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Outline of Talks:

We focus on a discrete-time stationary stochastic process {Yt} taking

values in a finite alphabet M := {1, . . . ,m}.

We study various aspects of modelling this stochastic process using a

hidden Markov model (HMM); this term is defined later.



Part I: The Complete Realization Problem



Quick Review of Markov Chains



Markov Chains:

A stochastic process {Xt}t≥0 is said to be Markov process if

Pr{Xt+1|Xi, i ≤ t} = Pr{Xt+1|Xt}, ∀t.

In words: All the information about the past is contained in the most

recent measurement Xt. We can do just as good a job of predicting

Xt+1 using only the most recent measurement Xt as we can using the

entire past history.

A Markov process is said to be stationary if Pr{Xt+1|Xt} is independent

of t.



A Markov chain {Xt} assuming values in a finite set N = {1, . . . , n} can

be described unambiguously by just two entities: the state transition

matrix, and the initial distribution. Define

aij = Pr{Xt+1 = j|Xt = i}, A = [aij] ∈ [0,1]n×n.

Thus aij is the probability that the next state is j, given that the

current state is j, and A is the state transition matrix. Define

πi = Pr{X0 = i}.

If the initial distribution π satisfies πA = π, then it is called a stationary

or an invariant distribution. In this case the process {Xt} is itself a

stationary stochastic process.

Unfortunate dual use of words: A stationary Markov chain can produce

a nonstationary process!

Corresponding to every A there is at least one stationary distribution.



Maximum Likelihood Estimation of Markov Chains:

Suppose {Xt} is a stationary Markov chain assuming values in a finite
set N = {1, . . . , n}, but we do not know A. Instead we have a finite
observation xt, t = 1, . . . , l of the Markov chain.

Then the maximum likelihood estimate of A is given as follows: Define

ηi :=
l−1∑
t=1

I{xt=i}, νij :=
l−1∑
t=1

I{xtxt+1=ij}.

Thus ηi is the number of times the state i occurs in the first l − 1
observations, and νij is the number of times the pair ij occurs in the
sample path.

Then

âij :=
νij

ηi

is the maximum likelihood estimate of A.



Definition of a Hidden Markov Model



Historical Starting Point: Functions of a Markov Chain:

Blackwell and Koopmans (1957), Gilbert (1959): Given a sta-

tionary Markov process {Xt} over N := {1, . . . , n}, suppose f : N →M
is some deterministic function. Then {f(Xt)} is stationary but not

necessarily Markov.

Question: Given a stationary process {Yt} over M, when can it be

realized as a function of a Markov chain over a finite alphabet N , and

if so, what is the smallest value of n?

Gilbert gave a simple necessary condition in terms of an infinite matrix

associated with the stochastic process having finite rank, and conjec-

tured that it is also a sufficient condition. However, this is now known

to be untrue.



Hidden Markov Models – Definition Used Here:

The process {Yt} is said to have a hidden Markov model of the joint

Markov process type if there exists another process {Xt} assuming

values over a finite set N := {1, . . . , n} such that:

• The joint process {(Xt, Yt)} is Markov, and

• For each i, j ∈ N , u, v ∈M, we have that

Pr{(Xt+1, Yt+1) = (j, u)|(Xt, Yt) = (i, v)} = Pr{(Xt+1, Yt+1) = (j, u)|Xt = i}.

These assumptions guarantee that (i) {Xt} is a Markov process by itself,

and that (ii) Yt+1 is a random function of Xt (though not necessarily

of Xt+1).



Note: Every stationary stochastic process can be expressed as a func-

tion of a Markov chain with a countable state space. Hence the chal-

lenge is to model using a finite state space.

Smaller State Space: Both definitions are equivalent: If a process

{Yt} is a function of a Markov process, then it has a ‘joint Markov

process’ model.

However, the ‘joint Markov process’ definition requires fewer states.

So we use the joint Markov process definition.

Motivation for Using HMMs: If a process is not Markov but has a

HMM, then it still has a ‘finite’ description, even though it may have

‘infinite memory.’



“Sum of Products Formula” for Hidden Markov Models



Some Notation:

Suppose the joint Markov model is stationary, and define Define

m
(u)
ij := Pr{Xt+1 = j&Yt+1 = u|Xt = i},

M(u) = [m(u)
ij ] ∈ [0,1]n×n, Important!

Define

aij :=
∑
u∈M

m
(u)
ij = Pr{Xt+1 = j|Xt = i}, A = [aij] ∈ [0,1]n×n.

Thus A is the state transition matrix of the Markov process {Xt}. Also

let π denote the initial (stationary) distribution of X0.



The Sum of Products Formula:

For each string u1 . . . ul =: u ∈Ml, define the frequency fu of occurence

of that string as

fu := Pr{Yt−l+1 . . . Yt = u1 . . . ul}.

We can compute fu by summing over all possible state sequences:

fu =
n∑

i0=1

n∑
i1=1

· · ·
n∑

il=1

πi0m
(u0)
i0i1

m
(u2)
i1i2

· · ·m(ul)
il−1il

.

This can be expressed compactly as follows:

fu = πM(u1) · · ·M(ul)en = πM(u)en,

where en = [1 1 . . .1]t is a column vector of n ones.



The Questions of Interest:

Suppose the complete statistics of {Yt} are known. When is it possible

to construct a hidden Markov model (HMM) for this process?

How can one construct a ‘partial realization’ for the process, that

faithfully reproduces the statistics of the process only up to some finite

order?

Can one approximate one Markov process, or a HMM, by another,

simpler process, and if so, quantify the error in approximation?

We begin with the first question.



A General Necessary Condition



The ‘Hankel’ Matrix of a Process

Recall: fu denotes the frequency of occurence of the string u:

fu := Pr{Yt−l+1 . . . Yt = u1 . . . ul}.

Define ‘flo’ = first lexical order, ‘llo’ = last lexical order on Ml.

Example: Let M = {1,2}, l = 3.

M3 in llo = {111,112,121,122,211,212,221,222}.

M3 in flo = {111,211,121,221,112,212,122,222}.

Define

Fk,l := [fuv,u ∈Mk in flo, v ∈Ml in llo] ∈ [0,1]m
k×ml

.

Every entry in Fk,l is the frequency of a (k+ l)-tuple.



Example: Suppose m = 2. Then

F2,1 =


f111 f112
f211 f212
f121 f122
f221 f222

 , F1,2 =

[
f111 f112 f121 f122
f211 f212 f221 f222

]
.

Hk,l :=


F0,0 F0,1 . . . F0,l
F1,0 F1,1 . . . F1,l
... ... ... ...

Fk,0 Fk,1 . . . Fk,l

 ∈ [0,1](1+m+...+mk)×(1+m+...+ml).

Note: Matrices on backward diagonals all contain the same entries,

but arranged differently.

Define H to be the ‘infinite’ matrix where we do not restrict the size

of k, l. It is called the ‘Hankel’ matrix.



Theorem (Gilbert): If {Yt} has a HMM, then Rank(H) <∞.

Proof: Recall the ‘sum of products formula’:

fu = πM(u1) . . .M(ul)en.

Define

Ul := [M(u),u ∈Ml in flo] ∈ [0,1]nm
l×n,

Vl := [M(u),u ∈Ml in llo] ∈ [0,1]n×nm
l
.

Then fu = πM(u1) . . .M(ul)en implies that

Fk,l = [fuv,u ∈Mk in flo, v ∈Ml in llo] = πUkVlen,

H =


π
πU1
πU2
...

 [en|V1en|V2en| . . .]

So Rank(H) ≤ n.



Non-Sufficiency of Finite Rank Condition:

If {Yt} has a HMM of size n, then Rank(H) ≤ n.

This theorem is essentially due to Gilbert (1959) though his notation
was different.

He also conjectured that Rank(H) < ∞ was sufficient for the process
to have a HMM.

Dharmadhikari (1965), Fox and Rubin (1965): The converse is not
true: There exist processes where Rank(H) < ∞ but don’t have a
HMM.

So what can be said about the case of ‘finite Hankel rank’ processes?

The situation has remained pretty static for nearly forty years.



Quasi-Realizations



Consequences of the Sum of Products Formula

Recall that

fu = πM(u1) . . .M(ul)en,

where en is the column vector of all one’s. Also, if we define

A =
∑
u∈M

M(u),

then A is the transition matrix of the underlying Markov process, which

is stochastic, and π is a stationary distribution of A:

π

 ∑
u∈M

M(u)

 = π,

 ∑
u∈M

M(u)

 en = en.



Quasi-Realizations

A triplet {θ,D(u), u ∈M, φ} is a quasi-realization of {Yt} if

fu = θD(u1) . . . D(ul)φ ∀u ∈M∗,

and in addition

θ

 ∑
u∈M

D(u)

 = θ,

 ∑
u∈M

D(u)

φ = φ.

No requirement that the vectors and matrices should be nonnegative!

The quasi-realization if regular if the dimension of θ,D(u), φ is Rank(H).



The Integer k:

Suppose the process {Yt} is ‘finite Hankel rank,’ i.e., has the property

that Rank(H) <∞. What conclusions can we draw from this property?

Lemma: Rank(Hk,l) = Rank(Fk,l).

Note that, for every u ∈M∗, we have

fu =
∑
i∈M

fiu =
∑
j∈M

fuj.

So

Rank



F0,0 F0,1 . . . F0,l
F1,0 F1,1 . . . F1,l
... ... ... ...

Fk,0 Fk,1 . . . Fk,l


 = Rank



F0,l
F1,l
...
Fk,l


 = Rank(Fk,l).



Lemma: If Rank(H) <∞, then there exists a smallest k such that

Rank(Fk,k) = Rank(Hk,k) = Rank(Hk+l,k+s) ∀l, s > 0.

For every k, we have either Rank(Hk,k) < Rank(Hk+1,k+1) ≤ Rank(H),

or else Rank(Hk,k) = Rank(Hk+1,k+1).

If Rank(H) <∞ the latter can happen only finitely many times.

Hereafter the symbol k denotes the unique integer referred to in the

above lemma.



In particular, we have that

Rank(Fk,k) = Rank([Fk,k Fk,k+1]).

So there exists a matrix C ∈ Rmk×mk+1
such that

Fk,k+1 = Fk,kC.

Partition C as

C = [C(1) . . . C(m)], C(u) ∈ Rm
k×mk

.

Then some simple arguments show that

fu = F0,kC
(u1) · · ·C(ul)emk.

Hence the triplet (F0,k, C
(u), emk) is a quasi-realization.

Actually we can say much more.



Let r := Rank(H) = Rank(Fk,k). Choose subsets I, J of cardinality r

such that the r× r matrix [fvw,v ∈ I,w ∈ J] has rank r. Note that the

above is a submatrix of Fk,k.

Choose matrices C(1), . . . , C(m) such that

[fvuw,v ∈ I,w ∈ J] = [fvw,v ∈ I,w ∈ J]C(u).

Then the r-dimensional triple (fv,v ∈ I, C(u), er) is a regular quasi-

realization of the process.

Yet still more can be said.



Theorem: A finite Hankel rank process always has a regular quasi-

realization. Moreover, if {θ1, D
(u)
1 , u ∈ M, φ1}, {θ2, D

(u)
2 , u ∈ M, φ2} are

two regular quasi-realizations of the same process, then there exists a

nonsingular matrix T such that

θ2 = θ1T
−1, D

(u)
2 = TD

(u)
1 T−1 ∀u ∈M, φ2 = Tφ1.



Quasi-realizations are not ‘true’ realizations, but they are ‘easy’ to
construct.

Fun Fact No. 1: Given a quasi-realization {θ,D(u), u ∈ M, φ}, the
problem of determining whether there exists a nonsingular matrix T
such that θT−1, TD(u)T−1, Tφ are all positive can be solved in polyno-
mial time.

Thus it is possible to determine, in an efficient fashion, whether a given
quasi-realization is a ‘true’ realization in disguise.

However, there exist {θ,D(u), u ∈M, φ} such that

θD(u)φ ≥ 0 ∀u ∈M∗,

and yet no T exists such that θT−1, TD(u)T−1, Tφ are all positive.

Fun Fact No. 2: Given a row vector θ, square matrices D(u), u ∈ M
and a column vector φ, the problem of determining whether θD(u)φ ≥ 0
for all strings u ∈M∗ is undecidable!



‘Nearly Necessary and Sufficient’ Conditions for the

Existence of Hidden Markov Models



Need to Introduce Additional Assumptions:

For an arbitrary stochastic process, with no additional assumptions,

further progress appears difficult. So we add the assumption that the

process is ‘mixing’ in some sense.

We begin with α-mixing (introduced here, but not really used until

later).



Alpha-Mixing – A Form of Asymptotic Long-Term Independence

The formal definition of α-mixing is now given (for those who are
interested).

Given a stochastic process {Yt}, define Σ0
−∞ to be the σ-algebra gener-

ated by Yt, t ≤ 0, and let Σ∞
l denote the σ-algebra generated by Yt, t ≥ l.

Then

α(l) := sup
A∈Σ0

−∞,B∈Σ∞
l

|P (A ∩B)− P (A) · P (B)|.

Interpretation: A is an event that depends only on the ‘past’ variables
Yt, t ≤ 0, B is an event that depends only on the ‘future’ variables
Yt, t ≥ l.

The difference |P (A∩B)−P (A) ·P (B)| quantifies the extent to which
A and B are independent.

A stochastic process {Yt} is said to be α-mixing if α(l) → 0 as l→∞.



Alpha-Mixing of Markov Chains:

A Markov process {Xt} over a finite state space is α-mixing if and only

if the state transition matrix A is irreducible and aperiodic.

In other words, A has a single, simple eigenvalue at λ = 1 and all other

eigenvalues have magnitude strictly less than one.

Let λ denote the second largest eigenvalue of A. Then α(l) = O(|λ|l).



Irreducibility is Weaker than Alpha-Mixing!

Example:

A =

[
0 1
1 0

]
, π = [0.5 0.5]

The Markov ‘chain’ toggles between two states 1 and 2.

Let the event A be {X0 = 1} and let the event B be {Xl = 2}. Then

P (A∩B) is 0 if l is even and 1 if l is odd. But P (A) = P (B) = 0.5. So

P (A ∩B) 6→ P (A) · P (B) as l→∞.



Alpha-Mixing Properties of HMMs:

Suppose a process {Yt} has a HMM. If the underlying Markov process

{Xt} is α-mixing, so is the corresponding output process {Yt}, because

Yt is a ‘random’ function of Xt−1.

The converse is not true – it is possible for the output to be α-mixing

even if the state process is not, provided certain ‘consistency condi-

tions’ (Anderson 1999, MCSS) are satisfied – conditions are ‘fragile.’



Let p denote the period of a nonprimitive, irreducible Markov chain

with n states. By renumbering states, we can ensure that

A =


0 0 . . . 0 A1
Ap 0 . . . 0 0
0 Ap−1 . . . 0 0
... ... ... ... ...
0 0 . . . A2 0

 .

where all blocks are (n/p)× (n/p).

The matrices M(u), u ∈ M inherit the same structure. So the symbol

M
(u)
i is defined analogously.

For a string u ∈M∗, define

M
(u)
i = M

(u1)
i M

(u2)
i+1 . . .M

(ul)
i+l−1,

where the indices are taken mod p.



Theorem: (Brian Anderson (1999)) The output process is α-mixing
if and only if, for every string u ∈M∗, we have

πt1M
(u)
1 e(n/p) = πt2M

(u)
p e(n/p) = πt3M

(u)
p−1e(n/p) = . . . = πtpM

(u)
2 e(n/p)

=
1

p
πM(u)en.

(Baby) Example: Suppose m
(u)
ij = aijbju, where

A =

 0 0 1
1 0 0
0 1 0

 , B =

 b11 b12
b21 b22
b31 b32

 , π = [1/3 1/3 1/3]

Then the above consistency condition is satisfied if and only if bj1 =
bj2 = 0.5 for all j.

Open Question: If the above consistency condition is satisfied, can
be the HMM be replaced by another where the underlying Markov chain
is primitive?



Mixing Property Assumed Here:

Here we use a weaker notion than α-mixing, called just ‘mixing.’

Definition: The process is mixing if∑
w∈Ml

fuwv → fufv as l→∞, ∀u,v ∈Mk.

Interpretation: A kind of long-term asymptotic independence. The

probability of a string beginning with u ∈Mk and ending with v ∈Mk

asymptotically approaches the product of the individual probabilities as

the separation between u and v becomes larger.

Comment: This is weaker than α-mixing because we are looking at

only strings u,v of fixed length k.



Definition: The process {Yt} is ultra-mixing if ∃{δl} ↓ 0 such that∣∣∣∣∣fiufu −
fiuv

fuv

∣∣∣∣∣ ≤ δl, ∀i ∈Mk,u ∈Ml,v ∈M∗.

Interpretation: Smooth dependence of conditional probabilities on

the length of the string on which conditioning is done.

A Sidelight: Ultra-mixing is equivalent to the process being ‘random

Markov,’ that is, being a Markov process with a memory length that

is random (and independent of the process).



Theorem: If a process has finite Hankel rank, is mixing, ultra-mixing,

and a technical condition is satisfied, then it has a HMM.

Moreover, (as per Anderson’s theorem), if the process is mixing, the

underlying Markov chain is either primitive, or else it is irreducible and

satisfies a ‘consistency condition.’

The ‘technical condition’ has to do with the cluster points of the vector

of conditional probabilities [fv|u], v ∈M,u ∈M∗] (messy to state).

The countable vector of conditional probabilities [fv|u], v ∈M,u ∈M∗]
completely characterizes the stochastic process and is an equivalent

description instead of specifying fu,u ∈ M∗. This countable vector

belongs to `∞.

The technical condition holds for an open dense subset of `∞.



A Near Converse:

Theorem: Suppose a mixing process has a HMM. Suppose that an-

other technical condition is satisfied. Then the process has finite Han-

kel rank, is mixing and is also ultra-mixing.

Moreover, by Anderson’s theorem, the consistency condition is satis-

fied.



For two HMMs of the same order (same number of states), a natural

topology is obtained by the metric∑
u∈M

‖M(u)
1 −M

(u)
2 ‖,

where M(u)
1 , M(u)

2 are the matrices of the two HMMs. This ‘technical

condition’ holds whenever all entries of the matrix M(u) are positive

for each u ∈M. Hence this technical condition also holds for an open

dense subset of HMMs.

So, modulo two technical conditions, if a process has finite Hankel rank

and is ‘mixing,’ it has a HMM if and only if it is also ultra-mixing.

Moreover, both technical conditions hold for an ‘open dense subset’ of

processes in an appropriate topology.



Part II: The Partial Realization Problem



Problem Statement



Motivation:

We are able to observe a stationary stochastic process {Yt} assuming

values in a finite alphabet M := {1, . . . ,m}.

We wish to construct a hidden Markov model (defined later) for this

process, on the basis of a finite length sample path.

This involves:

• Estimating the ‘true’ probabilities of k-tuples (y1, . . . , yk) on the basis

of observed frequencies, and

• Constructing a stochastic model on the basis of the statistics (true

probabilities).

Process is not assumed to be i.i.d., so problems are non-trivial.



Problem Statements:

‘Exact’ Partial Realization Problem:

Suppose we are given a stationary stochastic process {Yt} with known

statistics, and an integer k. Construct a HMM that perfectly repro-

duces the frequencies fu whenever |u| ≤ k.

‘Inexact’ Partial Realization Problem:

Suppose we have available only a finite length sample path of the

process {Yt}, based on which we estimate the frequencies f̂u,u ∈Mk for

some integer k. What can be said about the accuracy and confidence

of these estimates? Further, what can be said about the accuracy and

confidence of the parameters of the HMM?



Exact Partial Realization Problem – Restatement:

We are given frequencies fu,u ∈ Mk for some integer k. Find an

integer n, and matrices M(u) ∈ [0,1]n×n such that
∑
u∈MM(u) =: A is

a stochastic matrix, and in addition, we have

fu = πM(u1) . . .M(uk)en, ∀u ∈Mk,

where π is a stationary distribution of A.

Here we are just trying to reproduce the known (or specified) frequen-

cies fu in terms of the current formalism.

But we wish to use the above formula to extrapolate and compute

fu for strings of length longer than k. In this case the computed

frequencies must still ‘make sense.’



Three Important Requirements



Consistency – An Important Requirement:

Suppose {Yt} is a stochastic process over M and fu denotes the fre-

quency of the string u.

Then the frequencies are consistent, that is,

fu =
∑
v∈M

fuv =
∑
w∈M

fwu.

So if we construct a ‘partial’ realization, the frequencies produced by

the realization must also be consistent.



Reformulation of the Problem:

For now drop the requirement of nonnegativity. Choose a row vec-
tor θ, a column vector φ with n components each, and matrices
C(1), . . . , C(m), and define the ‘pseudo-frequencies’

gu := θC(u1) . . . C(ul)φ, ∀u ∈M∗

In order for these matrices to be a solution to the (exact) partial realiza-
tion problem, the pseudo-frequencies gu must satisfy three properties:

• Consistency: gu must be consistent in the sense that

gu =
∑
v∈M

guv =
∑
w∈M

gwu.

• Reproduction: gu = fu ∀u ∈Mk.
• Nonnegativity: gu ≥ 0 ∀u ∈M∗.

Each requirement is satisfied by a different set of conditions.



Consistency:

Theorem: Suppose the vectors θ and φ satisfy the conditions

θ

 ∑
u∈M

C(u)

 = θ,

 ∑
u∈M

C(u)

φ = φ.

Then the set of pseudo-frequencies gu defined by

gu := θC(u1) . . . C(ul)φ, ∀u ∈M∗

is consistent.

This explains (I hope!) why we imposed these eigenvector conditions

when we defined a quasi-realization.



Proof of Theorem: Let u, v, w be arbitrary. Write

C(u) := C(u1) · · ·C(ul).

Then ∑
v∈M

gvu = θ
∑
v∈M

C(v)C(u)φ

= θ

 ∑
v∈M

C(v)

C(u)φ

= θC(u)φ = gu.

Similarly ∑
w∈M

guw = gu.

If the row and column span of the frequencies of the process is ‘suffi-

ciently rich,’ then the eigenvector conditions are also necessary.



Reproduction:

Recall something that was just flashed by earlier. Suppose the pro-

cess {Yt} has finite Hankel rank, and define the integer k such that

Rank(H) = Rank(Fk,k). Then in particular

Rank(Fk,k) = Rank([Fk,k Fk,k+1]).

So there exists a matrix C ∈ Rmk×mk+1
such that

Fk,k+1 = Fk,kC.

Partition C as

C = [C(1) . . . C(m)], C(u) ∈ Rm
k×mk

.

Then it can be shown that

fu = F0,kC
(u1) · · ·C(ul)emk.

Hence the triplet (F0,k, C
(u), emk) is a quasi-realization.



Define Jl ∈ {0,1}ml×ml−1
to be the ‘block-diagonal’ matrix with ml−1

blocks, where each block is em. For example, if m = 2, then

J3 =



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


.

Then Fk,k = Fk,k+1Jk+1. This is just the ‘consistency’ of frequencies.

But since Fk,k+1 = Fk,kC, this implies that

Fk,k = Fk,kCJk+1.

If Fk,k is nonsingular, this implies that CJk+1 = I. We can use this

‘insight’ to solve the partial realization problem



Theorem: Given the integer k and a consistent set of frequencies

fu,u ∈Mk, choose any matrix C ∈ Rmk−1×mk
such that

F0,k−1C = F0,k and CJk = Imk−1.

Partition C as [C(1) . . . C(m)] where each C(u) ∈ Rmk−1×mk−1
. Then the

triple θ = F0,k−1, φ = emk−1 and C(u), u ∈ M defined above leads to a

set of pseudo-frequencies that is consistent and reproductive.



Consistency follows from the eigenvector conditions. We started with
F0,k−1C = F0,k. Because F0,k is a frequency vector, we have that∑

v∈M
fuv = fu, ∀u ∈Mk−1.

Next,  ∑
w∈M

C(w)

 emk−1 = Cemk = CJkemk−1

= emk−1.

Hence

F0,k−1

 ∑
u∈M

C(u)

 = F0,k−1,

 ∑
u∈M

C(u)

 emk−1 = emk−1.

Reproduction follows from CJk = Imk−1. We can show that, for every
string u ∈Mk−1, we have that the product C(u) = C(u1) · · ·C(uk−1)emk−1

equals a unit vector with a 1 in the row corresponding to u, and zeros
elsewhere.



Nonnegativity:

Thus far we have a way of achieving consistency and reproduction. So

the only remaining question is: Is this set of pseudo-frequencies also

nonnegative?

An easy way to ensure nonnegativity: Make sure that each C(u) is

nonnegative.



Theorem: The only nonnegative solutions C to the equations

F0,k−1C = F0,k and CJk = Imk−1

is

C = BlockDiag{[
fuv

fu
, v ∈M],u ∈Mk−1}.

This solution leads to a model whereby the process {Yt} is modelled

as a (k − 1)-step Markov process.



Exact Partial Realization Using a Multi-Step Markov Model:

State space: Mk−1 = Set of all strings of length k − 1.

A transition from v ∈ Mk−1 to u ∈ Mk−1 is possible if and only if the

last k − 2 symbols of v equal the first k − 2 symbols of u.

v = v1v2 . . . vk−1, u = v2 . . . vk−1uk.

In this case, define the transition probability

avu :=
fvuk
fv

.

Output Yt ∈M is the last symbol of Xt ∈Mk−1.

This model exactly reproduces all k-tuple frequencies fu,u ∈Mk.



Interpretation: This model ensures that the process {Yt} is a (k − 1)-
step Markov process, i.e.,

Pr{Yt|Yt−1, . . .} = Pr{Yt|Yt−1, . . . , Yt−k+1}.
This particular partial realization is well-known (and seems to have no
name).

But our theorem gives some justification by showing that it is the only
partial realization satisfying a nonnegativity condition.

Clearly not all stochastic processes are multi-step (have finite memory).
So further work is needed!

In particular, we must permit the matrices C(u) to contain negative
elements, while ensuring that the product F0,kC

(u)em
k−1

is nonnegative
for all strings u of arbitrary length.

I don’t know how to do this!



Inexact Partial Realization Problem:

Suppose we are not given the frequencies fu, |u| ≤ k, but only a finite

length observation y1 . . . yl. Using this observation we can estimate fu;

call this estimate f̂u.

If it is assumed that the process under observation is α-mixing, then it

is possible to quantify the rate at which the estimates f̂u converge to

their true values.

Since the parameters in the HMM are just ratios of the form fvuk/fv,

these estimates can in turn be translated into estimates on the param-

eters of the HMM.

Details are omitted as they formulas are messy.



Part III: Applications of the Kullback-Leibler Divergence Rate



Topics Studied in This Part



Topics Studied in This Part:

An alternate formula for the K-L divergence rate.

An easy derivation of the (known) formula for the K-L divergence rate

between two Markov chains.

Approximating a given set of frequencies using a multi-step Markov

chain.

Approximating a Markov chain with ‘long’ memory using another Markov

chain of ‘shorter’ memory.

An approximation to the K-L divergence rate between two hidden

Markov processes, where the underlying state spaces could have dif-

ferent sizes. (No exact formula is known.)



The Kullback-Leibler Divergence Rate

Between Stochastic Processes



The K-L Divergence Between Probability Vectors

Given two probability vectors p,q on a finite set N of size n, the

Kullback-Leibler (K-L) divergence rate between them is defined by

H(p ‖ q) :=
n∑
i=1

pi log

(
pi
qi

)
.

Interpretation: Given a set of i.i.d. observations from the set N , there

two competing hypotheses: (i) the data is generated by p, (ii) the data

is generated by q.

The quantity H(p ‖ q) is the per-observation expected value of the log-

likelihood ratio of misclassification when the ‘truth’ is that the data is

generated by the distribution p.

What do we do if the successive observations are not independent?



The K-L Divergence Rate Between Probability Laws

Suppose P̃ , Q̃ are probability laws of two stochastic processes on the
set N∞, where N is a finite set.

The K-L divergence rate is defined as the limit, when it exists,

R(P̃ ‖ Q̃) := lim
l→∞

1

l
H(P̃l ‖ Q̃l),

where P̃l, Q̃l are the l-dimensional marginal distributions of P̃ , Q̃ respec-
tively on N l.

Interpretation: Suppose we observe a sample path {xi, i ≥ 1} from the
set N . The two competing hypotheses are: (i) The underlying law is
P̃ , (ii) the underlying law is Q̃.

The quantity R(P̃ ‖ Q̃) is the expected value of the log-likelihood ratio
of choosing Hyp. (ii) when the ‘truth’ is Hyp. (i), divided by l.



An Alternate Formulation of the K-L Divergence Rate

High School algebra: Suppose U = {u1, . . . , um}, V = {v1, . . . , vn} are

finite sets, and P,Q are probability distributions on U × V . Then

H(P ‖ Q) = H(PU ‖ QU) +
m∑
i=1

(PU)iH(PV |ui ‖ QV |ui),

where PV |ui denotes the conditional distribution

(PV |ui)j = Pr{vj|ui} =
pij

(PU)i
,

and QV |ui is defined analogously.



Given two laws P̃ , Q̃ on N∞, define

αl :=
1

l
H(P̃l ‖ Q̃l),

βl := H(P̃l+1 ‖ Q̃l+1)−H(P̃l ‖ Q̃l), l ≥ 2.

Note that R(P̃ ‖ Q̃) is the limit of αl as l→∞ (if it exists). Clearly

αl =
1

l

l−1∑
i=1

βi +
H(P̃1 ‖ Q̃1)

l
,

Theorem: The K-L divergence rate R(P̃ ‖ Q̃) is the Césaro limit, if

exists, of the sequence {βl}.



βl is often easier to compute than αl!

View N l+1 as N l ×N . Then as shown earlier

H(P̃l+1 ‖ Q̃l+1) = H(P̃l ‖ Q̃l) +
∑

u∈N l

fuH(p|u ‖ q|u).

βl = H(P̃l+1 ‖ Q̃l+1)−H(P̃l ‖ Q̃l) =
∑

u∈N l

fuH(p|u ‖ q|u),

where

p|u := [Pr{1|u} . . .Pr{m|u}],q|u defined analogously.

Thus, even as l →∞, p|u,q|u are probability distributions on the fixed

set N , though the ‘tails’ u become longer and longer.



K-L Divergence Rate Between Markov Processes



K-L Divergence Rate Between Markov Processes

Known Result (with complicated proof): Suppose P̃ ∼ (θ,A), Q̃ ∼
(φ,C) are laws of two Markov chains over a set X with n elements.

(A,C are the transition matrices.) Then

R(P̃ ‖ Q̃) =
n∑
i=1

θiH(ai ‖ ci),

where ai, ci ∈ Sn denote the i-th rows of A,C respectively.



Easy proof: Since both P̃ , Q̃ correspond to Markov chains, we have
that under the law P̃ ,

Pr{j|i1 . . . il} = Pr{j|il}.
Hence p|u depends only on the most recent element ul.

p|u1...ul = p|ul.
So if ul = i, then p|i = ai, the i-th row of the transition matrix A.
Similarly q|i = ci, the i-th row of the transition matricx C.

βl =
∑

u1...ul−1∈N l−1

n∑
i=1

fu1...ul−1iH(ai ‖ ci)

=
n∑
i=1

 ∑
u1...ul−1∈N l−1

fu1...ul−1i

H(ai ‖ ci)

=
n∑
i=1

θiH(ai ‖ ci).



As a result βl = β1 ∀l ≥ 2 (convergence in one time step!). This leads

readily to the formula for the divergence between Markov processes.

For a k-step Markov process, we can show similarly that βl = βk ∀l ≥ k.

For a Markov process, the K-L divergence rate is H(f2 ‖ g2)−H(f1 ‖ g1),

where fm is the frequency vector of m-tuples under the law P̃ , and gm
similarly for Q̃.

For a k-step Markov process, the K-L divergence rate is H(fk+1 ‖
gk+1)−H(fk ‖ gk).

A very clean interpretation with an easy proof.



Approximation Using Multi-Step Markov Processes



Approximation Using Multi-Step Markov Processes

Problem: Given a stochastic process {Xt} over a finite alphabet M =

{1, . . . ,m}, specifically the frequency distribution of all k-tuples, find

the best possible approximation in terms of an l-step Markov process.

Precisely: Let fu,u ∈Mk be the set of k-tuple frequencies of a stochas-

tic process {Xt}. Let Pl denote the set of probability laws of l-step

Markov processes, and let Pl,k ∈ Smk denote the set of k-tuple frequen-

cies obtainable from l-step Markov processes.

Find the best approximation to [fu,u ∈ Mk] ∈ Smk from Pl,k, in terms

of minimizing the K-L divergence (not rate).

Technicality: l ≤ k − 2; otherwise a perfect match is possible.



Theorem: The best possible fit in terms of minimizing the K-L di-

vergence is as follows: State space = Ml, and if u ∈ Ml, v ∈ M,

then

Pr{Xt = v|Xt−l . . . Xt−1 = u} =
fuv

fu
, ∀u ∈Ml,v ∈M,

where fuv, fu are the frequencies of uv and u in the stochastic process

we are trying to approximate.

Interpretation: Aggregate the k-tuple frequencies into (l + 1)-tuple

frequencies. Match them perfectly using an l-step Markov chain.



Approximation Using Multi-Step Markov Processes - II

Problem: Given a (k− 1)-step Markov process, find the best possible

approximation in terms of an l-step Markov process, where the disparity

is measured in terms of the K-L divergence rate between the two

processes.

Again, problem is meaningful only if l ≤ k − 2.



Theorem: The best possible fit in terms of minimizing the K-L diver-

gence rate is as before:

Pr{Xt = v|Xt−l . . . Xt−1 = u} =
fuv

fu
, ∀u ∈Ml,v ∈M,

where fuv, fu are the frequencies of uv and u in the stochastic process

we are trying to approximate.

Interpretation: Same interpretation as before. Aggregate the k-tuple

frequencies into (l+1)-tuple frequencies. Match them perfectly using

an l-step Markov chain.



Ergodicity Properties

If the original Markov process is ergodic (irreducible), so is the reduced

order model. But the reduced order model can be ergodic (irreducible)

even if the original one is not.

Similar remarks apply to primitivity (irreducibility + aperiodicity).



Filtering Equations for Hidden Markov Models



Notation: Given two HMMs θ ∈ Sn,M(u) ∈ [0,1]n×n, ψ ∈ Sr, G(u) ∈
[0,1]r×r, where Sn denotes the n-dimensional simplex. Thus HMM1

has n states, the stationary distribution θ, and

m
(u)
ij = Pr{Xt+1 = j&Yt+1 = u|Xt = i}.

HMM2 has r states, where possibly r 6= n, and

g
(u)
ij = Pr{Xt+1 = j&Yt+1 = u|Xt = i}.

From ‘sum of products’ formula, we have

pu = θM(u)en, qu = ψG(u)er.



Filtering Equations for HMMs:

Define

Z := [M(u)en, u ∈M] ∈ [0,1]n×m,

T := [G(u)er, u ∈M] ∈ [0,1]r×m.

Then

ziu = Pr{Yt+1 = u|Xt = i}, under the law P̃ ,

and tiu is defined analogously.



For k ≤ l, let Ylk = (Yk, . . . , Yl). Suppose u ∈Ml. Define

θ|u := [Pr{Xl = i|Yl1 = u}, i = 1, . . . , n] for HMM1 .

ψ|u := [Pr{Xl = i|Yl1 = u}, i = 1, . . . , n] for HMM2 .

Note that θ|u ∈ Sn and ψ|u ∈ Sr. Thus θ|u is the conditional distribution

of Xl given the observation u under the law of HMM1; ψ|u has a similar

interpretation.



Now define

x|u := θM(u),y|u := ψG(u).

Then it follows from the definition that

(x|u)i = Pr{Yl1 = u&Xl = i} under HMM1,

and y|u has a similar interpretation. Note that these vectors satisfy a

simple recursion relationship

x|uv = x|uM
(v),y|uv = y|uG

(v).



By Bayes’ rule, we have

Pr{Xl = i|Yl1 = u} =
Pr{Xl = i&Yl1 = u}

Pr{Yl1 = u}
.

But by the ‘sum of products’ formula, we have

Pr{Yl1 = u} =

 θM(u)en = x|uen for HMM 1,

ψG(u)er = y|uer for HMM2
.

Therefore

θ|u =
1

x|uen
x|u, ψ|u =

1

y|uer
y|u.

The conditional probabilities θ|u and ψ|u do not satisfy any simple

equation. However, the ‘unnormalized conditional probabilities’ x|u y|u
satisfy the linear recursion relations

x|uv = x|uM
(v),y|uv = y|uG

(v).

This is a well-known phenomenon in filtering theory.



Estimating the K-L Divergence Rate

Between Hidden Markov Models



To compute the K-L divergence rate between HMM1 and HMM2, we

need to compute Pr{Yl+1|Yl1 = u}.

In a HMM, the outputs are conditionally independent, given the state.

Therefore

Pr{Yl+1 = w|Yl1 = u} =
∑
i

Pr{Yl+1 = w|Xl = i}

· Pr{Xl = i|Yl1 = u},

or more compactly,

p|u = θ|uZ,q|u = ψ|uT.



The Alignment Distance – Motivation:

To compute the K-L divergence rate between two HMMs, we need to

compute H(p|u ‖ q|u) = H(θ|uZ ‖ ψ|uT ) as |u| → ∞.

Difficulty: θ|u, ψ|u don’t satisfy any simple recursions.

Remedy: Replace θ|u, ψ|u by x|u,y|u which do satisfy a simple linear

recursion.

Problem: x|u,y|u are not normalized!

Remedy: Find a way of measuring the disparity between unnormalized

‘probability vectors’ !



The Alignment Distance – Definition:

Suppose x,y > 0. Then

d(x,y) := log

[
maxi(xi/yi)

minj(xj/yj)

]
. = logmax

i

xi
yi

+ logmax
j

yj

xj
.

d(x,y) is invariant under scaling the two vectors, because

d(αx, βy) = d(x,y), ∀α, β > 0

Also d(x,y) > 0 unless x = λy for some constant λ.



Birkhoff Contraction Coefficient:

Suppose x,y ∈ Rn+, > 0 and T ∈ Rn×m+ , and every column of T contains

at least one positive element. Then

d(xT,yT ) ≤ d(x,y).

Suppose T ∈ Rn×n+ , and define the Birkhoff contraction coefficient

τ(T ) := sup
x,y,x6=λy

d(xT,yT )

d(x,y)
.

Then τ(T ) ≤ 1 for all T . Moreover, the Birkhoff contraction coefficient

is submultiplicative, that is, we have τ(TS) ≤ τ(T )τ(S).



Estimating the K-L Divergence Rate Between HMMs:

Using the Birkhoff contraction rate, we can shown that p|uv is closely

approximated by p|u provided |u| is sufficiently long, and similarly for

q|uv.

This observation plus some high school algebra allow us to obtain ge-

ometrically convergent estimates for the K-L divergence rate between

two HMMs.

Details in MV, CDC 2007.



Open Problems:

The biggest open problem is finding the K-L divergence rate between

two hidden Markov models.

Other interesting question: What else can be done with these ‘closed

form formulae’ for the K-L divergence rate between Markov processes?



Thank You!


