (or particular alleles of interest) in the
compartment content.

An example of CWC term is 20∗a 12 ∗ b (c d c 6 ∗ e 4 ∗ f)` representing a
multiset (denoted by listing its elements separated by a space) consisting of 20
occurrences of a, 12 occurrence of b (e.g. 32 individuals of two different species)
and an `-type compartment (c d c 6 ∗ e 4 ∗ f)` which, in turn, consists of a wrap
(a boundary) with two atoms c and d (e.g. two abiotic factors) on its surface,
and containing 6 occurrences of the atom e and 4 occurrences of the atom f
(e.g. 10 individuals of two other species). Compartments can be nested as in the
term (a b c c (d e c f)`

′
g h)`.

2.2 Rewrite Rules

System transformations are defined by rewrite rules, defined by resorting to
CWC terms that may contain variables.

Definition 2 (Patterns and Open terms). Simple patterns P and simple
open terms O are given by the following grammar:

P ::= a
∣∣ (a x cP X)`

O ::= a
∣∣ (q cO)`

∣∣ X
q ::= a

∣∣ x

where a is a multiset of atoms, P is a pattern (i.e., a, possibly empty, multiset
of simple patterns), x is a wrap variable (can be instantiated by a multiset of
atoms), X is a content variable (can be instantiated by a CWC term), q is a
multiset of atoms and wrap variables and O is an open term (i.e., a, possibly
empty, multiset of simple open terms).

We will use patterns as the l.h.s. components of a rewrite rule and open terms
as the r.h.s. components of a rewrite rule. Patterns are intended to match, via
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substitution of variables, with ground terms (containing no variables). Note that
we force exactly one variable to occur in each compartment content and wrap of
our patterns. This prevents ambiguities in the instantiations needed to match a
given compartment.4

Definition 3 (Rewrite rules). A rewrite rule is a triple (`, P ,O), denoted by
` : P 7−→ O, where the pattern P and the open term O are such that the variables
occurring in O are a subset of the variables occurring in P .

The rewrite rule ` : P 7→ O can be applied to any compartment of type `
with P in its content (that will be rewritten with O). Namely, the application
of ` : P 7→ O to term t is performed in the following way:

1. find in t (if it exists) a compartment of type ` with content t′ and a substi-
tution σ of variables by ground terms such that t′ = σ(P X);5

2. replace in t the subterm t′ with σ(O X).

For instance, the rewrite rule ` : a b 7→ c means that in compartments of
type ` an occurrence of a b can be replaced by c. We write t 7→ t′ to denote a
reduction obtained by applying a rewrite rule to t resulting to t′.

While a rewrite rule does not change the label ` of the compartment where
it is applied, it may change the labels of the compartments occurring in its
content. For instance, the rewrite rule ` : (a x cX)`1 7→ (a x cX)`2 means that,
if contained in a compartment of type `, a compartment of type `1 containing
an a on its wrap can be changed to type `2.

CWC Models. For uniformity reasons we assume that the whole system is al-
ways represented by a term consisting of a single (top level) compartment with
distinguished label > and empty wrap, i.e., any system is represented by a term
of the shape (• c t)>, which, for simplicity, will be written as t. Note that while
an infinite set of terms and rewrite rules can be defined from the syntactic defi-
nitions in this section, a CWC model consists of an initial system (• c t)> and a
finite set of rewrite rules R.

2.3 Stochastic Simulation

A stochastic simulation model for ecological systems can be defined by incor-
porating a collision-based framework along the lines of the one presented by
Gillespie in [32], which is, de facto, the standard way to model quantitative as-
pects of biological systems. The basic idea of Gillespie’s algorithm is that a rate
is associated with each considered reaction which is used as the parameter of an
exponential probability distribution modelling the time needed for the reaction

4 The linearity condition, in biological terms, corresponds to excluding that a trans-
formation can depend on the presence of two (or more) identical (and generic) com-
ponents in different compartments (see also [36]).

5 The implicit (distinguished) variable X matches with all the remaining part of the
compartment content.
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to take place. In the standard approach the reaction propensity is obtained by
multiplying the rate of the reaction by the number of possible combinations of
reactants in the compartment in which the reaction takes place, modelling the
law of mass action.

Stochastic rewrite rules are thus enriched with a rate k (notation ` : P
k7−→

O). Evaluating the propensity of the stochastic rewrite rule R = ` : a b
k7−→ c

within the term t = a a a b b, contained in the compartment u = (• c t)`, we
must consider the number of the possible combinations of reactants of the form
a b in t. Since each occurrence of a can react with each occurrence of b, this
number is 3 · 2, and the propensity of R within u is k · 6. A detailed method to
compute the number of combinations of reactants can be found in [27].

The stochastic simulation algorithm produces essentially a Continuous Time
Markov Chain (CTMC). Given a term t, a set R of rewrite rules, a global time
δ and all the reductions e1, . . . , eM applicable in all the different compartments
of t with propensities r1, . . . , rM , Gillespie’s “direct method” determines:

– The exponential probability distribution (with parameter r =
∑M
i=1 ri) of

the time τ after which the next reduction will occur;
– The probability ri/r that the reduction occurring at time δ + τ will be ei.

6

The CWC simulator [2] is a tool under development at the Computer Sci-
ence Department of the Turin University, based on Gillespie’s direct method
algorithm [32]. It treats CWC models with different rating semantics (law of
mass action, Michaelis-Menten kinetics, Hill equation) and it can run indepen-
dent stochastic simulations over CWC models, featuring deep parallel optimiza-
tions for multi-core platforms on the top of FastFlow [5]. It also performs online
analysis by a modular statistical framework [4,3].

3 Modelling Ecological Systems in CWC

We present some of the characteristic features leading the evolution of ecological
systems, and we show how to encode it within CWC.

3.1 Population Dynamics

Models of population dynamics describe the changes in the size and composition
of populations.

The exponential growth model is a common mathematical model for pop-
ulation dynamics, where, using r to represent the pro-capita growth rate of a
population of size N , the change of the population is proportional to the size of
the already existing population:

dN

dt
= r ·N

6 Reductions are applied in a sequential way, one at each step.
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CWC Modelling 1 (Exponential Growth Model) We can encode within
CWC the exponential growth model with rate r using a stochastic rewrite rule
describing a reproduction event for a single individual at the given rate. Namely,
given a population of species a living in an environment modelled by a com-
partment with label `, the following CWC rule encodes the exponential growth
model:

` : a
r7−→ a a

Counting the number of possible reactants, the growth rate of the overall popu-
lation is automatically obtained by the stochastic semantics underlying CWC.

A metapopulation7 is a group of populations of the same species distributed in
different patches8 and interacting at some level. Thus, a metapopulation consists
of several distinct populations and areas of suitable habitat.

Individual populations may tend to reach extinction as a consequence of
demographic stochasticity (fluctuations in population size due to random demo-
graphic events); the smaller the population, the more prone it is to extinction. A
metapopulation, as a whole, is often more stable: immigrants from one popula-
tion (experiencing, e.g., a population boom) are likely to re-colonize the patches
left open by the extinction of other populations. Also, by the rescue effect, in-
dividuals of more dense populations may emigrate towards small populations,
rescuing them from extinction.

Populations are affected by births and deaths, by immigrations and emi-
grations (BIDE model [23]). The number of individuals at time t + 1 is given
by:

Nt+1 = Nt +B + I −D − E
where Nt is the number of individuals at time t and, between time t and t+ 1,
B is the number of births, I is the number of immigrations, D is the number of
deaths and E is the number of emigrations.

CWC Modelling 2 (BIDE model) We can encode within CWC the BIDE
model for a compartment of type ` using stochastic rewrite rules describing the
given events with their respective rates r, i, d, e:

` : a
r7−→ a a (birth)

> : a (x cX)`
i7−→ (x c a X)` (immigration)

` : a
d7−→ • (death)

> : (x c a X)`
e7−→ a (x cX)` (emigration)

Starting from a population of Nt individuals at time t, the number Nt+1 of indi-
viduals at time t+ 1 is computed by successive simulation steps of the stochastic
algorithm. The race conditions computed according to the propensities of the
given rules assure that all of the BIDE events are correctly taken into account.

7 The term metapopulation was coined by Richard Levins in 1970. In Levins’ own
words, it consists of “a population of populations” [34].

8 A patch is a relatively homogeneous area differing from its surroundings.
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Example 1. Immigration and extinction are key components of island biogeogra-
phy. We model a metapopulation of species a in a context of 5 different patches:
4 of which are relatively close, e.g. different ecological regions within a small
continent, the last one is far away and difficult to reach, e.g. an island. The
continental patches are modelled as CWC compartments of type `c, the island
is modelled as a compartment of type `i. Births, deaths and migrations in the
continental patches are modelled by the following CWC rules:

`c : a
0.0057−→ a a `c : a

0.0057−→ •
> : (x c a X)`c

0.017−→ a (x cX)`c > : a (x cX)`c
0.57−→ (x c a X)`c

These rates are drawn considering days as time unites and an average of life
expectancy and reproduction time for the individuals of the species a of 200 days
( 1

0.005 ). For the modelling of real case studies, these rates could be estimated from
data collected in situ by tagging individuals.9 In this model, when an individual
emigrates from its previous patch it moves to the top-level compartment from
where it may reach one of the close continental patches (might also be the old
one) or start a journey through the sea (modelled as a rewrite rule putting the
individual on the wrapping of the island compartment):

> : a (x cX)`i
0.27−→ (x a cX)`i

Crossing the ocean is a long and difficult task and individuals trying it will
probably die during the cruise; the luckiest ones, however, might actually reach
the island, where they could eventually benefit of a better life expectancy for
them and their descendants:

> : (x a cX)`i
0.3337−→ (x cX)`i > : (x a cX)`i

0.00057−→ (x c a X)`i

`i : a
0.0077−→ a a `i : a

0.0037−→ •
Considering the initial system modelled by the CWC term:

t = (• c 30 ∗ a)`c (• c 30 ∗ a)`c (• c 30 ∗ a)`c (• c 30 ∗ a)`c (• c •)`i

we can simulate the possible evolutions of the overall diffusion of individuals
of species a in the different patches. Notice that, on average, one over 0.333

0.0005
individuals that try the ocean journey, actually reach the island. In Figure 1 we
show the result of a simulation plotting the number of individuals in the different
patches in a time range of approximatively 10 years. Note how, in the final part
of the simulation, empty patches get recolonised. In this particular simulation,
also, an exponential growth begins after the colonisation of the island. The full
CWC model describing this example can be found at: http://www.di.unito.
it/~troina/cmc13/metapopulation.cwc.

In ecology, using r to represent the pro-capita growth rate of a population and
K the carrying capacity of the hosting environment,10 r/K selection theory [38]

9 In the remaining examples we will omit a detailed time description.
10 I.e., the population size at equilibrium.
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Fig. 1. Metapopulation dynamics.

describes a selective pressure driving populations evolution through the logistic
model [47]:

dN

dt
= r ·N ·

(
1− N

K

)

where N represents the number of individuals in the population.

CWC Modelling 3 (Logistic Model) The logistic model with growth rate r
and carrying capacity K, for an environment modelled by a compartment with
label `, can be encoded within CWC using two stochastic rewrite rules describ-
ing (i) a reproduction event for a single individual at the given rate and (ii) a
death event modelled by a fight between two individuals at a rate that is inversely
proportional to the carrying capacity:

` : a
r7−→ a a

` : a a
2·r

K−17−→ a

If N is the number of individuals of species a, the number of possible reactants
for the first rule is N and the number of possible reactants for the second rule

is, in the exact stochastic model,
(
N
2

)
= N ·(N−1)

2 , i.e. the number of distinct
pairs of individuals of species a. Multiplying this values by the respective rates
we get the propensities of the two rules and can compute the value of N when
the equilibrium is reached (i.e., when the propensities of the two rules are equal):

r ·N = 2·r
K−1 ·

N ·(N−1)
2 , that is when N = 0 or N = K.

For a given species, this model allows to describe different growth rates and
carrying capacities in different ecological regions. Identifying a CWC compart-
ment type (through its label) with an ecological region, we can define rules
describing the growth rate and carrying capacity for each region of interest.
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Species showing a high growth rate are selected by the r factor, they usually
exploit low-crowded environments and produce many offspring, each of which has
a relatively low probability of surviving to adulthood. By contrast, K-selected
species adapt to densities close to the carrying capacity, tend to strongly compete
in high-crowded environments and produce fewer offspring, each of which has a
relatively high probability of surviving to adulthood.

Example 2. There is little, or no advantage at all, in evolving traits that per-
mit successful competition with other organisms in an environment that is very
likely to change rapidly, often in disruptive ways. Unstable environments thus
favour species that reproduce quickly (r-selected species). Stable environments,
by contrast, favour the ability to compete successfully for limited resources (K-
selected species). We consider individuals of two species, a and b. Individuals of
species a are modelled with an higher growth rate with respect to individuals of
species b (ra > rb). Carrying capacity for species a is, instead, lower than the
carrying capacity for species b (Ka < Kb). The following CWC rules describe
the r/K selection model for ra = 5, rb = 0.00125, Ka = 100 and Kb = 1000:

` : a
57−→ a a ` : b

0.001257−→ b b

` : a a
0.17−→ a ` : b b

0.00000257−→ b

We might consider a disruptive event occurring on average every 4000 years with
the rule:

> : (x cX)`
0.000257−→ (x c a b)`

devastating the whole content of the compartment (modelled with the variable
X) and just leaving one individual of each species. In Figure 2 we show a 10000
years simulation for an initial system containing just one individual for each
species. Notice how individuals of species b are disadvantaged with respect to
individuals of species a who reach the carrying capacity very soon. A curve
showing the growth of individuals of species b in a stable (non disruptive) en-
vironment is also shown. The full CWC model describing this example can be
found at: http://www.di.unito.it/~troina/cmc13/rK.cwc.

3.2 Competition and Mutualism

In ecology, competition is a contest for resources between organisms: animals,
e.g., compete for water supplies, food, mates, and other biological resources.
In the long term period, competition among individuals of the same species
(intraspecific competition) and among individuals of different species (interspe-
cific competition) operates as a driving force of adaptation, and, eventually, by
natural selection, of evolution. Competition, reducing the fitness of the individ-
uals involved,11 has a great potential in altering the structure of populations,

11 By fitness it is intended the ability of surviving and reproducing. A reduction in
the fitness of an individual implies a reduction in the reproductive output. On the
opposite side, a fitness benefit implies an improvement in the reproductive output.
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Fig. 2. r/K selection in a disruptive environment.

communities and the evolution of interacting species. It results in the ultimate
survival, and dominance, of the best suited variants of species: species less suited
to compete for resources either adapt or die out. We already depicted a form of
competition in the context of the logistic model, where individuals of the same
species compete for vital space (limited by the carrying capacity K).

Quite an apposite force is mutualism, contest in which organisms of differ-
ent species biologically interact in a relationship where each of the individuals
involved obtain a fitness benefit. Similar interactions between individuals of the
same species are known as co-operation. Mutualism belongs to the category of
symbiotic relationships, including also commensalism (in which one species ben-
efits and the other is neutral, i.e. has no harm nor benefits) and parasitism (in
which one species benefits at the expense of the other).

The general model for competition and mutualism between two species a and
b is defined by the following equations [44]:

dNa

dt = ra·Na

Ka
· (Ka −Na + αab ·Nb)

dNb

dt = rb·Nb

Kb
· (Kb −Nb + αba ·Na)

where the r and K factors model the growth rates and the carrying capacities
for the two species, and the α coefficients describe the nature of the relationship
between the two species: if αij is negative, species Nj has negative effects on
species Ni (i.e., by competing or preying it), if αij is positive, species Nj has
positive effects on species Ni (i.e., through some kind of mutualistic interaction).

The logistic model, already discussed, is included in the differential equations
above. Here we abstract away from it and just focus on the components which
describe the effects of competition and mutualism we are now interested in.

CWC Modelling 4 (Competition and Mutualism) For a compartment of
type `, we can encode within CWC the model about competition and mutualism
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for individuals of two species a and b using the following stochastic rewrite rules:

` : a b
fa·|αab|7−→

{
a a b if αab > 0
b if αab < 0

` : a b
fb·|αba|7−→

{
a b b if αba > 0
a if αba < 0

where fi = ri
Ki

is obtained from the usual growth rate and carrying capacity. The
α coefficients are put in absolute value to compute the rate of the rule, their signs
affect the right hand part of the rewrite rule.

Example 3. Mutualism has driven the evolution of much of the biological di-
versity we see today, such as flower forms (important to attract mutualistic
pollinators) and co-evolution between groups of species [45]. We consider two
different species of pollinators, a and b, and two different species of angiosperms
(flowering plants), c and d. The two pollinators compete between each other, and
so do the angiosperms. Both species of pollinators have a mutualistic relation
with both angiosperms, even if a slightly prefers c and b slightly prefers d. For
each of the species involved we consider the rules for the logistic model and for
each pair of species we consider the rules for competition and mutualism. The
parameters used for this model are in Table 1. So, for example, the mutualistic
relations between a and c are expressed by the following CWC rules

> : a c
ra
Ka
·αac7−→ a a c > : a c

rc
Kc
·αca7−→ a c c

Figure 3 shows a simulation obtained starting from a system with 100 individ-
uals of species a and b and 20 individuals of species c and d. Note the initially
balanced competition between pollinators a and b. This random fluctuations are
resolved by the “long run” competition between the angiosperms c and d: when d
predominates over c it starts favouring the pollinator b that now can win its own
competition with pollinator a. The model is completely symmetrical: in other
runs, a faster casual predominance of a pollinator may lead the evolution of its
preferred angiosperm. The CWC model describing this example can be found
at: http://www.di.unito.it/~troina/cmc13/compmutu.cwc.

Species (i) ri Ki αai αbi αci αdi

a 0.2 1000 • -1 +0.03 +0.01

b 0.2 1000 -1 • +0.01 +0.03

c 0.0002 200 +0.25 +0.1 • -6

d 0.0002 200 +0.1 +0.25 -6 •
Table 1. Parameters for the model of competition and mutualism.

3.3 Trophic Networks

A food web is a network mapping different species according to their alimentary
habits. The edges of the network, called trophic links, depict the feeding pathways
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Fig. 3. Competition and Mutualism.

(“who eats who”) in an ecological community [30]. At the base of the food
web there are autotroph species12, also called basal species. A food chain is a
linear feeding pathway that links monophagous consumers (with only one exiting
trophic link) from a top consumer, usually a larger predator, to a basal species.
The length of a chain is given by the number of links between the top consumer
and the base of the web. The influence that the elements of a food web have
on each other determine important features of an ecosystem like the presence
of strong interactors (or keystone species), the total number of species, and the
structure, functionality and stability of the ecological community.

To model quantitatively a trophic link between species a and b (i.e., a par-
ticular kind of competition) we might use Lotka-Volterra equations [48]:

dNb

dt = Nb · (rb − α ·Na)
dNa

dt = Na · (β ·Nb − d)

where Na and Nb are the numbers of predators and preys, respectively, rb is the
rate for prey growth, α is the prey mortality rate for per-capita predation, β
models the efficiency of conversion from prey to predator and d is the mortality
rate for predators.

CWC Modelling 5 (Trophic Links) Within a compartment of type `, given
a predation mortality α and conversion from prey to predator β, we can encode
in CWC a trophic link between individuals of species a (predator) and b (prey)
by the following rules:

` : a b
α7−→ a

` : a b
β7−→ a a b

12 Self-feeding: able to produce complex organic compounds from simple inorganic
molecules and light (by photosynthesis) or inorganic chemical reactions (chemosyn-
thesis).
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Here we omitted the rules for the prey exponential growth (absent predators)
and predators exponential death (absent preys). These factors are present in the
Lotka-Volterra model between two species, but could be substituted by the effects
of other trophic links within the food web. In a more general scenario, a trophic
link between species a and b could be expressed condensing the two rules within
the single rule:

` : a b
γ7−→ a a

with a rate γ modelling both the prey mortality rate and the predator conversion
factor.

Example 4. Trophic cascades occur when predators in a food web suppress the
abundance of their prey, thus limiting the predation of the next lower trophic
level. For example, an herbivore species could be considered in an intermediate
trophic level between a basal species and an higher predator. Trophic cascades
are important for understanding the effects of removing top predators from food
webs, as humans have done in many ecosystems through hunting or fishing ac-
tivities. We consider a three-level food chain between species a, b and c. The
basal species a reproduces with the logistic model, the intermediate species b
feeds on a, species c predates species b:

` : a
0.47−→ a a ` : a a

0.00027−→ a ` : a b
0.00047−→ b b ` : b c

0.00087−→ c c

Individuals of species c die naturally, until an hunting species enters the ecosys-
tem. At a rate lower than predation, b may also die naturally (absent predator).
An atom h may enter the ecosystem and start hunting individuals of species c:

` : c
0.527−→ • ` : b

0.037−→ • > : h (x cX)`
0.0037−→ (x cX h)` ` : h c

0.57−→ h

Figure 4 shows a simulation for the initial term h (• c 1000 ∗ a 100 ∗ b 10 ∗ c)`.
When the hunting activity starts, by removing the top predator, a top-down
cascade destroys the whole community. The CWC model describing this example
can be found at: http://www.di.unito.it/~troina/cmc13/trophic.cwc.

4 An Application: Croton wagneri and Climate Change

Dry ecosystems are characterised by the presence of discontinuous vegetation
that may reflect less than 60% of the available landscape. The main pattern
in arid ecosystems is a vegetation mosaic composed of patches and clear sites.
In [31] about 1300 different species belonging to the dry ecosystems in Northwest
South America have been identified.

For this study we focused on the species Croton wagneri Müll. Arg., belonging
to the Euphorbiaceae family. This species, particularly widespread in tropical
regions, can be identified by the combination of latex, alternate simple leaves, a
pair of glands at the apex of the petiole, and the presence of stipules. C. wagneri
is the dominant endemic shrub in the dry scrub of Ecuador and has been listed
as Near Threatened (NT) in the Red Book of Endemic Plants of Ecuador [46].
This kind of shrub could be considered as a nurse species13 and is particularly

13 A nurse plant is one with an established canopy, beneath which germination and
survival are more likely due to increased shade, soil moisture, and nutrients.
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Fig. 4. A Throphic Cascade.

important for its ability to maintain the physical structure of the landscape and
for its contribution to the functioning of the ecosystem (observing a marked
mosaic pattern of patches having a relatively high biomass dispersed in a matrix
of poor soil vegetation) [33].

The study site is located in a dry scrub in the south of Ecuador (03◦58′29′′

S, 01◦25′22′′ W) near the Catamayo Valley, with altitude ranging from 1400m
to 1900m over the sea level. Floristically, in this site we can find typical species
of xerophytic areas (about 107 different species and 41 botanical families). The
seasonality of the area directly affects the species richness: about the 50% of the
species reported in the study site emerge only in the rainy season. Most species
are shrubs (including C. wagneri) although there are at least 12 species of trees
with widely scattered individuals, at least 50% of the species are herbs. The
average temperature is 20◦ C with an annual rainfall around 600 mm, the most
of the precipitation occurs between December and March. Generally, this area
is composed by clay, rocky and sandy soils [1].

In the area, 16 plots have been installed along four levels of altitude gradients
(1400m, 1550m, 1700m and 1900m): two 30mx30m plots per gradient in plane
terrain and two 30mx30m plots per gradient in a slope surface (with slope greater
than 10◦). The data collection survey consisted in enumerating all of the C. wag-
neri shrubs in the 16 plots: the spatial location of each individual was registered
using a digital laser hypsometer. Additionally, plant heights were measured di-
rectly for each individual and the crown areas were calculated according to the
method in [42]. Weather stations collect data about temperatures and rainfall for
each altitude gradient. An extract of data collected from the field can be found at:
http://www.di.unito.it/~troina/cmc13/croton_data_extract.xlsx. This
data show a morphological response of the shrub to two factors: temperature
and terrain slope. A decrease of the plant height is observed at lower tempera-
tures (corresponding to higher altitude gradients), or at higher slopes.
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4.1 The CWC Model

A simulation plot is modelled by a compartment with label P . Atoms g, repre-
senting the plot gradient (one g for each metre of altitude over the level of the
sea), describe an abiotic factor put in the compartment wrap.

According to the temperature data collected by the weather stations we corre-
late the mean temperatures in the different plots with their respective gradients.
In the content of a simulation plot, atoms t, representing 1◦C each, model its
temperature. Remember that, in this case, the higher the gradient, the lower
the temperature. Thus, we model a constant increase of temperature within the
simulation plot compartment, controlled by the gradient elements g on its wrap:

> : (x cX)P
17−→ (x c t X)P > : (g x c t X)P

0.0000247−→ (g x cX)P

Atoms i are also contained within compartments of type P , representing the
complementary angle of the plot’s slope (e.g., 90 ∗ i for a plane plot or 66 ∗ i for
a 24◦ slope).

We model C. wagneri as a CWC compartment with label c. Its observed
trait, namely the plant height, is specified by atomic elements h (representing
one mm each) on the compartment wrap.

To model the shrub heights distribution within a parcel, we consider the
plant in two different states: a “young” and an “adult” state. Atomic elements
y and a are exclusively, and uniquely, present within the plant compartment in
such a way that the shrub height increases only when the shrub is in the young
state (y in its content). The following rules describe (i) the passage of the plant
from y to a state with a rate corresponding to a 1 year average value, and (ii) the
growth of the plant, affected by temperature and slope, with a rate estimated
to fit the field collected data:

c : y
0.002747−→ a P : t i (x c y X)c

0.0007187−→ t i (x h c y X)c

4.2 Simulation Results

Now we have a model to describe the distribution of C. wagneri height using
as parameters the plot’s gradient (n ∗ g) and slope (m ∗ i). Since we do not
model explicitly interactions that might occur between C. wagneri individuals,
we consider plots containing a single shrub. Carrying on multiple simulations,
through the two phase model of the plant growth, after 1500 time units (here
represented as days), we get a snapshot of the distribution of the shrubs heights
within a parcel. The CWC model describing this application can be found at:
http://www.di.unito.it/~troina/cmc13/croton.cwc.

Each of the graphs in Figure 5 is obtained by plotting the height deviation
of 100 simulations with initial term (n ∗ g cm ∗ i (• c y)c)P . The simulations in
Figures 5 (a) and (c) reflect the conditions of real plots and the results give a
good approximation of the real distribution of plant heights. Figures 5 (b) and
(d) are produced considering an higher slope than the ones on the real plots
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from were the data has been collected. These simulation results can be used for
further validation of the model by collecting data on new plots corresponding to
the parameters of the simulation.

(a) 1400 ∗ g and 90 ∗ i (b) 1550 ∗ g and 60 ∗ i

(c) 1700 ∗ g and 85 ∗ i (d) 1900 ∗ g and 75 ∗ i

Fig. 5. Deviation of the height of Croton wagneri for 100 simulations.

If we already trust the validity of our model, we can remove the correla-
tion between the gradient and the temperature, and directly express the latter.
Predictions can thus be made about the shrub height at different temperatures,
and how it could adapt to global climate change. Figure 6 shows two possible
distributions of the shrub height at lower temperatures (given it will actually
survive these more extreme conditions and follow the same trend).

5 Conclusions and Related Works

The long-term goal of Computational Ecology is the development of methods to
predict the response of ecosystems to changes in their physical, chemical and bio-
logical components. Computational models, and their ability to understand and
predict the biological world, could be used to express the mechanisms governing
the structure and function of natural populations, communities, and ecosystems.
Until recent times, there was insufficient computational power to run stochas-
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(a) 12◦C, plain terrain (b) 10◦C, plain terrain

Fig. 6. Deviation of the height of Croton wagneri for 100 simulations.

tic, individually-based, spatially explicit models. Today, however, some of these
techniques could be investigated [37].

Calculi developed to describe process interactions in a compartmentalised
setting are well suited for the description and analysis of the evolution of eco-
logical systems. The topology of the ecosystem can be directly encoded within
the nested structure of the compartments. These calculi can be used to repre-
sent structured natural processes in a greater detail, when compared to purely
numerical analysis. As an example, food webs can give rise to combinatorial
interactions resulting in the formation of complex systems with emergent prop-
erties (as signalling pathways do in cellular biology), and, in some cases, giving
rise to chaotic behaviour.

As a final remark about ecological modelling with a framework based on
stochastic rewrite rules, we underline an important compositional feature. How
can we test an hypothetical scenario where a grazing species is introduced in the
model of our case study? A possibility could be to represent the grazing species
with a new CWC atom (e.g. s) and then just add the new competitive rules to
the previously validated model (e.g. the rule P : s (h x cX)c 7−→ s (x cX)c).
Changing in the same sense a model based on ordinary differential equations
would, instead, result in a complete new model were all previous equations should
be rewritten.

5.1 Related Works

As P-Systems [40,41] and the Calculus of Looping Sequences (CLS, for short) [11],
the Calculus of Wrapped Compartments is a framework modelling topological
compartmentalisation inspired by biological membranes, and with a semantics
given in terms of rewrite rules.

CWC has been developed as a simplification of CLS, focusing on stochastic
multiset rewriting. The main difference between CWC and CLS consists in the
exclusion of the sequence operator, that constructs ordered strings out of the
atomic elements of the calculus. While the two calculi keep the same expres-
siveness, some differences arise on the way systems are described. On the one
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hand, the Calculus of Looping Sequences allows to define ordered sequences in
a more succinct way (for examples when describing sequences of genes in DNA
or sequences of amino acids in proteins).14 On the other hand, CWC reflects
in a more realistic way the fluid mosaic model of the lipid bilayer (for example
in the case of cellular membrane description, where proteins are free to float),
and, the addition of compartment labels allows to characterise the properties
peculiar to given classes of compartments. Ultimately, focusing on multisets and
avoiding to deal explicitly with ordered sequences (and, thus, variables for se-
quences) strongly simplifies the pattern matching procedure in the development
of a simulation tool.

The Calculus of Looping Sequences has been extended with type systems
in [6,28,29,8,16]. As an application to ecology, stochastic CLS (see [7]) is used
in [12] to model population dynamics.

P-Systems have been proposed as a computational model inspired by biolog-
ical structures. They are defined as a nesting of membranes in which multisets of
objects can react according to pre defined rewrite rules. Maximal-parallelism is
the key feature of P-Systems: at each evolution step all rewrite rules, in all mem-
branes, are applied as many times as possible. Such a feature makes P-Systems
a very powerful computational model and a versatile instrument to evaluate
expressiveness of languages. However, it is not practical to describe stochastic
systems with a maximally-parallel evolution: exact stochastic simulations based
on race conditions model systems evolutions as a sequence of successive steps,
each of which with a particular duration modelled by an exponential probability
distribution.

There is a large body of literature about applications of P-Systems to ecolog-
ical modelling. In [20,21,22], P-Systems are enriched with a probabilistic seman-
tics to model different ecological systems in the Catalan Pyrenees. Rules could
still be applied in a parallel fashion since reduction durations are not explic-
itly taken into account. In [13,14,15], P-Systems are enriched with a stochastic
semantics and used to model metapopulation dynamics. The addition of mute
rules allows to keep a form of parallelism reducing the maximal consumption of
objects.

While all these calculi allow to manage systems topology through nesting
and compartmentalisation, explicit spatial models are able to depict more precise
localities and ecological niches, describing how organisms or populations respond
to the distribution of resources and competitors [35]. The spatial extensions of
CWC [17], CLS [9] and P-Systems [10] could be used to express this kind of
analysis allowing to deal with spatial coordinates.
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Observer/Interpreter P Systems
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Abstract. In this paper we discuss Observer/Interpreter P systems,
i.e., a model of computation inspired by the possibility of tracking and
detecting fluorescent proteins in living cells and interpreting the results
by visualizing molecular events in real time. In this regard, we define
Observer/Interpreter P systems as a couple of two independent systems:
a P system with symbol objects and multiset rewriting rules and a finite
state machine able to perform an operation (addition/subtraction) on
a register. We investigate the computational power of the model when
different features are taking into account.

Keywords: P Systems, Observation, Interpretation

1 Introduction

One important breakthrough in the study of living cells was the possibility to
label proteins for imaging use. This was achieved by using some genetically en-
coded fluorescent fusion tags (for instance, the Nobel Prize in Chemistry in 2008
was awarded to Osamu Shimomura, Martin Chalfie and Roger Tsien for the
discovery and development of green fluorescent protein – GFP, that was used
by researchers to study the development of nerve cells in the brain or how can-
cer cells spread). The gene for GFP was originally isolated from the jellyfish,
Aequorea victoria, and since then, a lot of scientific effort has been focused on
the discovery of processes occurring inside cells. By visualizing molecular events
happening within the living cells one can trace the molecules function and reg-
ulation. In general, the common methods for labeling molecules in biological
systems are based on the genetic fusion of fluorescent tags. Using these tags one
can watch at nanometer scale the behavior of molecules (the movement, posi-
tions, and interactions), hence one can unravel the regulatory mechanisms of
biological systems.

Nowadays, the code for GFP can be inserted at any given position in the
genome and once there, it will act as a label for the other genes around it.
Accordingly, one can place a GFP gene next to a given gene of interest and then
study how the corresponding protein behaves by watching the green fluorescence.
Moreover, the sequence of aminoacids in the GFP can be genetically engineered
such that it will produce fluorescent proteins glowed in many different colors.
In this way, several distinct types of proteins can be marked by different colors,
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hence one can gather useful data regarding the proteins interactions in one single
experiment. For example, by shining UV light on the sample, one can visualize
the fine detail of the interior of cells, reflecting the position and the amount of
particular tagged proteins.

Having as inspiration the way by which the behavior of glowing proteins in
a living cell can be externally watched, here we propose a computational model
composed by two independent systems: a standard P system with symbol ob-
jects and multiset rewriting rules (which corresponds to a mathematical model
for the living cell) and a finite state machine with output that observes (changes
its state) and interprets (produces an output action) the computation of the P
system. A related model was introduced in [2] and since then a similar idea was
applied for many types of abstract machines (see [4], [1], and [3]). However, here
the observation is performed from a different perspective. Firstly, we assume that
given a nano-computing bio-device, which operates at the level of bio-reactions,
it will be very difficult to count the number of objects in a given configura-
tion. Consequently, the original method for collecting the results of a successful
computation will be hard to be implemented. Instead, we believe that it will
be much easier to detect the increasing/decreasing of the number of objects in
consecutive configurations. More precisely, we are interested by the changes that
appear between consecutive configurations (and not by the apparition of certain
symbols as in the cases studied in the existing literature).

2 Background

We presume the reader to be aware of the basic knowledge from formal language
theory, theory of computation, and membrane computing field (see [6], [7] for
the classical theory of formal languages and [5], [9], and [10] for the theory of
membrane computing). Here we will only recall several concepts and results
which are related strictly to what will be further presented.

We denote by FIN , REG, CF , CS, and RE the families of finite, regular,
context-free, context-sensitive, and recursively enumerable languages, respec-
tively. The Chomsky hierarchy states that FIN ⊂ REG ⊂ CF ⊂ CS ⊂ RE.
If FL is a family of languages then we denote by NFL the family of length
sets of languages in FL. In terms of length sets, the Chomsky hierarchy is
NFIN ⊂ NREG = NCF ⊂ NCS ⊂ NRE.

Generalized Sequential Machines
The family of regular languages REG is equal with the family of languages
accepted by finite state machines.

Generalized sequential machines (GSM) are finite state machines with out-
put. More formally, a GSM is a tuple M = (Q, Σ, ∆, δ, q0, F ) where Q is the state
set, Σ is the input alphabet, ∆ is the output alphabet, δ : Q×Σ → P(Q×∆∗)
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. In order to describe the functioning of M , the transition function δ
can be extended to a function on Q × Σ∗ as follows:
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• δ(q, λ) = {(q, λ)}
• if x ∈ Σ∗ and a ∈ Σ then

δ(q, xa) = {(p, w) | w = w1w2 and (∃) p′ ∈ Q, such that

(p′, w1) ∈ δ(q, x) and (p, w2) ∈ δ(p′, a)}.

If M is a GSM defined as above and x ∈ Σ∗ then M(x) denotes the set

{y | (∃)p ∈ F such that (p, y) ∈ δ(q0, x)}.

If L ⊆ Σ∗ is a language, then M(L) =
⋃

w∈L

M(w).

A GSM always maps a regular language to a regular language.

Register Machine
A register machine is a tuple M = (n, P , l0, lh), where n ≥ 1 is the number of
registers (each register stores a natural number), P is a finite set of uniquely
labeled instructions (P is called the program and the labels of the instructions
are from a set lab(P)), l0 is the initial label, and lh is the halting label.

The instructions can be of the following forms:
• l1 : (add(r), l2, l3) – where l1, l2, l3 ∈ lab(P), adds 1 to register r and non-
deterministically proceeds to one of the instructions l2 or l3.
• l1 : (sub(r), l2, l3) – where l1, l2, l3 ∈ lab(P), subtracts 1 from register r if the
number stored by register r is greater than zero and goes to the instruction with
the label l2, otherwise goes to the instruction with the label l3.
• lh : halt – where lh ∈ lab(P), halts the machine.

M starts with all registers being empty and runs the program P , starting
from the instruction with the label l0. Considering the content of register 1 for all
possible computations of M which are ended by the execution of the instruction
labeled lh, one gets the set N(M) ⊆ IN – the set generated by M .

The following result concerns the computational power of register machines.

Theorem 1. For any recursively enumerable set Q ⊆ IN there exists a non-
deterministic register machine with 3-registers generating Q such that when
starting with all registers being empty, M non-deterministically computes and
halts with n in register 1, and registers 2 and 3 being empty iff n ∈ Q.

Lindenmayer Systems
Lindenmayer systems are parallel computing devices representing a development
model inspired by multicellular organisms growth. A 0L system is a tuple G =
(V, ω, P ) where V is an alphabet, ω ∈ V ∗ is the axiom, and P ⊆ V × V ∗ is a
complete finite set of rules. For w1, w2 ∈ V ∗ we write w1 ⇒ w2 if w1 = a1 . . . an,
w1 = x1 . . . xn, for ai → xi ∈ P , 1 ≤ i ≤ n. The language generated by G
is L(G) = {x ∈ V ∗ | ω ⇒∗ x} where ⇒∗ denotes the reflexive and transitive
closure of ⇒.

An ET0L system is a tuple H = (V, T, ω, ∆) where T = {P1, . . . , Pk} is a
finite nonempty set of tables and such that each triple Gi = (V, ω, Pi), 1 ≤ i ≤ k,
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represents a 0L system. The language generated by H is

L(H) = {x ∈ ∆∗ | ω =⇒Pj1
w1 =⇒Pj2

. . . =⇒Pjm
wm = x,

m ≥ 0, 1 ≤ ji ≤ k, 1 ≤ i ≤ m}.

It is known that CF ⊂ ET 0L ⊂ CS and that NCF ⊂ NET 0L ⊂ NCS.
The set {2n | n ≥ 0} ∈ NET 0L \ NCF .

The following result represents a normal form for the ET0L systems.

Lemma 1. For each L ∈ ET 0L there is an extended tabled Lindenmayer system
H = (V, T, ω, ∆) with two tables (T = {T1, T2}) generating L, such that for each
a ∈ ∆ if a → α ∈ T1 ∪ T2 then α = a.

P Systems with Simbol Objects and Multiset Rewriting Rules
A P system with symbol objects and multiset rewriting rules of degree m ≥ 1 is
a tuple

Π = (O, C, µ, w1, . . . , wm, R1, . . . , Rm, i0) where

• O is a finite set of objects;
• C ⊆ O is the set of catalysts;
• µ is a tree structure of m uniquely labeled membranes which delimit the regions
of Π ; the set of labels is {1, . . . , m};
• wi, 1 ≤ i ≤ m, is the multiset of objects, initially present in the region i of Π ;
• Ri, 1 ≤ i ≤ m, is a finite set of multiset rewriting rules associated with the
region i; the rules are of type ca → cv or a → v, where c ∈ C, a ∈ O \ C, and
v ∈ ((O \ C) × {here, out, in})∗.

The initial configuration of Π is C0 = (µ, w1, . . . , wm). A transition between
configurations means to apply in parallel a maximal multiset of evolution rules
(the rules are nondeterministically chosen and they compete for the available
objects), in all the regions of Π . The application of a rule u → v in a region
containing the multiset w consists of subtracting from w the multiset u and
then adding the objects composing v in the regions indicated by the targets
in, out, and here (we usually omit the target here). The P system iteratively
takes parallel steps until there remain no applicable rules in any region Π ; then,
the system halts. The number of objects in the region i0 of Π in the halting
configuration represents the result of the underlaying computation of Π . By
collecting the results of all possible computations of Π one gets the set of natural
numbers N(Π) generated by Π . The families of all sets of numbers generated
by P systems with symbol objects, multiset rewriting rules, with at most m
membranes, and with at most k catalysts (i.e., card(C) = k) is denoted by
NOPm(catk).

The following results regard the computational power of the P system model
defined above.

Proposition 1. NOPm(catk) = NOP1(catk), for any k ≥ 0

Theorem 2. NREG = NOP1(cat0) ⊂ NOP1(cat2) = NRE.

The exact characterization of the computational power of catalytic P systems
with only one catalyst remains an open problem.
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3 Observation / Interpretation

Based on the motivation exposed in the Introduction, one can imagine a compu-
tational device Φ = (Π, M) (called Observer/Interpreter P system) composed
by a pair of systems: a P system Π (called the core system) and a finite state
machine with output M which is able to detect in any configuration a change
in the multiset of a region of the core system and which can perform a certain
operation based on the observation.

Without any loss of generality and for the simplicity of exposition, we may
assume that the core system Π is a P system with symbol objects and multi-
set rewriting rules and which has only one membrane, that is Π = (O, C, µ =
[ ]1, R1, w1, i0 = 1) having the components defined as the P system model pre-
sented in Section 2. Because Π has only one membrane we can define a con-
figuration of Π as a multiset w ∈ O∗. The initial configuration is C0 = w1.
Given two configurations C1 and C2 of Π , we say that C2 is obtained from C1

in one transition step (denoted by C1 ⊢ C2) by applying the rules from R1 in a
nondeterministic maximal parallel manner and with the competition on objects.
The reflexive and transitive closure of ⊢ is denoted by ⊢∗. The system continues
performing parallel steps until there remain no applicable rules; then the sys-
tem halts (the underlying computation is a halting one). The number of objects
from O contained in the output region i0 = 1 is the result of the underlying
computation of Π .

Given a multiset M : O → IN then M(a), a ∈ O, represents the multiplicity
of a in M . For an ordered pair (M1, M2) of multisets M1, M2 : O → IN , we
denote by a ↑ the case when M1(a) < M2(a) (which indicates the increasing of
the number of objects a from M1 to M2), by a ↓ the case when M1(a) > M2(a)
(which indicates the decreasing of the number of objects a from M1 to M2), and
finally by a− the case when M1(a) = M2(a). A (partial) observation of the pair
(M1, M2) is a subset of {a ↑| a ∈ O, M1(a) < M2(a)} ∪ {a ↓| a ∈ O, M1(a) >
M2(a)} ∪ {a− | a ∈ O, M1(a) = M2(a)}. Considering that O = {a1, . . . , ak},
then the set of all possible observations is denoted by

O = {{x1, . . . , xk} | (∃) {y1, . . . , yk} ⊆ O and

xi ∈ {yi ↑, yi ↓, yi−}, for 1 ≤ i ≤ k} .

The Observer/Interpreter P system represents a finite state machine with
output

M = (Q, O, ∆, δ, λ, q0, F, r)

where Q is a finite set of states, O is the set of all possible observations, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and r is a data register able
to store an integer (r is initially set to 0). The transition function δ : Q×O → Q
defines the functioning of the machine: if M is in a state q ∈ Q and given an
observation o ∈ O, then M moves to the state δ(q, o). The interpretation function
λ : Q × O → {inc, dec, skip} describes the output actions performed by M :
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assuming that M is in a state q ∈ Q and given an observation o ∈ O, then M will
perform the action λ(q, o) (it increments register r if λ(q, o) = inc, it decrements
register r if λ(q, o) = dec, and it does not modify the content of r if λ(q, o) =
skip). The output of M in response to a sequence of observations o1, o2, . . . , ok

consists in the applications of the actions given by λ(q0, o1), . . . , λ(qk−1, ok) on
register r, where q0, . . . , qn is the sequence of states such that δ(qi−1, oi) = qi,
1 ≤ i ≤ n; the sequence of observations o1, o2, . . . , ok is called accepted by M iff
qn ∈ F .

The system Φ = (Π, M) computes as follows. The systems Π and M run
in parallel: at each passing from a configuration C1 to C2 in a computation of
Π , based on the observation {x1, . . . , xk} of the pair (C1, C2), the system M
changes its current state q to a new one p = δ(q, {x1, . . . , xk}); in addition,
M performs the action defined by λ(q, {x1, . . . , xk}). A computation of Φ is
considered successful if the above procedure is applied for each pair of consecutive
configurations in a halting computation of Π and the system M accepts the
sequence of observations determined by the computation of Π ; in this case, the
result of the computation is the number stored in register r at its end. Collecting
all the values stored by r at the end of all possible successful computations of Φ
one obtains the set of integers N(Φ(Π, M)).

In case of a non-halting computation of Π , the system Φ does not produce
any output. The same outcome is obtained when M does not accept the sequence
of observations determined by the underlying computation of Π .

The families of all sets of numbers generated by Observer/Interpreter P sys-
tems, having as core systems P systems with symbol objects, multiset rewriting
rules, at most k catalysts and one membrane is denoted by NOI(catk).

Because the system M recalls the definition of a GSM, in what follows we
will use a similar notation for the transition graph.

Example 1 Let Φ = (Π, M) such that Π = (O, C, µ, R1, w1, i0) where O =
{a, a, a, c}, C = {c}, µ = [ ]1, w1 = a, i0 = 1, and R1 is defined as follows:

R1 = {a → aa,

a → a,

a → a,

ca → c}.

The system M is defined by the transition graph depicted in Figure 1.
The computation of Φ proceeds as follows. If the rule a → aa is the only

rule applied in the first k consecutive configurations of Π , then 2k−1 objects a
are produced. During this exponential generation of objects a, the system M
remains in state q0 (this is because M detects that the number of objects a does
not change). Assuming that in the k-th configuration both the rules a → aa and
a → a are applied, then M, being in state q0, can either remain in the same
state q0 and the computation stops (an unsuccessful computation; the case a−
or a ↑, a ↑) or it can pass to state q1 (the case a ↓, a ↑). However, there is no
guarantee that all the objects a were rewritten by a → a; M will arrive in state
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q0 q1 q2
{a↓,a↑,a−,c−},skip {a−,a↓,a↑,c−},skip

{a↑,a−,a−,c−},skip {a−,a−,a↓,c−},inc

Fig. 1. The system M “observes” the couples of consecutive configurations of Π and
“interprets” them.

q2 iff all the objects a were rewritten firstly into a and then into a. Finally, by
applying the loop transition from state q2 one gets as output 2k−1.

In what follows, we are interested by the computational power of these sys-
tems and their relations with the classical families of sets of numbers.

Theorem 3. For any language L generated by an ET0L system H = (V, T, ω, ∆)
and any word w ∈ ∆∗ there exists an Observer/Interpreter P system Φ = (Π, M)
such that Π is a P system with symbol objects and non-cooperative multiset
rewriting rules and that halts generating 0 iff |w| ∈ length(L).

Proof. Without any loss of generality assume that card(T ) = 2. Let V−∆ = {a |
a ∈ V \ ∆} and h : V ∗ → (V−∆ ∪ ∆)∗ such that

• h(a) = a if a ∈ V \ ∆
• h(a) = a if a ∈ ∆
• h(λ) = λ
• h(x1x2) = h(x1)h(x2), for x1, x2 ∈ V ∗.
Then we can construct an Observer/Interpreter P system Φ(Π, M) that sim-

ulates the computation of H as follows.
Π = (O, C, µ = [ ]1, R1, w1, i0 = 1) where

O = V ∪ V−∆ ∪ {t, e, T1, T2}
C = ∅,

w1 = wt,

The set of rules is defined below:

R1 = {t → t, t → λ, T1 → λ, T2 → λ}
∪ {A → h(α)T1 | A → α ∈ T1, A ∈ V \ ∆}
∪ {A → h(α)T2 | A → α ∈ T2, A ∈ V \ ∆}
∪ {A → A | A ∈ V \ ∆}

Observer/interpreter P systems

413



q0

q1

q2

{t−, T1 ↑, T2−}, skip

{t−, T1 ↓, T2−}, skip

{t−, T2 ↑, T1−}, skip

{t−, T2 ↓, T1−}, skip

q3
{t ↓, T1−, T2−}, skip

Fig. 2. The system M that is used to regulate the computation of Π .

The finite state machine M is defined in Figure 2.
Assuming that M is in state q0 and Π is in a configuration tw where w ∈ V ∗

(w corresponds to a string derived by H), then M passes from state q0 to state
q1 if Π executes the rules t → t, the rules corresponding to the Table 1 of system
H (i.e., rules from the set {A → h(α)T1 | A → α ∈ T1, A ∈ V \ ∆}, and no rules
corresponding to the Table 2 (recall that the observation set is {t−, T1 ↑, T2−}).
Next, if M is in state q1, then the only way for M to comeback to the state
q0 is that Π executes the rules t → t, T1 → λ, and the rules from the set
{A → A | A ∈ V \ ∆}.

The applications of rules of Π in these two steps (”regulated” in a certain
sense by the actions of M) correspond to an application of Table 1 of H . More-
over, if M is in the state q0 and Π executes the rule t → λ and at least one
rule from the set {A → h(α)T1 | A → α ∈ T1, A ∈ V \ ∆} ∪ {A → h(α)T2 |
A → α ∈ T2, A ∈ V \ ∆} then M will halt in state q0 by rejecting; if instead Π
executes t → λ and no rule that produces object(s) T1 or T2 (that is, the number
of objects T1 and T2 does not grow between consecutive configurations) then M
passes from the state q0 to q3 and accepts (actually, Π halts by having in its
region a multiset composed only by terminals and which correspond to a string
generated by H). However, N(Φ(Π, M)) = {0} and Φ(Π, M) halts by having 0
in its register iff w ∈ L(H).

The following result shows the computational power of the Observer/ Inter-
preter systems when P systems with symbol objects and multiset rewriting rules
(with one catalyst) are used as core systems.

Theorem 4. NOI(cat1) = NRE.
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Proof. The inclusion NOI(cat1) ⊆ NRE is supposed to be true by invoking the
Turing-Church thesis. The opposite inclusion NOI(cat1) ⊇ NRE can be shown
by simulating an arbitrary register machine M = (n, P , l0, lh) with 3 registers
(n = 3) with an Observer/Interpreter P system Φ(Π, M); the P system Π
uses non-cooperative and/or catalytic rules with one catalyst. The core system
Π = (O, C, µ = [ ]1, R1, w1, i0 = 1) is defined as follows:

O = lab(P) ∪ {p | p ∈ lab(P)} ∪ {a1, a2, a3, a1, a2, a3, a1, a2, a3}
∪ {X1, X2, X3} ∪ {c},

C = {c},

w1 = l0,

and the set of rules R1 is defined below:

• the following rules are added to R1

ai → ai, for 1 ≤ i ≤ 3
ai → ai, for 1 ≤ i ≤ 3

• for any instruction l1 : (sub(r), l2, l3) ∈ P the following rules are added to R1

car → cXr

Xr → λ

l1 → l2
l2 → l2
l1 → l3
l3 → l3

In case of M, the states and the transitions between them are defined as
follows.

l1

l2 l2

l3 l3

{ar↓,ar↑,l1↓,l2↑,a1−,a2−,a3−},skip

{l2↓,l2↑,Xr↑},op

where op = inc if r = 1

and op = skip if r 6= 1

{ar−,l1↓,l3↑,a1−,a2−,a3−},skip
{X1, X2, X3} \ {Xr}, skip

• for any instruction l1 : (add(r), l2, l3) ∈ P

l1 → l1
l1 → l2ar

l1 → l3ar
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In case of M, the states and the transitions between them are defined as
follows.

l1 l1
{l1 ↓, l1 ↑, a1−, a2−, a3−}, skip

l2

{X1−, X2−, X3−, l2 ↑}, op

where op = inc if r = 1

and op = skip if r 6= 1

l3{X1−, X2−, X3−, l3 ↑}, op

where op = inc if r = 1

and op = skip if r 6= 1

• for the instruction lh : halt ∈ P

lh → λ
ai → ai, 1 ≤ i ≤ 3

In case of M, the states and the transitions between them are defined as
follows.

lh lH
{lh ↓, a1−, a2−, a3−}, skip

Here is shown how Φ(Π, M) works. At the beginning of a computation in
the region 1 of Π there exists the multiset composed by just one object l0 (that
corresponds to the label of the first register machine instruction). This object
will be iteratively rewritten during the computation (according with the register
machine program) into the label of an instruction. In any configuration in a
computation of Π , the number of objects ar corresponds to the number stored
in register r, 1 ≤ r ≤ 3. Following the register machine definition, in the initial
configuration there will be no objects ar, 1 ≤ r ≤ 3, because the register machine
M starts with all registers being empty.

Assume now that the current register machine instruction to be simulated is
l1 : (add(r), l2, l3); then Π is in a configuration C = l1a

k1
1 ak2

2 ak3
3 and M is in the

state labeled l1. In this configuration, Π executes the rules l1 → l1 and ar → ar,
for 1 ≤ r ≤ 3. Consequently, the next configuration is C′ = l1a

k1
1 ak2

2 ak3
3 , hence

M passes from state l1 to state l1. Next, Π non-deterministically executes one
of the rules l1 → l2ar and l1 → l3ar (exactly one of them, because there is
only one object l1), and the rules ar → ar; in this way the next configuration
will be C′′ = l2a

k1
1 ak2

2 ak3
3 ar or C′′ = l3a

k1
1 ak2

2 ak3
3 ar where 1 ≤ r ≤ 3. It follows

that M passes from state l1 to the state l2 or l3, therefore the simulation of the
addition instruction was correctly performed. However, as we will see later on,
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there might be the case when Π , being in configuration C′, it also executes rules
of type car → cXr. In this case, the finite state machine M cannot pass from
state l1 to l2 or l3 and the input is rejected.

Without any loss of generality, let us consider that the current register ma-
chine instruction to be executed is l1 : (sub(r1), l2, l3) (that is M atempts to
decrement register 1) and that Π is in a configuration C = l1a

k1
1 ak2

2 ak3
3 , with

k1, k2, k3 ≥ 0. We have two possible cases:
Case 1: k1 ≥ 1. In this case Π executes the rule a1 → a1 (if in the current

multiset there are also the objects a2 and a3, then also the rules a2 → a2 and
a3 → a3 are executed) and one of the rules l1 → l2 or l1 → l3. If the rule
l1 → l2 is executed, then M passes from state l1 to l2, otherwise M halts in
state l1 rejecting the computation. Next, if M is in state l2 and the system
Π is in configuration l2a

k1
1 ak2

2 ak3
3 the rules that can be applied are: l2 → l2,

ar → ar, and car → CXr, for 1 ≤ r ≤ 3 (from these rules only the rule l2 → l2
will surely be applied, while the others will be applied, depending on the values
of k1, k2, and k3, in any combination but such that at least one of the rules
ar → ar and car → CXr, 1 ≤ r ≤ 3, will be selected for application; moreover
if a rule involving the catalyst c is applied, then all the other rules involving c
are not applied). Consequently M can pass from state l2 to state l2 if and only
if ca1 → cX1 is applied (that is, X1 ↑ appears in the observation set).

Case 2: k1 = 0. In this situation, Π cannot execute the rule a1 → a1 because
there is no object a1, hence the number of objects a1 remains unchanged. It
follows that M goes from state l1 to state l3 if the rule l1 → l3 is executed (the
observation set is {a1−, l1 ↓, l3 ↑}). Next, M will pass from state l3 to state l3
iff the rules ca2 → cX2 and ca3 → cX3 are not applied (that is, if there exist
the objects a2 and a3, then only the rules a2 → a2 and a3 → a3 are applied).

Assuming now that M is in the state labeled lh and the object with the same
name lh is generated by Π , then M changes its state to lH iff the rules lh → λ
and ai → ai, 1 ≤ i ≤ 3, are applied (the observation set {lh ↓, a1−, a2−, a3−}
guarantees that the rules ai → ai are not applied because the number of objects
ai remains constant between the two consecutive configurations). Hence, the
computations of Π and M halt and the generated set is the content of register
r.

4 Conclusions and Further Work

In this paper we have introduced and studied Observer/Interpreter P systems
which were motivated by the possibility of tracking and detecting genetically
encoded fluorescent proteins in living cells. Their discovery produced a major
development in the live imaging of cells. In this respect, intracellular dynamics
was able to be monitored and studied. Moreover, the discovery of these proteins
allowed the creation of specific biosensors which were further used to monitor a
wide range of intracellular phenomena (like apoptosis, pH and metal-ion concen-
tration, protein kinase activity, membrane voltage, cyclic nucleotide signaling,
and so on).
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We introduced a formal system composed by a P system with symbol objects
and multiset rewriting rules Π and a finite state machine with output M which
is able to detect changes in consecutive configurations from a computation of
Π ; based on what it detects, M changes its state and produces an output (it
increments, decrements, or performs no action on a register able to store an
integer). We were interested in the computational capabilities of the model.
In this regard, we showed how one can simulate the computation of an ET0L
system using an Observer/Interpreter P system which has as core system a P
system with non-cooperative rules; however, in this case we were not able to
produce as output the same number as the length of the word generated by the
ETOL system (hence we could not give the exact characterization in terms of
computational power). We also proved that when catalytic P systems (with one
catalyst) are used one can generate any recursively enumerable set of numbers.

Several open problems can be formulated for the proposed model. For exam-
ple we are interested by the case when purely catalytic P systems are used as
core languages. Another interesting topic regards the computational power of the
model when the cardinality of any observation cannot exceed k, 1 ≤ k ≤ card(O).
In the same line of research one can put a bound on the number of states of M
and study the computational power of the Observer/Interpreter P systems with
respect to these constraints. Yet another interesting idea concerns the possibility
of defining the moments when observations can be performed.
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Abstract. Tissue P systems generalize the membrane structure tree
usual in original models of P systems to an arbitrary graph. Basic opera-
tions in these systems are communication rules, enriched in some variants
with cell division or cell separation. Several variants of tissue P systems
were recently studied, together with the concept of uniform families of
these systems. Their computational power was shown to range between
P and NP ∪ co-NP, thus characterizing some interesting borderlines
between tractability and intractability. In this paper we show that com-
putational power of these uniform families in polynomial time is limited
by the class PSPACE. This class characterizes the power of many clas-
sical parallel computing models.

1 Introduction

P systems (also membrane systems) can be described as bio-inspired computing
models trying to capture information and control aspects of processes in living
cells. P systems are focusing, e.g., on molecular synthesis within cells, selective
particle recognition by membranes, controlled transport through protein chan-
nels, membrane division, membrane dissolution and many others. These pro-
cesses are modeled in P systems by means of operations on multisets in separate
cell-like regions.

Tissue P systems were introduced first in [9] where they were described as a
kind of abstract neural nets. Instead of considering a hierarchical arrangement
usual in previous models of P systems, membranes/cells are placed in the nodes
of a virtual graph. Biological justification of the model (see [10]) is the intercel-
lular communication and cooperation between neurons and, generally, between
tissue cells. The communication among cells is based on symport/antiport rules
which were introduced to P systems in [14]. Symport rules move objects across a
membrane together in one direction, whereas antiport rules move objects across
a membrane in opposite directions. In tissue P systems these two variants were
unified as a unique type of rule. From the original definitions of tissue P systems
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[9, 10], several research lines have been developed and other variants have arisen
(see, for example, [1, 2, 5, 7, 8, 11, 12]).

An interesting variant of tissue P systems was presented in [15] and named
tissue P systems with cell division. The model is enriched with the operation of
cell replication, that is, two new cells are generated from one original cell by a
division rule. The new cells have exactly the same objects except for at most a
pair of different objects. The following results were obtained: (a) only tractable
problems can be efficiently solved when the length of communication rules is
restricted to 1, and (b) an efficient (uniform) solution to the SAT problem exists
when using communication rules with length at most 3 (and, of course, division
rules). Hence, in the framework of recognizer tissue P systems with cell division,
the length of the communication rules provides a borderline between efficiency
and non-efficiency.

In this paper we impose an upper bound on the power of several types of
tissue P systems. Specifically, we show that tissue systems with cell division
can be simulated in polynomial space. As a consequence, the class of problems
solvable by uniform families of these systems in polynomial time is limited by
the class PSPACE.

The paper is organized as follows: first, we recall some preliminaries, and then
the definition of tissue P systems with cell division is given. Next, recognizer
tissue P systems and computational complexity classes in this framework are
briefly described. In Section 3 we demonstrate that any such tissue P system can
be simulated by a classical computer (and, hence, also by Turing machine) in
polynomial space. The last section contains conclusions and some open problems.

2 Tissue P Systems with Cell Division

We fix some notation first. A multiset m with underlying set A is a pair (A, f)
where f : A → N is a mapping. If m = (A, f) is a multiset then its support is
defined as supp(m) = {x ∈ A | f(x) > 0}. The total number of elements in a
multiset, including repeated memberships, is the cardinality of the multiset. A
multiset is empty (resp. finite) if its support is the empty set (resp. a finite set).
If m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak} then it can

also be represented by the string a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}.

Nevertheless, all permutations of this string precisely identify the same multiset
m. Throughout this paper, we speak about “the finite multiset m” where m is
a string, and meaning “the finite multiset represented by the string m”.

If m1 = (A, f1), m2 = (A, f2) are multisets over A, then we define the union
of m1 and m2 as m1 + m2 = (A, g), where g = f1 + f2.

For any sets A and B the relative complement A \ B of B in A is defined as
follows:

A \ B = {x ∈ A | x /∈ B}
In what follows, we assume the reader is already familiar with the basic

notions and the terminology of P systems. For details, see [16].
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420



2.1 Basic Definition

Tissue P Systems with cell division is based on the cell-like model of P systems
with active membranes [13]. The biological inspiration is the following: alive
tissues are not static network of cells but new cells are produced by membrane
division in a natural way. In these models, the cells are not polarized; the two
cells obtained by division have the same labels as the original cell, and if a cell
is divided, its interaction with other cells or with the environment is blocked
during the division process.

Definition 1. A tissue P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ, E , M1, . . . , Mq, R, iout),

where:

1. Γ is a finite alphabet whose elements are called objects;
2. E ⊆ Γ is a finite alphabet representing the set of objects initially in the

environment of the system, and 0 is the label of the environment (the envi-
ronment is not properly a cell of the system); let us assume that objects in
the environment appear in inexhaustibly many copies each;

3. M1, . . . ,Mq are strings over Γ , representing the finite multisets of objects
placed in the q cells of the system at the beginning of the computation;
1, 2, · · · , q are labels which identify the cells of the system;

4. R is a finite set of rules of the following forms:
(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i ̸= j, u, v ∈

Γ ∗, |uv| > 0. When applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and, simultaneously,
the objects of the multiset v are sent from region j to region i;

(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ , and
i ̸= iout. In reaction with an object a, the cell i is divided into two cells
with the same label; in the first cell the object a is replaced by b; in the
second cell the object a is replaced by c; the output cell iout cannot be
divided;

5. iout ∈ {0, 1, 2, . . . , q} is the output cell.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ. A
symport rule (i, u/λ, j), with i ̸= 0, j ̸= 0, provides a virtual arc from cell i to cell
j. A communication rule (i, u/v, j) is called an antiport rule if u ̸= λ and v ̸= λ.
An antiport rule (i, u/v, j), with i ̸= 0, j ̸= 0, provides two arcs: one from cell i
to cell j and another one from cell j to cell i. Thus, every tissue P systems has an
underlying directed graph whose nodes are the cells of the system and the arcs
are obtained from communication rules. In this context, the environment can be
considered as a virtual node of the graph such that their connections are defined
by the communication rules of the form (i, u/v, j), with i = 0 or j = 0. Let us
agree that no symport rule is permissible which would send an infinite number
of objects from the environment to some cell. The length of the communication
rule (i, u/v, j) is defined as |u| + |v|.
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The rules of a system like the above one are used in the non-deterministic
maximally parallel manner as customary in Membrane Computing. At each step,
all cells which can evolve must evolve in a maximally parallel way (at each step
we apply a multiset of rules which is maximal, no further rule can be added
being applicable). There is one important restriction: when a cell is divided, the
division rule is the only one which is applied for that cell at that step; thus,
the objects inside that cell do not evolve by means of communication rules. The
label of a cell precisely identify the rules which can be applied to it.

A configuration of a tissue P system with cell division at any instant is de-
scribed by all multisets of objects over Γ associated with all the cells present in
the system, and the multiset of objects over Γ − E associated with the environ-
ment at that moment. Bearing in mind the objects from E have infinite copies in
the environment, they are not properly changed along the computation. The ini-
tial configuration is (M1, · · · , Mq; ∅). A configuration is a halting configuration
if no rule of the system is applicable to it.

We say that configuration C1 yields configuration C2 in one transition step,
denoted C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from
R as specified above. A computation of Π is a (finite or infinite) sequence of
configurations such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of
the sequence is a halting configuration.

Halting computations give a result which is encoded by the objects present in
the output cell iout in the halting configuration.

2.2 Recognizer Tissue P Systems with Cell Division

Let us denote a decision problem as a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . A natural correspondence between decision problems and lan-
guages over a finite alphabet can be established as follows. Given a decision
problem X = (IX , θX), its associated language is LX = {w ∈ IX : θX(w) = 1}.
Conversely, given a language L over an alphabet Σ, its associated decision prob-
lem is XL = (IXL

, θXL
), where IXL

= Σ∗, and θXL
= {(x, 1) : x ∈ L}∪{(x, 0) :

x /∈ L}. The solvability of decision problems is defined through the recognition
of the languages associated with them, by using languages recognizer devices.

In order to study the computational efficiency of membrane systems, the no-
tions from classical computational complexity theory are adapted for Membrane
Computing, and a special class of cell-like P systems is introduced in [18]: recog-
nizer P systems. For tissue P systems, with the same idea as recognizer cell-like
P systems, recognizer tissue P systems is introduced in [15].
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Definition 2. A recognizer tissue P system with cell division of degree q ≥ 1 is
a tuple

Π = (Γ,Σ, E , M1, . . . , Mq, R, iin, iout)

where:

1. (Γ, E , M1, . . . , Mq, R, iout) is a tissue P system with cell division of degree
q ≥ 1 (as defined in the previous section).

2. The working alphabet Γ has two distinguished objects yes and no being, at
least, one copy of them present in some initial multisets M1, . . . , Mq, but
none of them are present in E.

3. Σ is an (input) alphabet strictly contained in Γ , and E ⊆ Γ \ Σ.
4. M1, . . . ,Mq are strings over Γ \ Σ;
5. iin ∈ {1, . . . , q} is the input cell.
6. The output region iout is the environment.
7. All computations halt.
8. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of
the computation.

For each w ∈ Σ∗, the computation of the system Π with input w ∈ Σ∗ starts
from the configuration of the form (M1, M2, . . . , Miin + w, . . . , Mq; ∅), that
is, the input multiset w has been added to the contents of the input cell iin.
Therefore, we have an initial configuration associated with each input multiset
w (over the input alphabet Σ) in this kind of systems.

Given a recognizer tissue P system with cell division, we say that a computa-
tion C is an accepting computation (respectively, rejecting computation) if object
yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C, and neither object yes nor no appears
in the environment associated with any non-halting configuration of C.

For each natural number k ≥ 1, we denote by TDC(k) the class of recognizer
tissue P systems with cell division and communication rules of length at most k.
We denote by TDC the class of recognizer tissue P systems with cell division and
without restriction on the length of communication rules. Obviously, TDC(k) ⊆
TDC for all k ≥ 1.

2.3 Polynomial Complexity Classes of Tissue P Systems

Next, we define what means solving a decision problem in the framework of
tissue P systems efficiently and in a uniform way. Bearing in mind that they
provide devices with a finite description, a numerable family of tissue P systems
will be necessary in order to solve a decision problem.

Definition 3. We say that a decision problem X = (IX , θX) is solvable in a
uniform way and polynomial time by a family Π = {Π(n) | n ∈ N} of recognizer
tissue P systems (with cell division) if the following holds:
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1. The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N.

2. There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
(b) for each n ∈ N, s−1(n) is a finite set;
(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and it performs at
most p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

(e) the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the
set of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The following results have been
proved:

Theorem 1 ([6]). P = PMCTDC(1)

Theorem 2 ([15]). NP ∪ co-NP ⊆ PMCTDC(3)

As a consequence, both NP and co-NP are contained in the class PMCTDC .
In this paper we impose an upper bound on PMCTDC .

3 Simulation of Tissue P Systems with Cell Division in
Polynomial Space

In this section we demonstrate that any computation of a recognizer tissue P
system with cell division can be simulated in space polynomial to its initial
size and the number of steps. Instead of simulating a computation of a P system
from its initial configuration onwards (which would require exponential space for
storing configurations), we create a recursive function which computes content
of any cell h after a given number of steps. Thus we do not need to store content
of cells interacting with h but we calculate it recursively whenever needed.

Simulated P systems are confluent, hence possibly nondeterministic, but the
simulation will be performed in a deterministic way: only one possible sequence
of configurations of the P system is traced. This corresponds to a weak priority
relation between rules:
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Fig. 1. An example of indexing of cells during first two computational steps.

(i) division rules are always applied prior to communication rules,
(ii) priority between communication rules given by the order they are listed,
(iii) priority between cells to which the rules are applied.

However, the confluency condition ensures that such a simulation is correct as
all computations starting from the same initial configuration must lead to the
same result.

Each cell of Π is assigned a unique label in the initial configuration. But cells
may be divided during computation of Π, producing more membranes with the
same label. To identify membranes uniquely, we add to each label a compound
index. Each index is an empty string in the initial configuration. If a membrane
is not divided in a computational step, digit 1 is attached to its index. If a
division rule is applied, the first resulting membrane has attached 1 and the
second membrane 2 to its index. After n steps of computation, index of each
membrane is an n-tuple of digits from {1, 2}. Notice that some n-tuples may
denote non-existing membranes as membranes need not divide at each step. The
situation is illustrated in Fig. 1: membrane h is divided at first step, membranes
g1 and h2 are divided at second step. Membrane h12 does not exist, for instance.

Consider a confluent recognizer tissue P system with cell division of degree
q ≥ 1, described formally as

Π = (Γ, Σ, E ,M1, . . . , Mq, R, iin, iout).

For any cell of Π we denote the multiset of objects contained in it at any instant
simply as its content. We construct function Content which computes recursively
the content of any cell labeled h with index ind of Π after n ≥ 0 steps of
computation as follows:

1. verify whether the ancestor of cell h existed at previous computational step;
if not, the cell does not exist;

2. for all rules in a fixed order: for all copies of cells affected by that rule:

Limits of the power of tissue P systems with cell division

425



(a) subsequently and recursively calculate contents of these cells in previous
step;

(b) calculate the number of applications of the rule in the maximally parallel
way;

(c) if one of the affected cells is h, record the multiset of rules applied to it;

3. Re-calculate content of cell h in previous step of computation and apply the
recorded rules to obtain new content of the cell.

When applying a rule to a particular cell in phase 2, one must start with
the multiset of objects remaining in that cell after rules already applied in the
same step n. Fortunately enough, it is not necessary to store contents of all cells
or all multisets of rules applied to each cell in step n. Recall that the order
of application of rules in R is fixed and so is the order of cells to which these
rules are applied in a maximally parallel way. Then the multiset of rules already
applied to a particular cell in step n can be always re-calculated when the cell is
affected by another rule in the same step. The only value which must be stored
is the total multiset of rules already applied in step n. Assume for simplicity that
an input multiset of objects w is already included in the initial multiset Miin .

function content

Parameters: ℓ ∈ {1, . . . , q} – label of a cell
i1i2 . . . in – a compound index
n – a number of step

Returns: the content of cell labeled ℓ with compound index i1i2 . . . in
after n steps of computation, or null if such a cell does not exist.

Auxiliary variables:
rulesAppliedToℓ, rulesAppliedTotal, rulesForCell1, rulesForCell2;

(Multisets of applicable or applied rules with underlying set R)

contentCell1, contentCell2, contentFinal;
(Multisets storing contents of cells)

if n = 0 then return Mℓ; (return the initial multiset of cell ℓ)
set multiplicity of all elements in rulesAppliedTotal to 0;

set multiplicity of all elements in rulesAppliedToℓ to 0;

for each communication rule (j, u/v, k) in R do begin

(Now we scan all existing copies of cells labeled j and k affected by the rule.)

rulesForCell1 := rulesAppliedTotal;

for each possible compound index j1j2 . . . jn−1 do begin

contentCell1 = content(j, j1j2 . . . jn−1, n − 1);
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(Calculate the content of cell j with index j1j2 . . . jn−1 in previous step)

if (contentCell1 = null) or (cell can apply a division rule)

then skip the rest of the cycle;

calculate the maximal multiset of rules in rulesForCell1

applicable to cell j with objects contentCell1;

remove these rules from multiset rulesForCell1;

remove the corresponding objects from contentCell1;

rulesForCell2 := rulesAppliedTotal;

for each possible compound index k1k2 . . . kn−1 do begin

contentCell2 = content(k, k1k2 . . . kn−1, n − 1);
(Calculate the content of cell k with index k1k2 . . . kn−1 in previous step)

if contentCell2 = null or cell can apply a division rule

then skip the rest of the cycle;

calculate the maximal multiset of rules in rulesForCell2

applicable to cell k with contentCell2;

remove these rules from multiset rulesForCell2;

remove the corresponding objects from contentCell2;

(Now contentCell1 and ContentCell2 contain objects remaining in cell j
with index j1j2 . . . jn−1 and in cell k with index k1k2 . . . kn−1,
respectively, after application of previously scanned rules in step n.)

let x = maximum copies of rule (j, u/v, k) applicable to cells

j, k with contentCell1 and contentCell2, respectively;

remove x copies of u from contentCell1;

add x copies of rule (j, u/v, k) to rulesAppliedTotal;

if one of the cells j or k is identical with cell ℓ
with index i1i2 . . . in−1 then

add x occurrences of rule (j, u/v, k) to rulesAppliedToℓ;

end cycle; (cell k with index k1k2 . . . kn−1)
end cycle; (cell j with index j1j2 . . . jn−1)

end cycle; (rule (j, u/v, k))

(At this moment, variable rulesAppliedToℓcontains the complete multiset
of rules applied in step n to cell ℓ with indices i1i2 . . . in−1. )

Limits of the power of tissue P systems with cell division

427



contentFinal = content(ℓ, i1i2 . . . in−1, n − 1);
(Calculate the content of cell ℓ with index i1i2 . . . in−1 in previous step)

if contentFinal = null then return null and exit;

if a division rule [a]ℓ → [b]ℓ[c]ℓ exists such that

contentFinal contains a then

if in = 1 then

remove a from contentFinal and add b;
else

remove a from contentFinal and add c;
(Cell ℓ with index i1i2 . . . in−1 divides in step n)

else

if in = 2 then

return null and exit;

(The last element in of compound index corresponds to a copy of cell ℓ
dividing in step n which is not the case, hence this copy does not exist.)

else

apply all rules in rulesAppliedToℓ to contentFinal, i.e.,

add/remove multisets of objects corresponding to cell ℓ
in rules to/from contentFinal;

return contentFinal;

We defined explicitly internal variables with largest memory demands in
function content in its preamble. Other variables are used implicitly. This is
necessary for the following result.

Theorem 3. A result of any computation consisting of n steps of a confluent
tissue P system with cell division can be computed with Turing machine in space
polynomial to n.

Proof. Consider a confluent tissue P system with cell division

Π = (Γ, Σ, E ,M1, . . . , Mq, R, iin, iout).

The function content described above evaluates the content of a particular cell
after n steps, but simultaneously also an application of all possible rules during
n-th step in all cells is also simulated. Hence, it is very easy to check whether any
rule is applied or, on the contrary, whether the computation stops (the multiset
rulesAppliedTotal is empty). The result of computation of Π with an input
w is obtained as follows:

1. Prepare the initial configuration of Π, add w to Miin .

P. Sośık
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2. Subsequently compute content(iout, 11 . . . 1, n) for n = 0, 1, 2, .... until no
rule is applicable. Note that the output membrane never divides and hence
its index contains only 1’s. Record in each step the presence of objects yes

or no.
3. If one of objects yes or no appeared in the output membrane and only in

the last step, return the result of computation.

Space complexity of the function content(ℓ, index, n) is determined by vari-
ables storing multisets of objects and applicable rules. The first type represents
a multiset of objects contained in a particular cell. Its cardinality is limited from
above by the total number of objects in the system after n steps. Denote this
number by on. Therefore,

o0 =

q∑

i=1

card(Mi) + |w|. (1)

At each step each cell can divide (which does not increase the number of its
objects) or it can introduce new object to the system from the environment via
antiport rules. Denote Ra the set of antiport rules in R. Hence, we can write
that on ≤ con−1 for n ≥ 1 and a constant c, where

c = max{ max
(i,u/v,j)∈Ra

{|u|/|v|}, max
(i,u/v,j)∈Ra

{|v|/|u|}}. (2)

After n step we have
on ≤ o0c

n (3)

which is a value representable by dn bits for a constant

d ≤ log o0 + log c. (4)

Finally, |Γ |dn bits are necessary to describe any multiset with cardinality dn
and with the underlying set Γ. This is also the maximum size of any variable of
this type.

The situation is similar for multisets of applicable rules. The cardinality of
each such multiset at n-th computational step is limited by the number on of
objects in the system. Hence the size of each such variable is at most |R|dn.

Finally, let us analyze the space complexity of function content. Function
content with parameter n performs recursive calls of itself with parameter n −
1. It uses three variables storing multisets of objects and four variables with
multisets of rules. For its space complexity C(n) we can therefore write:

C(0) = log o0 (5)

C(n) ≤ C(n − 1) + 3|Γ |dn + 4|R|dn, n ≥ 1. (6)

The solution to this recurrence is

C(n) = O((|Γ | + |R|)dn2 + log o0). (7)
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Hence, with the aid of the function content described above, a conventional
computer can simulate n steps of computation of the systems Π in space poly-
nomial to n, and as the space necessary for Turing machine performing the same
computation is asymptotically the same, the statement follows. 2

Theorem 4. PMCTDC ⊆ PSPACE

Proof. Consider a family Π = {Π(n) | n ∈ N} of recognizer tissue P systems
with cell division satisfying conditions of Definition 3, which solves in a uniform
way and polynomial time a decision problem X = (IX , θX). For each instance
u ∈ IX , denote

Π(s(u)) = (Γ, Σ, E , M1, . . . ,Mq, R, iin, iout)

and let w = cod(u) be the corresponding input multiset. By Definition 3, para-
graphs 1 and 2(a), the values of card(w), card(M1), . . . , card(Mq), and lengths
of rules in R are exponential with respect to |u| (they must be constructed by
a deterministic Turing machine in polynomial time). Furthermore, values of |Γ |
and |R| are polynomial to |u|. (Actually, the alphabet Γ could possibly have
exponentially many elements but only polynomially many of them could appear
in the system Π(s(u)) during its computation and the rest could be ignored.)

By Definition 3, paragraph 2(c), also the number of steps n of any compu-
tation of system Π(s(u)) is polynomial to |u|. Then by (1)–(4) the value of d is
polynomial to |u| and, by (7), so is the space complexity of function content.

Therefore, each instance u ∈ IX can be solved with a Turing machine in space
polynomial to |u|. 2

4 Discussion

The results presented in this paper establish a theoretical upper bound on the
power of confluent tissue P systems with cell division. Note that the charac-
terization of power of non-confluent (hence non-deterministic) tissue P systems
with cell division remains open. The presented proof cannot be simply adapted
to this case by using a non-deterministic Turing (or other) machine for simu-
lation. Observe that in our recursive algorithm the same configuration of a P
system is typically re-calculated many times during one simulation run. If the
simulation was non-deterministic, we could obtain different results for the same
configuration which would make the simulation non-consistent.

If we defined a descriptional complexity (i.e., a size of description) of any
tissue P system with cell division, Theorem 3 could be rephrased as follows: any
computation of such a P systems can be simulated in space polynomial to the size
of description of that P system and to the number of steps of its computation.

Another variant one could consider is the case when a cell can divide using
a rule of type [a]ℓ → [b]ℓ[c]ℓ and it can communicate in the same step. To be
consistent, one should perform communication first (preserving the object a)
and then divide the resulting cell to two membranes, replacing a with b or c,
respectively. The presented proofs can be simply adapted to this variant.
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The presented result is related to two other results which also deals with the
relation of the class PSPACE to the computational power of certain families of
P systems. The first of them is the result presented in [20] which deals with P
systems with active membranes, equipped with a similar division of membranes
as here. The P systems with active membranes, however, use an acyclic com-
munication graph (a tree of membrane structure), while here we work with an
arbitrary graph which makes the structure of the proof different. It was shown
in [20] that the class PSPACE characterizes precisely the computational power
of P systems with active membranes. The second related result [19] studies the
model very similar to that used here: tissue P systems with cell separation. The
upper bound PSPACE to their computational power is proven in [19]. It re-
mains open whether this upper bound on the power of polynomially uniform
families of tissue P systems with cell division or cell separation can be still im-
proved or not.
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Symbolic Abstract Neural Nets: Tissue P Systems. Lecture Notes in Computer
Science 2387, (2002), 290–299.
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Abstract. In this article we present the design of a fast hardware sim-
ulator for P systems using the field-programmable gate array (FPGA)
technology. The simulator is non-deterministic and it uses a constant
time procedure to choose one of the computational paths. The obtained
strategy is fair and it is based on a pre-computation of all possible rule
applications. This pre-computation is obtained by using the representa-
tion of all possible multisets of rules’ applications as context-free lan-
guages. Then using a standard technique involving formal power series
it is possible to obtain the generating series of corresponding languages
that permits to construct the structure representing all possible rule ap-
plications for any configuration. We give a hardware design implementing
some concrete examples and present the obtained results which feature
an important speed-up.

1 Introduction

The problem of computer simulation of different variants of P systems arose at
the early beginning of the development of the area. The first software simula-
tors [5, 16] were quite inefficient, but they provided an important understanding
of the related problems. Since most variants of P systems are by definition inher-
ently parallel and non-deterministic, it is natural to use distributed or parallel
architectures in order to achieve better performances [1, 17, 6].

Another fruitful idea is to use specialized hardware for the simulation and this
approach was realized in [14, 11] using FPGA reconfigurable hardware technol-
ogy. The first implementation from [14] has the design based on region processors
which have rules as instructions and multiplicity of objects as data. Although
it has several limitations, it demonstrates that P systems can be executed on
FPGAs. In the other approach [8, 10] two possible designs are detailed: rule-
oriented and region-oriented systems. In the first one, each rule is considered as
a basic processing unit and, in consequence, has a specific hardware core. As
a result, system achieves maximum degree of parallelism, due to all rules are
executed in parallel by specific hardware components. In the second case the ba-
sic processing unit are regions. Thus, communications between regions acquire
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more relevance: local rules are processed by the region processors and, after
that, a communication process between regions takes place in order to update
the multiplicity of objects. In both architectures, there is a control logic which
synchronizes the operations of processing units and updating of registers which
save system’s configuration. How registers are grouped and what it is considered
as a basic processing unit depend on the approach (rules or regions).

An important point for a (parallel) computing platform for membrane com-
puting is to achieve a good balance between performance, flexibility and scal-
ability. This is especially important for hardware simulators because the high
performance comes often at an important price of flexibility or scalability. The
important drawback of FPGA simulators from [14, 11] is that they suppose that
the evolution of P system is deterministic an thus these simulators will yield
always the same result for the same initial configuration. However, the non-
determinism in P systems plays an important role and its absence drastically
reduces the classes of P systems that can be used with above simulators.

In this paper we present basic ideas of the construction of FPGA simulators
for non-deterministic P systems with the choice between possibilities being done
randomly with a uniform distribution. Such a construction can be done in a
rather simple strait manner, however the resulting performance is not very high.
We concentrated on more complex designs that permit to achieve a performance
close to the maximal theoretical performance for FPGA based simulators. Our
approach also implies less flexibility as it cannot be applied to all kinds of P
systems. However, the important difference with previous approaches is that in
our case its applicability depends not on class of considered P systems, but on
the complexity of rules dependencies, which makes it applicable for a wide range
of P systems. To exemplify our approach we present an implementation based
on our ideas yielding a simulator performing around 2×107 computational steps
per second, independently of the number of used rules.

This paper is organized as follows. First, in Section 2 we give a brief introduc-
tion to the theory of formal power series and give examples of the computation
of generating series for different languages. In Section 3 we explain our method
of pre-computation of all possible rules’ applications. Section 4 gives an ex-
ample of an FPGA implementation of a concrete P systems using our ideas: in
subsection 4.1 we present the mathematical details concerning the example, sub-
section 4.2 overviews the hardware design for the simulator and subsection 4.3
presents the obtained results.

2 Preliminaries

We assume that the reader is familiar with the notions of the formal language
theory. We refer to [15] for more details. We denote by |w| the length of the word
w or the cardinality of the multiset or set w.

We also assume that the reader is familiar with the basic notions about P
systems and we refer to the books [13, 12] for more details.
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We will need some notions from the formal power series theory, especially
related to the theory of formal languages. We suggest the reading of [15] for
more precise details on this topic.

For our purposes we consider that a formal power series f is a mapping
f : A∗ → N, where A is an alphabet and N is the set of non-negative integers
(in the general case a formal power series is a mapping from a free monoid to a
semiring). This mapping is usually written as

f =
∑

w∈A∗
f(w)w

It is known that a context-free grammar G = (N, T, S, P ) can be seen as a
set of equations xi = α1 + · · · + αni , for each non-terminal xi of G, where αj

are the right-hand sides of productions xi → αj , 1 ≤ j ≤ ni. A solution of G
is a set of formal power series s1, . . . , sk, such that the substitution of xi by si

in above equations converts them to the identity, i.e. corresponding series are
equal term by term. It is well known [2] that si =

∑
w∈A∗ fi(w)w, where fi(w)

is the number of distinct leftmost derivations of w starting from xi. Under the
mapping that sends any symbol from A to the same symbol, say x, we obtain
the generating series for a non-terminal xi:

fi =

∞∑

n=0

∑

|w|=n

fi(w)xn.

Let fi(n) =
∑

|w|=n fi(w). Then the above equation can be rewritten as:

fi =

∞∑

n=0

fi(n)xn

Suppose that x1 = S, where S is the starting symbol of G. Then f1 is called
the generating series of G. If G is unambiguous, then f1(n) gives the number
of words of length n in G. We denote by [xn]f the n-th coefficient of f , i.e.
[xn]f = f(n).

Let φ be the morphism defined by

φ(λ) = 1

φ(a) = x ∀a ∈ T

φ(xi) = fi xi ∈ N

Let xi → vi1 | · · · | vik be the set of productions associated to xi. Then fi

can be obtained as the solution of the following system of equations:

fi =
k∑

j=1

φ(vij) (1)
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For a regular grammar G the system (1) becomes linear. By considering a
finite automaton A = (V, Q, q0, Qf , δ) equivalent to G we obtain that system (1)
corresponds to the following system (recall that x is considered as a constant)

Q = xMQ + F (2)

where

– Q = [q1 . . . qn]t, qi ∈ Q, 1 ≤ i ≤ n is the vector containing all states,

– F = [a0 . . . an]t, is the final state characteristic vector, i.e., ai = 1 if qi is a
final state and 0 otherwise.

– M is the transfer matrix of the automaton A, i.e., the incidence matrix of
the graph represented by A with negative values replaced by zero.

We remark that in the case of a regular language it is also possible to count
the number of words of length n by summing the columns corresponding to
the final states of the n-th power of the transfer matrix of the corresponding
automaton:

fi(n) =
∑

qj∈Qf

(Mn)i,j

It is known that the generating series f for a regular language is rational.
That implies that there exists a finite recurrence f(n) =

∑k
j=1 ajf(n−j), k > 0,

aj ∈ Z which holds for large n.

Example 1. Consider the regular language LI recognized by the following au-
tomaton

q2

1

  A
AA

AA
AA

A

// q0

0

??�������� 1 // ?>=<89:;76540123q1
0 // ?>=<89:;76540123q3

0 //
1cc

q4

1

��

Then the final state characteristic vector F of this automaton is defined by
F = [0, 1, 0, 1, 0]t and the transfer matrix M by

M =




0 1 1 0 0
0 0 0 1 0
0 1 0 0 0
0 1 0 0 1
0 1 0 0 0
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The corresponding system (2) of linear equations has the following solution

q0 =
x3 + 2x2 + x

1 − x2 − x3

q1 =
x + 1

1 − x2 − x3

q2 =
x2 + x

1 − x2 − x3

q3 =
x2 + x + 1

1 − x2 − x3

q4 =
x2 + x

1 − x2 − x3

We can expand q0 to obtain q0(n) (= [xn]q0)

q0 = x + 2x2 + 2x3 + 3x4 + 4x5 + 5x6 + 7x7 + 9x8 + . . .

The coefficients of the above series give the number of words of the corre-
sponding length. For example, there are 9 words of length 8 in LI .

It is not difficult to verify that the coefficients [xn]qk, 0 ≤ k ≤ 4, of the
corresponding power series are particular cases of the Padovan sequence qk(n) =
qk(n − 2) + qk(n − 3), n > 3, with the following starting values:

k qk(0) qk(1) qk(2)
0 1 1 2
1 1 1 1
2 0 1 1
3 1 1 2
4 0 1 1

3 Formal Part of Simulator’s Design

We will follow the approach given in [3], however we will not enter into deep
details concerning the notation and the definition of derivation modes given
there. Consider a (static) P system Π of any type evolving in any derivation
mode. The key point of the semantics of P systems is that according to the type
of the system and the derivation mode δ for any configuration of the system
C a set of multisets (over R) of applicable rules, denoted by Appl(Π, C, δ),
is computed. After that, one of the elements R from this set is chosen, non-
deterministically, for the further evolution of the system.

The main idea for the construction of a fast simulator is to avoid the com-
putation of the set Appl(Π, C, δ) and to compute the multiset of rules to be
applied R directly. In this article we are interested by algorithms that permit
to perform this computation on FPGA in constant time. We remark that, in a
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digital FPGA circuit synchronized by a global clock signal, in one cycle of FPGA
it is possible to compute any functions whose implementation has a delay which
does not exceed the period of the global clock signal. A pipeline using arithmeti-
cal operations and, in general, any combinatorial and sequential asynchronous
subsystems, are usually included in this group.

In order to simplify the problem we split it into two parts corresponding to
the construction of following recursive functions:

NBV ariants(Π, C, δ):
gives the cardinality of the set Appl(Π, C, δ)

V ariant(n, Π, C, δ), where 1 ≤ n ≤ NBV ariants(Π, C, δ):
gives the multiset of rules corresponding to the n-th element of some initially
fixed enumeration of Appl(Π, C, δ).

It is clear that if each function is computed in constant time, then the multiset
of rules to be applied can also be computed in a constant time. In what follows
we will discuss methods for the construction of these two functions for different
classes of P systems.

In the following we will need the notion of the rules’ dependency graph. This
is a weighted bipartite graph where the first partition U contains a node labeled
by a for each object a of Π , while the second partition V contains a node labeled
by r for each rule r of Π . There is an edge between a node r ∈ V and a node
a ∈ U labeled by a weight k if ak ∈ lhs(r) (and ak+1 6∈ lhs(r).

Example 2. Consider a P system Π1 having two rules r1 : ab → u and r2 : bc →
v. These rules have the following dependency graph:

r1 r2

a

~~~~~~~
b

???????

�������
c

????????

Let Na, Nb and Nc be the number of objects a, b and c in a configuration C.
We define

N1 = min(Na, Nb)

N2 = min(Nb, Nc)

N = min(N1, N2)

Suppose that Π evolves in a maximally parallel derivation mode. Then the
set Appl(Π, C, max) can be computed as follows:

Appl(Π, C, max) =
⋃

p+q=N

{
rp+k1

1 rq+k2

2

}
,

where kj = Nj ⊖ N , 1 ≤ j ≤ 2, where ⊖ is the positive subtraction operation.
From this representation it is clear that NBV ariants(Π, C, max) = N + 1,

which can be computed in constant time on FPGA.
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The V ariant(n, Π, C, max) function can be defined as the n-th element in the
lexicographical ordering of elements of Appl(Π, C, max) and it has the following
formula

V ariant(n, Π, C, max) = rN−n−1+k1
1 rn−1+k2

2

We remark that the above formula can also be computed in constant time using
FPGA.

We could obtain the NBV ariants formula using formal power series. In order
to do this we observe that the language ∪N>0LN , where LN = {rp

1rq
2 | p+q = N}

is regular. Moreover, it holds that LN = r∗
1r∗

2 ∩ AN , with A being the alphabet
{r1, r2}. Below we give the automaton A1 for the language r∗

1r∗
2

// ?>=<89:;76540123q0

r1

		
r2 // ?>=<89:;76540123q1

r2

		

The transfer matrix of this automaton is

(
1 1
0 1

)
and the final state charac-

teristic vector is [1, 1]t. Using Equation (2) this yields the generating function
for LN : q0 = 1

(1−x)2 . It is easy to verify that [xn]q0 = n + 1.

We modify the previous example by considering weighted rules.

Example 3. Consider a P system Π1 having two rules r1 : akabkb1 → u and
r2 : bkb2ckc → v. These rules have the following dependency graph:

r1 r2

a

ka
~~~~~~~

b

kb1

???????

kb2
�������

c

kc

????????

Let Na, Nb and Nc be the number of objects a, b and c in a configuration C.
We define

N1 = min([Na/ka], [Nb/kb1])

N2 = min([Nb/kb2], [Nc/kc])

N = min(N1, N2)

Suppose that Π evolves in a maximally parallel derivation mode. Let A2 be
the automaton recognizing the language (rkb1

1 )∗(rkb2
2 )∗

// ?>=<89:;76540123q0

r
kb1
1

		
r

kb2
2 // ?>=<89:;76540123q1

r
kb2
2

		

Let L′
N = A2 ∩ AN (A = {r1, r2}). Then it is clear that

Appl(Π, C, max) =
⋃

pkb1+qkb2=N

{
rp+k1

1 rq+k2

2

}
,
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where kj = Nj ⊖ N , 1 ≤ j ≤ 2

The transfer matrix of A2 (considering the weights) is

(
kb1 kb2

0 kb2

)
and the

vector F = [1, 1]. This gives the following generating function for A2:

q0 =
1

(1 − xkb1 )(1 − xkb2 )
.

The coefficients [xn]q0 can be obtained by the recurrence a(n) = a(n − kb1)+
a(n − kb2) − a(n − kb1 − kb2), n ≥ kb1 + kb2. The initial values are given by the
following cases (we suppose that kb1 ≥ kb2):





1, n = 0

0, 1 ≤ n ≤ kb2 − 1

1, kb2 ≤ n ≤ kb1 − 1 and n = 0 (mod kb2)

0, kb2 ≤ n ≤ kb1 − 1 and n 6= 0 (mod kb2)

2, kb1 ≤ n ≤ kb1 + kb2 and n = 0 (mod kb2) and n = 0 (mod kb1)

1, kb1 ≤ n ≤ kb1 + kb2 and n = 0 (mod kb2) or n = 0 (mod kb1)

0, kb1 ≤ n ≤ kb1 + kb2 − 1 and n 6= 0 (mod kb2) or n 6= 0 (mod kb1)

Now we concentrate of the function V ariant. If the set Appl(Π, C, δ) is reg-
ular, then we can use the following algorithm to compute V ariant(n, Π, C, δ).
Let A(Π, C, δ) = (Q, V, q0, F ) be the automaton corresponding to the language
defined by rules joint applicability and let sj , qj ∈ Q be the generating series for
the state qj .

Algorithm 1

1. Start in state q0, step = 1, nb = s0(n), out = λ.
2. If step = n then stop
3. Otherwise let {t : (qi, at, qjt)}, 1 ≤ t ≤ ki be the set outgoing transitions from

qi. Compute S(k) =
∑k

m=1 sjm(n − step). We put by definition S(0) = 0.
Then there exists k such that S(k) ≥ nb and there is no k′ < k such that
S(k′) ≥ nb.

4. Consider nb = nb − S(k − 1) and out = out · ak.
5. Go to step 2

The main idea of this algorithm is to compute the n-th variant using the
lexical ordering of transitions using an algorithm similar to the computation
of the number written in the combinatorial number system. Being in a state q
and looking for a sequence of applications of k rules we will use the transition
t : (q, r, q′) (and add r to the multiset of rules) if the transition t is the first in
the lexicographical ordering of transitions having the property that the number
of words of length k − 1 that can be obtained using all outgoing transitions from
state q that are less or equal than t is greater than n.
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4 Example of Simulator Construction

In this section we will present the design of a hardware simulator using FPGA
that implements the ideas and the algorithms discussed in the previous section.

4.1 Tested System

We used the following example to illustrate the FPGA implementation for our
ideas. We considered multiset rewriting rules working in set-maximal mode
(smax). This mode corresponds to the maximally parallel execution of rules,
but where the rules cannot be applied more than once. This mode can be for-
mally defined as follows (where asyn is the asynchronous mode and R is the set
of all rules):

S1 = {R ∈ Appl(Π, C, asyn) | |R|rj ≤ 1, 1 ≤ j ≤ |R|}
Appl(Π, C, smax) = {R ∈ S1 | there is no R′ ∈ S1 such that R′ ⊃ R}

We remark that smax mode corresponds to min1 mode with a specific partition
of rules: the size of the partition is |R| and each partition pj contains exactly
one rule rj ∈ R. We also recall that most variants of static P systems can be
seen as multiset rewriting.

Consider now a multiset rewriting system (corresponding to a P system with
one membrane) evolving in smax mode. To simplify the construction we consider
rules having a dependency graph in a form of chain without weights.

r1 r2 . . . rn

a0

|||||
a1

BBBBB
|||||

a2

BBBBB
zzzzzz

an−1

HHHHHH
wwwwww

an

CCCCC

Let Nai be the number of objects ai in configuration C. We denote by
NBV ([r1, . . . , rk], C), k > 0 the number of variants of applications of a chain of
rules r1, . . . , rk to the configuration C in smax mode. We remark that for a P
system Π having the set of rules R, NBV ariants(Π, C, smax) = NBV (R, C).

It is possible to distinguish 3 cases with respect to the number of objects
Nai , 0 ≤ i ≤ n (consider that 0 ≤ s ≤ i ≤ e ≤ n):

Nai = 0 Then the two surrounding rules (ri and ri+1) are not applicable. In
this case the parts of the chain at the left and right of ai are indepen-
dent, so the number of variants is a product of corresponding variants:
NBV (rs, . . . , re, C) = NBV (rs, . . . , ri−1, C) ∗ NBV (ri+2, . . . , re, C)

Nai > 1 As in the previous case the chain can be split into two parts because
both rules ri and ri+1 can be applied:
NBV (rs, . . . , re, C) = NBV (rs, . . . , ri, C) ∗ NBV (ri+1, . . . , re, C)

Nai = 1 In this case ri and ri+1 are in conflict.
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Now let us concentrate on the last case. Without loss of generality we can
suppose that Nai = 1, 0 ≤ i ≤ n. We remark that the language of binary strings
of length n corresponding to the joint applicability vector of rules r1, . . . , rn coin-
cides with the language LI from Example 1. Hence the number of possibilities of
application of such a chain of rules of length n is equal to NBV (r1, . . . , rn, C) =
[xn]q0, i.e., q0(0) = 1, q0(1) − 1, q0(2) = 2 and q0(n) = q0(n − 2) + q0(n − 3),
n > 3.

Hence in order to compute NBV ariants(Π, C, smax) we first split the chain
into k > 0 parts of length nj according to the multiplicities of objects and
compute the NBV function for each part using the decomposition above.

The function V ariant for each part can be computed using Algorithm 1.
The next section gives more details on the implementation of the above

algorithms on FPGA.

4.2 Implementation Details

FPGAs contain lots of programmable logic blocks and reconfigurable intercon-
nects. When a system is implemented using this kind of devices, finding a path
which communicates two logic blocks is usually the task where speed, i.e. per-
formance, is compromised. Thus, modular designs which minimize long paths
between logic components are which best fit in this kind of technology. Our de-
sign is based on layers with interfaces clearly defined. Each layer is a block which
performs a main task of the algorithm, and it only communicates with previous
layer, whose outputs are its inputs, and next layer, which receives its outputs.

Overall Design In order to design the simulator, the graph of dependencies
between rules has been chosen as started point to model P systems. This ap-
proach reduces complexity, due to deleting some elements, like membranes and,
in consequence, the hierarchical structure of them. Objects and rules are the
only elements which have been having in mind to model the system. Moreover,
the implementation is based on mathematical foundations described in the pre-
vious section, following a division of tasks, which assures enough encapsulation
to achieve a design with a right flexibility. The objects are explicitly represented
using registers which is not the case for the rules. Their logic is distributed along
most of the components, thus there is no correspondence between a rule and a
hardware core.

An execution of a P system consists in running iterations until it reaches a
stop condition. At each iteration there is a set of operations to be carried out
in order to obtain next configuration. To implement the simulator, these tasks
have been divided in the following stages:

– Initial stage: Calculate the maximum number of applications of each rule.
– Assignment stage: Choose which rules will be applied (and how many times).
– Application stage: Apply the rules, computing new values for multiplicity of

objects.
– Updating stage: Update current configuration.
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The Algorithms In order to simplify explanation, the design is detailed fol-
lowing functional division (Fig. 1) commented on previous introduction.

Fig. 1. Overview of architecture. This illustration shows the main blocks and flow of
information between blocks.

Initial Stage
The first block is called calcNx. It receives as input the number of objects of
current configuration from ObjReg, which is detailed below. Its functionality is
to compute the maximum number that rules can be applied, Nrx . It is, in conse-
quence, an arithmetical component. It is necessary to remark that these outputs
depend on evolving mode. For example, considering a chain of rules evolving in
smax mode, only three values are interesting for the execution (Section 4.1):
Nrx = 0 and Nrx > 1, which indicates rule execution is independent of others;
and Nrx = 1 that indicates that its execution is dependent on others (i.e., system
has to choose which rule will be applied).

Assignment Stage
This stage is the most complex and important in the design, and it is imple-
mented by the block called assignRule. Its task is to select which rules (and how
many times) will be applied. Number of functionalities which are carried out by
it and, in consequence, its implementation, depends on evolving mode selected.
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We consider a chain of rules evolving in smax mode and computation based on
algorithms detailed in Section 3. According to these assumptions, the block has
to perform following steps:

Algorithm 2

1. Split the chain into k parts as it is described in section 4.1.

2. For each part.

(a) Compute NBV ariants(Π, C, smax). For this purpose algorithm detailed
in 3 and 4.1 is used.

(b) Obtain the value of n indicating which combination will be chosen (n - th
element). Hence his domain is from 0 to NBV ariants(Π, C, smax)− 1.

i. Generate a random number rn, where

0 ≤ rn ≤ ⌈lg2(NBV ariants(Π, C, smax))⌉

ii. If rn < NBV ariants(Π, C, smax) then n = rn. Otherwise, n =
rn + NBV ariants(Π, C, smax).

(c) Compute V ariant(n, Π, smax), according to algorithm 1.

The computation of NBV ariants(Π, C, smax) uses a subset of operations
needed to compute V ariant(n, Π, smax), moreover these operations can be done
in parallel with the generation of the random number n, necessary to compute
V ariant(n, Π, smax). Hence, this stage can be performed in 2 clock cycles by
dividing operations in two sets, called right and left propagation respectively.

This block contains one sub-block per rule, which implements operations
required in order to obtain number of applications of its rule associated. In-
terconnections between components are based on design keys and propagation
concepts: a sub-block is only connected to blocks located on its right and left.
As it is showed by Fig. 2, left propagation is the first to be executed. In this
sub-stage, steps 2.a and 2.b.i of algorithm 2 are computed from the last rule to
the first one. Right propagation, which is compound by steps 2.b.ii and 2.c, is
executed in opposite way in the next clock cycle. One advantage of this approach
is that it is not necessary to divide, implicitly, the chain of rules in k parts, delet-
ing a step of the algorithm which let us reduce the number of required cycles
from three to two. This logic is implemented, explicitly, by signals prevIsDep and
chainStateSignal. After this stage, all rules have a random multiplicity assigned.

Application Stage

Once system has chosen which rules will be applied (and how many times),
appLogic block computes how many objects will be generated and consumed by
rules application. Like calcNx, it is an arithmetical block.
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SET 
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RANDOM NUMBER

ACCORDING TO AUTSTATE AND COMBINATION

SET COMBINATIONS_OUT

ACCORDING TO AUTSTATE AND COMBINATION

SET NEXTAUTSTATE
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Fig. 2. Details of sub-blocks which compound assignRule block. Flow of information
between sub-blocks in left and right propagation is showed at the top of the figure.
Below it, algorithm is detailed using UML notation.

Updating Stage

The block which saves and updates current configuration is called ObjReg. It
contains a register per object which saves multiplicity of the associated object for

Fast hardware implementations of P systems

445



the present configuration. In order to update it, each register add up its content
and values generated by previous core. Besides that, this core rises a control
signal when current configuration is equal to previous one, i.e., it indicates that
system has reached a stop condition to unit control.

Unit Control and Output Interface
Besides previous cores, an additional block, called controlBlock, is required to
provide communication and control logic. Control is implemented using a finite
state machine, which requires five states, and it generates all control signals.
Although input/output interface has not been developed yet, some debug cores
are used to control execution and get results.

In conclusion, the proposed hardware design requires only five clock cycles
per iteration, which is a good achievement, although the final speed depends on
the relation cycles-frequency. Our design takes advantages of FPGA technology
and the implementation achieves a high degree of parallelism of objects in the
initial stage, and of rules in the others. However, the key of system’s performance
is the implementation of the automaton in the assignment stage. All operations
required to compute NBV ariants(Π, C, smax) and V ariant(n, Π, smax) are
defined recursively and can be pipelined. In assignRule, each sub-block associ-
ated to n-th rule computes, asynchronously, the value of N (associated to its
rule), basing on values obtained by previous block. This permits to execute all
operations in only two cycles, one for left propagation and another for right
propagation, while a synchronous version requires, at least, n cycles.

4.3 Experimental Results

We tested the design on a series of concrete examples. All of them consider rules
whose dependency graph forms a chain, the difference being in the right-hand
side. We consider four P systems with the alphabet O = {o0, . . . , oN}, N > 0
and having following rules (we consider index operations modulo N + 1):

– System 1 (circular)

ri :

{
oi−1oi → oioi+1 1 ≤ i < N − 1

oN−1oN → o0o1 i = N

– System 2 (2-circular)

ri : oi−1oi → oi+1oi+2, 1 ≤ i ≤ N

– System 3 (linear)

ri :

{
oi−1oi → oioi+1 1 ≤ i < N − 1

oN−1oN → oNoN i = N
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– System 4 (opposite), 1 ≤ i ≤ N

ri :

{
oi−1oi → oioi+1 i mod 2 = 0

oioi+1 → oioi−1 otherwise

For each of four types a system with N equal to 10, 20 and 50 was considered
with the initial multiplicity of all objects equal to one. Then for each obtained
system 1024 executions of 8192 transitions have been carried out. Each execution
differs from the others by the seed required by the random number generator in
the initialization stage. In consequence, different values are obtained during the
assignment stage, which results in different executions. As results of experiments
following values are collected: the cardinality of objects in the last configuration,
the seed of the random number generator and the number of steps to reach the
halting configuration if the system reached it.

The target circuit for executions was the Xilinx Virtex-5 XC5VFX70T, code
for different P systems were generated by a Java software and this code was syn-
thesised, placed and routed using Xilinx tools. Since the input/output interface
has not been developed yet, ChipScope, a Xilinx’s debug tool has been used.
This tool let us, synchronously, change and capture the above values directly
from the FPGA.

Table 1 shows hardware resource consumption and clock rate in MHz of the
system without the debug logic. The implementation achieves high performance,
with frequencies higher than 100 MHz, i.e., it permits to simulate around 2 ×
107 computational steps per second. On the other hand, the hardware resource
consumption depends only on the number of rules. This is coherent with the fact
that rules of all systems do not change the total number of objects and share
the same dependency graph.

Table 1. Hardware resource consumption and clock rate of hardware implementation.

Type Size (Nb. of rules) Slices LUTs BRAMs Clock rate

Circular
10 2 % 2 % 1 % 120.02 MHz
20 6 % 10 % 1 % 101.44 MHz
50 41 % 31 % 1 % 100.68 MHz

2-circular
10 2 % 2 % 1 % 120.02 MHz
20 7 % 6 % 1 % 110.77 MHz
50 37 % 31 % 1 % 100.44 MHz

Linear
10 2 % 2 % 1 % 120.02 MHz
20 10 % 6 % 1 % 100.56 MHz
50 40 % 31 % 1 % 100.85 MHz

Opposite
10 2 % 2 % 1 % 120.02 MHz
20 7 % 6 % 1 % 105.73 MHz
50 37 % 31 % 1 % 100.89 MHz
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Table 2 gives some statistics concerning the experiments. As expected, linear
and 2-circular systems reach a halting configuration, while in the other two cases
it cannot be reached. It can be seen that the simulation of the non-determinism is
done correctly – in some cases all resulting configurations are different. Figure 3
shows the maximal, minimal and mean value of the number of different objects.
We show only the case of 10 rules, the other cases present a similar picture. It
can be seen that in the case of linear system there is a high chance to have a
big value for the last object and in the case of 2-circular systems the second
and before the last objects are never present. In the case of circular systems it
is possible to see an equiprobable distribution of objects, while for the opposite
systems even values have a higher value. It can be easily seen that the used rules
should exhibit exactly this behavior.

Table 2. Statistics concerning the runs of example systems.

Type N
Different
final conf.

Halting

Y/N min max

Circular
10 982 No - -
20 1024 No - -
50 1024 No - -

2-circular
10 161 Yes 5 89
20 818 Yes 11 197
50 1024 Yes 57 609

Linear
10 204 Yes 7 17
20 944 Yes 14 29
50 1024 Yes 50 65

Opposite
10 4 No - -
20 938 No - -
50 1024 No - -

5 Discussion

The method discussed in Section 3 allows the construction of simulators having
a constant execution step (in terms of FPGA). While it is possible to design
ad-hoc functions that describe the rules’ execution strategy, we concentrated on
the cases where the multisets of rules that can be applied form a non-ambiguous
context-free language. This permits to easily compute the generating function
of the corresponding language and gives a simple algorithm for the enumeration
strategy.

The class of P systems where the set Appl(Π, C, δ) corresponds to a non-
ambiguous context-free language is quite big and it is not restricted to the rules
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Linear 2-circular

Circular Opposite

Fig. 3. Objects min/max/mean values for the experiments using 10 rules.

whose dependency graph forms a chain. For example, consider a set rules forming
a circular dependency graph for a system working in the smax mode.

r1 r2 . . . rnBC@Aa0

zz
a1

DD zz
a2

DD xxx
an−1

KKK ttt

Now let C be a configuration where all these rules are applicable exactly one
time (corresponding to the case 3 described in Section 4.1). Then the joint ap-
plicability vectors of these rules (i.e. binary strings of length n with value 1 in
i-th position corresponding to the choice of rule ri) can be described by taking
the words of length n of the following automaton

q2
1 // ?>=<89:;76540123q1

0 // q3
0 //

1cc
q4

1

��

// q0

0

@@��������� 1 // q1
0 // ?>=<89:;76540123q3

0 //
1

aa q4

1

��

This automaton is obtained from the automaton for the language LI from
Example 1 by adding an additional condition: if rule r1 is chosen then rn is not
chosen and conversely.
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Using similar ideas it is possible to describe with regular languages sequences
of rules forming more complicated structures. For example, the following struc-
ture

r1
yy EE

r2
yy EE

r3
yy EE

r4
yy EE

a0 a1 a2 a3 a4

r5
yy

EE

a5

can be represented as regular language over the binary alphabet if the number of
symbols a2 is known. This language can be constructed in a similar way as the
language above for circular dependency. This permits to compute the function
NBV ariants(Π, C, smax) by first choosing the appropriate automaton based
on the value of Na2 and after that computing its generating function. Clearly,
this can be done in constant time on FPGA.

In a similar way it is possible to describe the regular languages for the ap-
plicability of rules having the dependency graph that has no intersecting cycles.

We would like to point out another algorithm for the rule application, appli-
cable to any type of rule dependency.

Let Π be a P system evolving in the set-maximal derivation mode. Let R be
the set of rules of Π and n = |R|. Let C be a configuration.

Algorithm 3

1. Compute a permutation of rules of R: σ = (ri1 , . . . , rin), ik 6= im, k 6= m.
2. For j = 1, 2, . . . , n if rij is applicable then apply rij to C.

The step 1 of the above algorithm can be optimized using the Fisher-Yates
shuffle algorithm [4] (Algorithm P). However, the implementation of Algorithm 3
is slower than the implementation we presented in Section 4.2 because the com-
putation of the rules’ permutation needs a register usage, so it cannot be done
in one clock cycle and it is dependent on the number of rules.

By extending Algorithm 3 it is possible to construct a similar algorithm for
the maximally parallel derivation mode.

Algorithm 4

1. Compute a permutation of rules of R: σ = (ri1 , . . . , rin), ik 6= im, k 6= m.
2. Compute the applicability vector of rules V = (m1, . . . , mn), where mj, 1 ≤

j ≤ n is the number of times rule rij can be applied.
3. If the vector V is null, then stop.
4. Otherwise, repeat step 5 for j = 1, . . . , n
5. Compute a random number t between 0 and V [j]. Apply rij t times.
6. Goto step 2.

This algorithm has similar drawbacks and the number of clock cycles it uses
is at least proportional to the number of rules.
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6 Conclusions

In this article we presented a new design for a fast hardware implementation
of a simulator for P systems. The obtained circuit permits to simulate a non-
deterministic computational step of the system in a constant time (5 clock cy-
cles). Hence, the obtained simulator achieves a high performance that is close to
the maximal possible value (one cycle per step). The key point of our approach
is the representation of the sequences of all possible rule applications as words
of some regular or non-ambiguous context-free language. In this case using the
generating series for the corresponding language it is possible to generate func-
tions that precompute all possible rule applications. It is worth to note that the
speed of the computation does not depend on the number of rules. However,
there is a dependency between this number and the space on the chip. With the
used board it is possible to simulate P systems having up to 100 rules.

We exemplified our approach by an FPGA implementation of different P
systems working in maximal set mode with rules dependency graph in a form of
a chain. We obtained a speed of about 2 × 107 computational steps per second.
Our different tests showed that the computation is non-deterministic and that
the values of the parameters have expected mean values.

As a future research we plan to develop a software that will allow us to gen-
erate the hardware design in an automatical way based on the regular language
describing the rules joint applicability.

The design described in this article is quite generic and does not use many
features of FPGA. Therefore, it could be interesting to use the presented method
for the speed-up of the existing software simulators of P systems.
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Simplifying Event-B Models of P Systems Using

Functions∗

Adrian Ţurcanu, Florentin Ipate
Department of Computer Science, University of Pitesti

Abstract

Often modelling P systems in a language associated with a model
checker can be a difficult task due to its large size or the lack of automatic
methods. In this paper we present some initial results concerning the
simplification of Event-B models of P systems using functions, quantifiers
and non-deterministic assignments . We present some general ideas which
we then use to implement two P system models in the Rodin platform.

1 Introduction

Initiated by Gheorghe Păun [4], membrane computing studies computing de-
vices, called P systems, inspired by the functioning and structure of living cell.

Event-B [1] is a formal modelling language introduced about 10 years ago
by J.R. Abrial, used with a platform called Rodin for developing mathematical
models of complex systems which behave in a discrete fashion.

Event-B models are abstract state machines, made of several components.
Each component can be either a machine or a context. Contexts contain the
static structure of the system: sets, constants and axioms. Machines contain
the dynamic structure of the system: variables, invariants, and events.

An event is a state transition which is specified in terms of guards (necessary
conditions to be enabled) and actions (modifying variables of the machine). An
action might be either deterministic (using the assignment operator “:=”) or
non-deterministic (using the operators “:∈” or “: |”). An expression “x :|P (x)”
means that the variable x receives a value such that the predicate P is true.
The value of x after the assignment is denoted x′.

ProB is an animation and model checking tool integrated within the Rodin
platform. Unlike most model checking tools, ProB works on higher-level for-
malisms and so it enables a more convenient modelling.

In this paper we propose a simplified way of modelling some P systems
using Event-B components like functions, quantifiers and non-deterministic as-
signments.
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2011-3-0688, no. 317/26.10.2011 for Florentin Ipate.
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2 Simplifying Event-B Models of Cell-like
P Systems

In this section we present some general ideas about how to build a reduced and
“more non-deterministic” model of a cell-like P system which uses transforma-
tion rules. The main idea of our modelling approach is that all the rules with
the same number of objects on the left side are similar and so we can associate
to all of them only one Event-B event.

The set of P system objects will be denoted SYMBOLS, and a subset of
the cartesian product SYMBOLS × N × SYMBOLS × N denoted PAIRS will
contain all the pairs of objects from the left and the right side of each rule
together with their multiplicities. If all the objects have the multiplicity 1, then
the multiplicities can be omitted. If two rules have the same left side then the
corresponding objects are renamed and added to SYMBOLS, and their values
are modified in the same time with the values of the initial objects.

Two functions objects, pobjects : SY MBOLS → N are used to represent
the existing objects and the objects produced between two steps of maximal
parallelism in each membrane, respectively. In a special event, called update,
each value of pobjects is added to the corresponding value in objects and the
values of pobjects are reset to 0.

We consider as an example a simple P system with one membrane and
three rules: s → ab, a → ac, b → c. In this case SYMBOLS= {s, a, b, c} and
PAIRS = {(s, a); (s, b); (a, a); (a, c); (b, c)} and we associate to all the rules the
following Event-B event:

Rule123

any

x
where

grd1 : x ∈ SY MBOLS & objects(x) > 0

grd2 : ∃y.y ∈ SY MBOLS&(x, y) ∈ PAIRS
then

act1 : objects : |(∀y.y ∈ SY MBOLS& y �= x ⇒
objects′(y) = objects(y)&objects′(x) := objects(x)− 1)

act2 : pobjects : |((∀y.y ∈ SY MBOLS&(x, y) ∈ PAIRS
⇒ pobjects′(y) = pobjects(y) + 1&(∀y.y ∈ SY MBOLS&
(x, y) /∈ PAIRS ⇒ pobjects′(y) = pobjects(y))

end

This event can be used, in general, in any P system, to substitute all the rules
with one object on the left side. If the generic objects x and y have multiplicities
then the values of objects(x) is decremented with the multiplicity of x in the
first action and the value of pobjects(y) is incremented with its multiplicity in
the second one.

Communication rules are quite similar except that, in the second action,
they modify the values of the function pobject associated with another mem-
brane. These ideas can be extended for rules with many objects on the left side,
specifying that the number of event parameters will increase accordingly.
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3 Simplified Model of a Tissue P System with
Active Membranes Solving the 3-colouring
Problem

We consider now the 3-colouring problem: given an undirected graph G =
(V, E), decide if it is possible to colour its nodes using 3 colors such that, for
every edge (u, v) ∈ E, the colours of u and v are different. This problem can be
solved in linear time by Π(n) a family of recognizer tissue P systems with cell
division of degree 2 [2]. In the following we will consider only a restricted set of
objects, V = {Ai, Ti, Ri, Gi, Bi : 1 ≤ i ≤ n}, and the division rules associated
with the second membrane of the P systems given in [2]:

• r1i : [Ai]2 → [Ri]2[Ti]2, for 1 ≤ i ≤ n

• r2i : [Ti]2 → [Bi]2[Gi]2, for 1 ≤ i ≤ n

Here, Ai and Ti are nonterminal symbols, Ai encodes the i−th vertex of the
graph and Ri, Bi, Gi are terminal symbols corresponding to the three colors
red, blue and green.

As we presented in [5] the Event-B model of a P system has two components.
The first one is a context that contains the set of symbols (denoted SYMBOLS )
and the constant n with a fixed nonnegative value.

The second component is a machine with the following variables:
- a partial function used to represent the structure of the P system, except the
skin: cell ∈ N → (SY MBOLS → ({1, . . . , n} → N)) with the following signifi-
cation: cell(x)(a)(i) represents the number of objects a with the index i in the
membrane x;
- mark : N → {0, 1} a partial function used “to mark” cells produced in a di-
vision rule or involved in a communication rule between two steps of maximal
parallelism; such cells cannot be the subject of another division or communica-
tion rule in the same computation step.

Using the modelling approach that we propose, we associate to the first set
of rules the following event:
Rule1i

any

x, y, z, i
where

grd1 : x ∈ dom(cell) & mark(x) = 0 & i ∈ 1 . . . n & cell(x)(a)(i) ≥ 1

grd2 : y ∈ N \ dom(cell) & z ∈ N \ dom(cell) & y �= z
then
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act1 : cell : |((∀s, j.s ∈ SY MBOLS&j ∈ 1 . . . n&j �= i ⇒
cell′(y)(s)(j) = cell(x)(s)(j))&(cell′(y)(a)(i) = cell(x)(a)(i)− 1)
&(cell′(y)(r)(i) = cell(x)(r)(i) + 1)&(∀s.s ∈ SY MBOLS \ {a, r}
&cell′(y)(s)(i) = cell(x)(s)(i))&(∀s, j.s ∈ SY MBOLS&j ∈ 1 . . . n
&i �= j ⇒ cell′(z)(s)(j) = cell(x)(s)(j))&
(cell′(z)(a)(i) = cell(x)(a)(i)− 1)&(cell′(z)(t)(i) = cell(x)(t)(i) + 1)
&(∀s.s ∈ SY MBOLS \ {a, t}&cell′(z)(s)(i) = cell(x)(s)(i))&
(∀w, s, j.w ∈ dom(cell)&w �= x&s ∈ SY MBOLS&j ∈ 1 . . . n
⇒ cell′(w)(s)(j) = cell(w)(s)(j)))
act2 : mark := ({x}�−mark) ∪ {y �→ 1, z �→ 1}

Therefore, the rule is applied in some random cell x, for some random value
of the index i and it modifies accordingly the values of the function cell. Two
new cells, y and z, are replacing x in the membrane structure of the system as
a result of the division. Any other cell w is not affected by the rule.

In [3] we verified some properties of Π(n) with the model checker ProB using
this general model, instantiated for particular values of n.

Using similar ideas and possibly renaming objects and using indices, we can
build Event-B models of various P systems with active membranes.

4 Conclusions and Future Work

Based on rigorous mathematical foundation and allowing high-level modelling,
Event-B and Rodin offer a simpler and more convenient way of modelling P
systems by using quantifiers, non-deterministic assignments and functions. In
this paper we have presented some general ideas about this way of modelling.

Our future work will concentrate on generalising and automating this method
of modelling in Event-B for different types of P systems.

References

[1] Abrial, J.R., Modeling in Event-B. System and software engineering, Cam-
bridge University Press, (2010)

[2] Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-
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