
energies

Article

On Optimistic and Pessimistic Bilevel Optimization Models
for Demand Response Management

Tamás Kis, András Kovács * and Csaba Mészáros

����������
�������

Citation: Kis, T.; Kovács, A.;

Mészáros, C. On Optimistic and

Pessimistic Bilevel Optimization

Models for Demand Response

Management. Energies 2021, 14, 2095.

https://doi.org/10.3390/en14082095

Academic Editors: Miadreza

Shafie-khah and Mohammad Ali

Fotouhi Ghazvini

Received: 14 March 2021

Accepted: 2 April 2021

Published: 9 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

EPIC Center of Excellence in Production Informatics and Control, Institute for Computer Science and Control
(SZTAKI), Eötvös Loránd Research Network (ELKH), Kende u. 13-17, 1111 Budapest, Hungary;
tamas.kis@sztaki.hu (T.K.); csaba.meszaros@sztaki.hu (C.M.)
* Correspondence: akovacs@sztaki.hu

Abstract: This paper investigates bilevel optimization models for demand response management,
and highlights the often overlooked consequences of a common modeling assumption in the field.
That is, the overwhelming majority of existing research deals with the so-called optimistic variant of
the problem where, in case of multiple optimal consumption schedules for a consumer (follower), the
consumer chooses an optimal schedule that is the most favorable for the electricity retailer (leader).
However, this assumption is usually illegitimate in practice; as a result, consumers may easily deviate
from their expected behavior during realization, and the retailer suffers significant losses. One way
out is to solve the pessimistic variant instead, where the retailer prepares for the least favorable
optimal responses from the consumers. The main contribution of the paper is an exact procedure for
solving the pessimistic variant of the problem. First, key properties of optimal solutions are formally
proven and efficiently solvable special cases are identified. Then, a detailed investigation of the
optimistic and pessimistic variants of the problem is presented. It is demonstrated that the set of
optimal consumption schedules typically contains various responses that are equal for the follower,
but bring radically different profits for the leader. The main procedure for solving the pessimistic
variant reduces the problem to solving the optimistic variant with slightly perturbed problem data.
A numerical case study shows that the optimistic solution may perform poorly in practice, while the
pessimistic solution gives very close to the highest profit that can be achieved theoretically. To the
best of the authors’ knowledge, this paper is the first to propose an exact solution approach for the
pessimistic variant of the problem.

Keywords: demand response; bilevel optimization; pessimistic case; polynomial time algorithm

1. Introduction

Stackelberg game models and the corresponding bilevel programming solution ap-
proaches for demand response management have received considerable attention recently.
When focusing on the operational level, most models capture the interplay of an electricity
retailer, who is the leader in the Stackelberg game, and its multiple consumers, who act
as the followers. In the sequential game, the leader decides first on the electricity tariff
or some other incentives, whereas the followers respond to the tariff by scheduling their
loads accordingly. Stackelberg game models assume that the load response is calculated by
solving an optimization problem, with the tariff as the parameter, to optimality. Numerous
such approaches have been published, including models with deferrable or curtailable
loads, batteries, electric vehicles (EVs), etc. [1–5].

In this paper, it is argued that despite the remarkable results, an important detail is
frequently overlooked: the followers often have a large set of optimal solutions to their
problems, and the selection of the response from this set is not defined properly. Moreover,
different optimal solutions for the follower may bring radically different benefits for the
leader. In bilevel optimization, the optimistic assumption states that the followers select
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their optimal solution that is the most favorable for the leader. In contrast, the pessimistic
variant deals with the case where the followers return their least favorable optimal response
to the leader, and hence, it safeguards from potential losses due to an unexpected selection.
Most previous approaches in the literature implicitly make the optimistic assumption,
although this assumption can hardly be enforced in practice. In this paper, the difference
between the two variants of the bilevel problem is highlighted. Then, to the best of the
authors’ knowledge, the first efficient exact solution approach for the pessimistic variant of
a bilevel electricity tariff optimization problem in the literature is introduced. Moreover, it
is shown that in most cases, the profit of the leader in the pessimistic variant can approach
the profit that can be achieved in the optimistic variant.

It is important to emphasize at this point the difference between bilevel optimization
as a mathematical modeling and solution approach, and hierarchical modeling techniques
in general. Bilevel optimization [6] applies formal mathematical techniques to characterize
and find the equilibrium in game-theoretical decision situations with two fully rational
parties with given constraints and objectives, and a well-defined serial decision workflow.
This is different from generic hierarchical modeling techniques that analyze the interplay
of two or more decision makers, typically by solving the problems faced by the individual
parties one by one, and constructing the overall outcome by assuming some coordination
mechanism between them, often using simulation techniques; see, e.g., [7]. This paper
considers bilevel optimization strictly in the former sense.

Main results. On the one hand, this paper proves formal properties of the optimal
solutions of a bilevel tariff optimization problem, both for the easily tractable single-
consumer special case, and the computationally hard general case with an arbitrary number
of consumers. The main implication of these results is the reduction of the pessimistic
variant to the optimistic one by perturbing the problem data and also the optimal price
vector, which also results in the first efficient solution approach for the pessimistic variant.
On the other hand, a numerical case study is presented that demonstrates that solving
the optimistic problem may directly cause a significant loss of profit for the retailer if the
consumers do not choose their optimal solution as expected.

Structure of the paper. After a brief literature review in Section 2, the bilevel electricity
tariff optimization problem is defined formally in Section 3. Some general observations are
presented in Section 4. In Section 5, a special case with one consumer only is studied. The
general optimistic variant is treated in Section 6.1, and the pessimistic one in Section 6.2. An
experimental evaluation is presented in Section 7, and the paper concludes in Section 8.

2. Literature Review

Introduced by the seminal paper of Bracken and McGill [8], bilevel optimization has
become a field rich in deep theoretical results and with many practical applications; see,
e.g., Bard [9], Dempe [6], and Colson et al. [10]. One of the central questions is expressing
the optimality of the followers’ solutions in mathematical programming formulations. To
this end, Karush–Kuhn–Tucker (KKT) necessary optimality conditions, or the Fritz John
necessary optimality conditions, value functions, or penalty functions can be used [11–16].

As for the methods, the optimistic or strong bilevel optimization problem appears to
be easier to solve than the pessimistic or weak bilevel problem in general; see, e.g., [17].
Most approaches reduce the strong bilevel optimization problem to a single-level problem
by expressing the optimality of the lower-level solution by using one of the techniques
mentioned above and then applying some non-linear programming methods for solving
the resulting formulation [18]. There are many results for special cases. The linear bilevel
programming problem, in which all constraints and objective functions are linear, is well
understood; see, e.g., Ben-Ayed [19] and Dempe [6]. Lozano and Smith [20] described
an exact method for nonlinear bilevel optimization problems, in which the leader has
only integer variables, while the follower can have both integer and continuous variables.
The constraints and the objective functions can be nonlinear, but all constraints are separa-
ble in terms of the leader and follower variables. They used a value function-based problem
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formulation in their enumeration procedure, and they extended it to the pessimistic prob-
lem as well. Since the leader’s variables can take only discrete values, an optimal solution
always exists, provided the problem is feasible. Brotcorne et al. [21] studied a concrete
application in which the leader sets freight tariffs on the arcs of a traffic network, and the
follower aims at minimizing its transportation costs while satisfying transportation de-
mands. Both objective functions are non-linear, but all constraints are linear. The authors
proposed heuristics to obtain good solutions.

As for the weak variant, Loridan and Morgan [22], approximated the optimal solution
by solving a sequence of strong bilevel optimization problems. Wiesemann et al. [23]
provided an in-depth study of the pessimistic bilevel optimization problem under some
restrictions. That is, the follower’s feasible set must be independent of the leader’s solu-
tion, and both the leader and the follower must have a compact set of feasible solutions.
However, integrality of the variables at both levels is permitted. Under these assumptions,
the optimal solution is approximated by solving a sequence of problems obtained by relax-
ing the value function of the follower by a decreasing sequence of additive constants. A
new relaxation, based on the value function approach, was proposed by Zeng [17]. The ap-
proach works if an optimal solution exists, but the author also discussed some remedies
when that is not the case, which may help sometimes. The crux of the method is to reduce
the pessimistic bilevel optimization problem to solving one or two optimistic problems
with a few additional constraints.

The electricity tariff optimization problem in scope and its various extensions have
been investigated extensively in the electrical engineering community for demand response
management in smart grids. This formulation is named the simple multi-period energy
tariff optimization problem (SMETOP) in [24], where its NP-hardness is proved in case
of multiple followers. Various papers address the extensions of the SMETOP, including
generic piecewise linear, quadratic, or other non-linear follower utility functions [3,4];
battery storage at the follower [2], multi-energy systems [25]; or the heating, ventilation,
and air-conditioning (HVAC) of buildings using a dedicated thermal model [26]. The typical
solution approach is reformulating the bilevel problem into an equivalent single-level
problem using the KKT conditions, eliminating non-linear terms, and then solving the
model as a mixed-integer linear program (MILP) [3,5,27,28]. The possible alternatives
include exploiting strong duality for the follower’s linear problem to convert the problem
into a single-level quadratic program [2], or to use custom (meta-)heuristics to keep the
computational load at bay [4,29,30]. A more detailed review on the solution approaches to
bilevel programming models of demand response management can be found, e.g., in [2].
However, these approaches are applicable only to the optimistic (strong) variant of the
bilevel problem. Applications of bilevel programming to energy networks are reviewed
in [18]. Extensions to the stochastic case are presented, e.g., in [31,32].

The difference between the optimistic and the pessimistic variants of the bilevel op-
timization problem specifically in energy management is emphasized in [33]. The paper
introduces the notion of a deceiving solution to denote the worst possible outcome for
the leader if it applies the optimistic assumption but the follower deviates from the ex-
pected response, and similarly, the rewarding solution for the best possible outcome if the
leader applies the pessimistic assumption but the follower decides for an unexpectedly
favorable response. The paper applies a hybrid solution approach by combining a genetic
algorithm and a MILP solver to find close-to-optimal solutions for both the optimistic
and the pessimistic variants of the semivectorial bilevel problem in which the follower
addresses the minimization of the bi-criteria composed of electricity cost and discomfort.
However, the authors are not aware of efficient exact solution approaches to pessimistic
bilevel optimization problems applicable to energy management.

3. Problem Definition

The paper investigates a bilevel electricity tariff optimization problem for demand
response management as follows. In the bilevel problem, the leader is an electricity retailer
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who controls the electricity tariff (unit price) over a finite time horizon divided into T time
periods, e.g., the 24 hours of a day. For each t ∈ {1, . . . , T}, let ct be the wholesale market
price of electricity, Q the average unit price, and ql

t and qu
t the lower and upper bounds,

respectively, on the unit price of the electricity (to be determined by the leader) in time
period t. There are m followers, the consumers, who buy electricity at the given prices
over the time horizon in order to meet their demands. Follower i attributes some utility uit
to consuming one unit of electricity in each time period t, its total demand over the time
horizon is at least Dl

i and at most Du
i , and its consumption will be between xl

it and xu
it in

each time period t.
It is noted that different loads of a household, which are scheduled independently

(e.g., air conditioning, a washing machine, an EV charger, and other, inflexible loads) can
be captured as separate consumers (followers) in the model. Likewise, a single consumer
in the model can capture the ensemble of consumers with similar parameters in reality.

The profit of the leader, for a given price vector q, and the consumption vector x of the
followers, are

p(q, x) :=
T

∑
t=1

m

∑
i=1

(qt − ct)xit.

The leader wants to determine the unit prices qt in order to maximize its profit, that is,

Maximize F(q) (1)

subject to the constraints

1
T

T

∑
t=1

qt ≤ Q (2)

ql
t ≤ qt ≤ qu

t , t = 1, . . . , T, (3)

where F is a function mapping the price vector to a profit value, and it can be evaluated
after the followers solve their own optimization problems. F is defined after presenting
the followers’ optimization problems. In fact, each follower i solves a continuous knap-
sack problem in which the objective function is parameterized by the price vector set
by the leader:

Maximize
T

∑
t=1

(uit − qt)xit (4)

Dl
i ≤

T

∑
t=1

xit ≤ Du
i (5)

xl
it ≤ xit ≤ xu

it, t = 1, . . . , T (6)

Assuming that (5)–(6) has a solution, each follower i has at least one optimal solution
for any price vector q. Let Ω(q) ⊂ Rm×T denote the set of all optimal solutions of the
followers. Observe that Ω(q) is never empty. If the followers have a unique optimal
solution for q, i.e., Ω(q) contains only one element, then the leader’s profit is well defined
for q. However, if Ω(q) has 2 or more members, then it is not clear in advance, which
optimal solution would be returned by the followers. For instance, if uit − qt = uit′ − qt′ ,
xu

it = xu
it′ , and xl

it = xl
it′ , for some t 6= t′, and either xit or xit′ can be set to upper bound in

an optimal solution, then it is up to follower i which one to choose. However, its decision
can significantly impact the profit of the leader. In the optimistic or strong variant of the
bilevel problem, it is assumed that in cases with multiple optimal solutions, the followers
return the one most favorable for the leader, i.e.,

F(q) = Fo(q) := Maximize{p(q, x?) : x? ∈ Ω(q)}.
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In contrast, in the pessimistic or weak variant, the leader prepares for the worst case;
thus F(q), is computed using the least favorable optimal solution of the followers.

F(q) = Fp(q) := Minimize{p(q, x?) : x? ∈ Ω(q)}.

As it will be shown shortly, the maximum of Fp(q) may not be attained by any price
vector q; hence, in the pessimistic variant, (1) is replaced by

Supremum Fp(q). (7)

The difference between the optimistic and pessimistic variants is illustrated by a
small example.

Example 1 (Difference between the optimistic and the pessimistic variants). Suppose T = 2,
there is only one follower, the leaders’s average tariff is Q = 30, and the follower’s desired con-
sumption is Dl = Du = 1. Further data is depicted in Table 1. In the optimistic variant of
the problem, the optimal tariff vector is q = (20, 40) for which the best response is xo = (1, 0)
giving an objective function value of 10. In contrast, in the pessimistic variant of the prob-
lem, if u2 − q2 ≥ u1 − q1, the follower will load the second period with 1 unit of consumption,
i.e., xp = (0, 1), for which the leader’s objective function value is q2 − 50. Since 20 ≤ qt ≤ 40
and q1 + q2 ≤ 60, u1 − q1 ≤ u2 − q2 for any feasible q. Thus the best option for the leader is
q2 = 40 (with arbitrary q1), and its objective function value is −10 on xp = (0, 1). Observe that
with higher values of c2, the loss of the leader can increase arbitrarily.

Table 1. Data for Example 1.

t 1 2

ct 10 50
ql

t 20 20
qu

t 40 40

ut 10 30
xl

t 0 0
xu

t 1 1

The next example shows that the pessimistic variant may not have an optimal solution,
which justifies the supremum in (7).

Example 2 (No optimal solution for the pessimistic variant). Suppose T = 2, there is only
one follower, the leaders’s average tariff is Q = 40, and Dl = Du = 1. Further data are depicted
in Table 2. The optimistic solution is q = (40, 40) and xo = (1, 0), resulting in a profit of 30
for the leader. However, for q = (40, 40), the pessimistic answer would be xp = (0, 1) for which
the leader’s objective function value is −10. However, the leader can do much better by setting
q = (40− ε, 40). Then u− q = (ε, 0); thus, the follower’s unique optimal solution is xp = (1, 0)
for which the leader’s objective function value is 30− ε. Clearly, the supremum of the leader’s
objective function value is 30, but it cannot be attained by any feasible solution.
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Table 2. Data for Example 2.

t 1 2

ct 10 50
ql

t 20 20
qu

t 40 40

ut 40 40
xl

t 0 0
xu

t 1 1

4. Preliminaries
4.1. The Continuous Knapsack Problem

This section briefly overview the key properties of optimal solutions of the continuous
knapsack problem as follows:

Maximize
T

∑
t=1

wtxt (8)

Dl ≤
T

∑
t=1

xt ≤ Du

xl
t ≤ xt ≤ xu

t , t = 1, . . . , T,

where 0 ≤ xl
t < xu

t for all t. Note that the wt are not restricted in sign.
The continuous knapsack problem (8) admits a feasible solution if and only if ∑t∈[T] xl

t ≤
Du ≤ ∑t∈[T] xu

t . When feasible, it always has a finite optimum, since all variables are
bounded. Without loss of generality, Dl ≥ ∑t∈[T] xl

t.

Proposition 1. Suppose the continuous knapsack problem (8) admits a feasible solution. Then it
has an optimal solution x? of the following structure:

1. x∗t = xl
t for t ∈ L, x∗t = xu

t for t ∈ U;
2. x∗p ∈ {xl

p, xu
p, Dl

p −∑t∈L∪U x∗t , Du
p −∑t∈L∪U x∗t }.

where L ∪ P ∪U is a partitioning of [T] such that P = {p} for some p ∈ [T], wt ≥ wp for t ∈ U,
and wt ≤ wp for t ∈ L. Moreover, such a partitioning can be computed in O(T log T) time by
determining a permutation π such that wπ(t) ≥ wπ(t+1) for t = 1, . . . , T − 1.

4.2. General Properties of Optimal Solutions

Firstly, observe that without loss of generality, the lower bounds on the prices can be
assumed to be 0.

Proposition 2. If ql
t > 0, then an equivalent problem can be derived by setting

• uit := uit − ql
t for i = 1, . . . , m;

• ct := ct − ql
t;

• Q := Q− ql
t/T;

• qu
t := qu

t − ql
t;

• ql
t := 0.

Proof. Let q̃t = qt − ql
t, while q̃τ = qτ for τ ∈ [T] \ {t}. Substituting qt with q̃t + ql

t in
(1)–(3) + (4)–(6) yields a formulation satisfying the properties of the statement.

From now on, the following assumption is made:

Assumption 1. ql
t = 0 for all t ∈ [T], Q > 0, and ∑T

t=1 qu
t ≥ QT.
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The minimum consumption of each follower i is at least ∑T
t=1 xl

it, while the maximum
consumption is at most ∑T

t=1 xu
it. Moreover, if Du

i = ∑T
t=1 xl

it, then the follower i has a
unique optimal solution, which is independent of q. Hence, without loss of generality,
the following assumption also holds:

Assumption 2. Dl
i ≥ ∑T

t=1 xl
it, and ∑T

t=1 xl
it < Du

i ≤ ∑T
t=1 xu

it for each i.

Now, an easy observation can be made about the leader’s optimal price vector, which is
valid in the optimistic and in the pessimistic variant of the bilevel tariff optimization problem.

Proposition 3. Let (q?, x?) be an optimal solution for (1)–(3) + (4)–(6) such that ∑T
t=1 ∑m

i=1 x?it >
0. Then either q?t = qu

t for some t ∈ [T], or ∑T
t=1 q?t = QT.

Proof. Suppose q? does not satisfy the conditions of the statement. Then for ε > 0
sufficiently small, the price vector q̃ = (q?1 + ε, . . . , q?T + ε) is feasible, and induces the same
partitioning of the time periods as q? for each follower i; cf. Proposition 1. Hence (q̃, x?)
constitutes a feasible solution for (1)–(3) + (4)–(6), and

T

∑
t=1

(q̃t − ct)
m

∑
i=1

x?it =
T

∑
t=1

(q?t − ct)
m

∑
i=1

x?it + ε
T

∑
t=1

m

∑
i=1

x?it >
T

∑
t=1

(q?t − ct)
m

∑
i=1

x?it,

where the last inequality follows from the assumption of the theorem. However, it follows
that (x?, q?) is not an optimal solution, a contradiction.

5. Polynomially Solvable Special Cases with One Consumer Only

This section investigates the one-consumer special case (m = 1), and under some
further restrictions, polynomial time algorithms are provided for solving the optimistic
and pessimistic variants as well.

Throughout this section, it is assumed that the prices are unbounded; i.e., qu
t = ∞ for

all t. In fact, by (2), it may equivalently be assumed that qu
t = QT for all t. Further on, some

assumptions on regularity are introduced in the next section.
Firstly, the optimistic variant is discussed in Section 5.1, and the pessimistic one

in Section 5.2.

5.1. The Optimistic Variant

Let us assume that Dl = Du, and let D denote the common value. The case with
Dl < Du will be discussed later.

Definition 1. A price vector q is feasible if it satisfies (2) and (3).

Definition 2. If D = Dl = Du, then a time period t ∈ [T] is regular, if

xl
t <

D
T

< xu
t .

Observation 1. If there is at least one regular time period, then D > 0.

Definition 3. From now on, an optimal solution (q?, x?) of (1)–(3) + (4)–(6) is called non-
degenerate if q?t > 0 for all t ∈ [T].

In the following results, it is assumed that x? is an optimal solution of the contin-
uous knapsack problem (8) for weights wt = ut − q?t , and it respects the conditions of
Proposition 1 for some partitioning L ∪ P ∪U of [T], where P = {p}.
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Lemma 1. Assume (1)–(3) + (4)–(6) admits a non-degenerate optimal solution (q?, x?), and sup-
pose t ∈ L is a regular time period. Then

ut − q?t = up − q?p.

Proof. Let (q?, x?) be a non-degenerate optimal solution of (1)–(3) + (4)–(6) such that
ut − q?t < up − q?p. Let

ε = min{up − q?p − (ut − q?t ), q?t }.

Define a new price vector

q̃ =
(

q?1 +
ε

T
, ..., q?t − ε +

ε

T
, ..., q?T +

ε

T

)
.

Then q̃ is a non-degenerate feasible solution of (1)–(3). Moreover, x? is an optimal
solution of the continuous knapsack problem (8) with weights w̃t = ut − q̃t, as it satisfies
the conditions of Proposition 1 for the same partitioning L ∪ P ∪ U of [T]. However,
the objective value (1) changes by

−ε · xl
t +

ε

T
D.

Due to the regularity assumption

xl
t <

D
T

,

the change in the objective value is positive:

−ε ·
(

xl
t −

D
T

)
> 0

which contradicts the optimality of (q?, x?).

Lemma 2. Assume (1)–(3) + (4)–(6) admits a non-degenerate optimal solution (q?, x?), and sup-
pose t ∈ U is a regular time period. Then

ut − q?t = up − q?p.

Proof. (sketch) Analogous to that of Lemma 1. It is only mentioned that in this case

q̃ =
(

q?1 −
ε

T
, ..., q?t + ε− ε

T
, ..., q?T −

ε

T

)
.

The rest follows from the regularity assumption, i.e., D/T < xu
t .

Lemma 3. Suppose all time periods are regular, and (1)–(3) + (4)–(6) admits a non-degenerate
optimal solution (q?, x?). Then

uτ − q?τ = ∑
t∈[T]

ut

T
−Q, τ = 1 . . . , T.

Proof. Since ut − q?t = up − q?p for all t ∈ [T] by Lemmas 1 and 2, it holds for any
τ ∈ [T] that

T(uτ − q?τ) = ∑
t∈[T]

ut − ∑
t∈[T]

q?t = ∑
t∈[T]

ut −Q · T,

where the second equation follows from Proposition 3, since ∑T
t=1 x?t = D > 0, as each time

period is regular.
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Now, a necessary and sufficient condition is provided for the existence of a non-
degenerate optimal solution. Let umin = mint∈[T] ut.

Theorem 1. Assume that all time periods are regular. The bilevel tariff optimization problem (1)–(3)
+ (4)–(6) admits a non-degenerate optimal solution if and only if Q− (1/T)∑t∈[T] ut + umin > 0.

Proof. First suppose (1)–(3) + (4)–(6) admits a non-degenerate optimal solution (q?, x?).
Then by Lemma 3, q?t = ut − (1/T)∑τ∈[T] uτ + Q, and thus ut − (1/T)∑τ∈[T] uτ + Q > 0
for all t ∈ [T], and in particular umin − (1/T)∑τ∈[T] uτ + Q > 0.

In order the prove the converse direction, let us relax the bound constraints (3) for the qt
variables, i.e., −∞ < qt < ∞. Note that this relaxation permits unbounded optimum value
for the leader. However, as it is shown below, this is not the case. Fix some feasible price
vector q?, and let x? be the corresponding optimal solution of the follower respecting the
partitioning L∪ P∪U of [T] given by Proposition 1. If ∑T

t=1 q?t < QT, then while increasing
all coordinates of q? by the same value, the follower’s solution x? remains optimal, and the
profit of the leader increases. Thus, without loss of generality, ∑T

t=1 q?t = QT. Suppose
P = {p} in the partitioning. If q? fails to satisfy ut − q?t = up − q?p for some t ∈ [T], then
almost the same transformations can be applied as in Lemmas 1 and 2 to conclude that the
leader’s objective function value can be improved:

• If ut − q?t < up − q?p, then t ∈ L, and q?t is decreased by ε− ε/T, while q?τ is increased
by ε/T for all τ 6= t, where ε = up − q?p − (ut − q?t ).

• If ut − q?t > up − q?p, then t ∈ U, and q?t is increased by ε− ε/T, while q?τ increases by
ε/T for all τ 6= t, where ε = ut − q?t − (up − q?p).

In either case, x? remains optimal for the resulting price vector, and the leader’s
objective function value strictly increases.

By repeating this transformation, a solution q̂ of the relaxed problem is derived such
that ut − q̂t = up − q̂p for all t ∈ [T], while x? remains optimal for q̂. However, q̂ satisfies
q̂t = ut − (1/T)∑τ∈[T] uτ + Q for all t ∈ [T] (see the proof of Lemma 3). Consequently,
if umin − (1/T)∑τ∈[T] uτ + Q > 0, then ut − (1/T)∑τ∈[T] uτ + Q > 0 for all t ∈ [T].
Hence, q̂ is a non-degenerate feasible solution for the leader and (x?, q̂) has a strictly
greater objective function value than (x?, q?). Since the above argument applies to any
vector q? with finite coordinates only, it can be deduced that umin − (1/T)∑τ∈[T] uτ +
Q > 0 implies that there exists a non-degenerate optimal solution of the bilevel tariff
optimization problem.

Theorem 2. Suppose Dl = Du, all time periods are regular, and (1)–(3) + (4)–(6) admits a
non-degenerate optimal solution (q?, x?). Then

q?τ = uτ −
1
T ∑

t∈[T]
ut + Q, τ = 1, . . . , T.

Moreover, the optimal consumptions x? can be obtained by solving the continuous knapsack problem:

Maximize
T

∑
t=1

(q?t − ct)xt

T

∑
t=1

xt = D

xl
t ≤ xt ≤ xu

t , t = 1, . . . , T.

Proof. The first part of the statement follows from Lemma 3, and the second part from the
optimality of q?.
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Note that Theorem 2 yields an optimal solution for the optimistic variant of the bilevel
tariff optimization problem. Then, x? can be computed by using Proposition 1.

Now, consider the more general case when Dl < Du.

Definition 4. If Dl < Du, then a time period t ∈ [T] is regular if

xl
t <

Dl

T
and

Du

T
< xu

t .

Theorem 3. Suppose Dl < Du, all time periods are regular, and (1)–(3) + (4)–(6) admits a
non-degenerate optimal solution (q?, x?). Then x? satisfies

Dl ≤ ∑
t∈[T]

x?t


= Du if (1/T)∑t∈[T] ut −Q > 0,
≤ Du if (1/T)∑t∈[T] ut −Q = 0,
= Dl if (1/T)∑t∈[T] ut −Q < 0.

Proof. The first inequality follows from the feasibility of x?. Define q?t as in Theorem 1.
Then ut − q?t = (1/T)∑τ∈[T] uτ − Q for all t ∈ [T]; i.e., the objective function coefficient
of the follower is the same in all time periods. Hence, the follower’s optimal solution
is chosen based on the leader’s objective function ∑t∈[T](q?t − ct)xt. That is, the follower
solves (8) with

Clearly, if (1/T)∑τ∈[T] uτ − Q < 0, then in any optimal solution of the follower,
the periods are loaded to the least possible extent until Dl is reached, since all objective
function coefficients (of the follower) are negative. Therefore, since the follower chooses an
optimal solution which maximizes the leader’s objective function value, the follower solves
(8) with cost vector wt := q?t − ct for t ∈ [T], while Du is replaced with Dl . Analogously,
if (1/T)∑τ∈[T] uτ − Q > 0, then in any optimal solution of the follower, the periods are
loaded to the maximal possible amount until Du is reached. Therefore, the follower solves
(8) with cost vector wt := q?t − ct for t ∈ [T], while Dl is replaced with Du.

Finally, if (1/T)∑τ∈[T] uτ − Q = 0, then the follower chooses its optimal solu-
tion solely by considering the objective function of the leader—namely, it solves the
fractional knapsack problem (8) with weights wt := q?t − ct. The result follows from
Proposition 1.

5.2. The Pessimistic Variant

Under the conditions of Theorem 2, the optimum value of the pessimistic variant
(where (1) is replaced with (7)) can be approximated by a slight perturbation of the optimal
price vector for the optimistic variant.

Definition 5. Let q be any feasible price vector, and π a permutation of (1, . . . , T) such that
qπ(t) − cπ(t) ≥ qπ(t+1) − cπ(t+1) for t = 1, . . . , T − 1. For any δ > 0, the price vector qδ

defined by

qδ
π(t) =

QT
T(Q− δ(T − 1)/2)

(qπ(t) − (T − t)δ), t = 1, . . . , T,

is called the δ-perturbation of q.

Theorem 4. Suppose that all time periods are regular, and (1)–(3) + (4)–(6) admits a non-
degenerate optimal solution (q?, x?) such that ∑T

t=1 x?t > 0. Then for any ε > 0, there exists δ > 0
such that for the price vector (q?)δ obtained by the δ-perturbation of q?, the follower has a unique
optimum xδ and ∑T

t=1((q
?)δ

t − ct)xδ
t ≥ ∑T

t=1(q
?
t − ct)x?t − ε.
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Proof. By assumption, the conditions of Proposition 3 are satisfied, so ∑T
t=1 q?t = Q · T.

Then, it holds that

T

∑
t=1

(q?)δ
t =

QT
T(Q− δ(T − 1)/2)

(QT −
T−1

∑
k=0

kδ) = QT.

For a sufficiently small δ, (q?)δ ≥ 0, since q?t > 0 for all t by assumption. Moreover,
all the values ut − (q?)δ

t are different, and ut − (q?)δ
t > uk − (q?)δ

k if and only if q?t − ct >

q?k − ck. It follows that for the price vector (q?)δ, the follower will prefer the time periods
with higher q?t − ct values. On the one hand, x? is an optimal solution of the follower for
the price vector (q?)δ. On the other hand, since (q?)δ

t ≥ q?t − (T − 1)δ, the decrease of the
objective function value of the leader is at most

(T − 1)δ
T

∑
t=1

x?t = (T − 1)δD.

Therefore, for δ = ε/((T− 1)D), the leader’s objective function value decreases by at
most ε, as claimed.

If the conditions of Theorem 4 are not satisfied, then the more general Theorem 5 can
be applied to obtain a suboptimal solution of the pessimistic variant of the bilevel tariff
optimization problem; see Section 6.2.

6. The General Case with Multiple Consumers
6.1. Solution of the General Optimistic Variant

This section presents an equivalent single-level MILP formulation for the optimistic
variant of the bilevel tariff optimization problem, for arbitrary number of followers. No
restrictions are imposed on the problem data, except Assumptions 1 and 2.

The MILP is derived from a reformulation of the followers’ problems using the familiar
complementary slackness conditions of linear programming at the expense of using new
binary indicator variables. Moreover, the quadratic term ∑T

t=1 ∑m
i=1 qtxit that appears in

both the leader’s and the followers’ objective functions is substituted with an equivalent
linear expression from the equivalence of the followers’ primal and dual objective functions.

Let us start by formalizing the dual of the linear program (4)–(6) of follower i ∈ {1, . . . , m}
using dual variables α+i and α−i for the lower and upper bounds on ∑T

t=1 xit in constraint
(5), respectively, and β+

it and β−it for the lower and upper bounds on xit in constraint (6):

Minimize Du
i α+i − Dl

i α
−
i +

T

∑
t=1

(xu
itβ

+
it − xl

itβ
−
it ) (9)

subject to

α+i − α−i + β+
it − β−it = uit − qt, t ∈ [T]

α−i , α+l , β−it , β+
it ≥ 0 t ∈ [T]

Now, strong duality of linear programs (LP) is exploited—that is, the optimum ob-
jective function values of the primal and the corresponding dual LP are equal, provided
a finite optimum exists for either of them. Since the primal LP of each follower always
admits a finite optimum, the following holds:

T

∑
t=1

(uit − qt)xit = Du
i α+i − Dl

i α
−
i +

T

∑
t=1

(xu
itβ

+
it − xl

itβ
−
it )
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Hence,

T

∑
t=1

qtxit =
T

∑
t=1

uitxit − Du
i α+i + Dl

i α
−
i −

T

∑
t=1

(xu
itβ

+
it − xl

itβ
−
it )

Consequently, the optimistic variant of the bilevel tariff optimization problem can be equiva-
lently described by the following mathematical problem with complementarity constraints:

Maximize
T

∑
t=1

m

∑
i=1

(uitxit − xu
itβ

+
it + xl

itβ
−
it − ctxit) −

m

∑
i=1

(Du
i α+i − Dl

i α
−
i ) (10)

subject to

T

∑
t=1

qt ≤ T ·Q,

ql
t ≤ qt ≤ qu

t , t ∈ [T]

0 ≤ α+i ⊥ Du
i −

T

∑
t=1

xit ≥ 0, i ∈ [m]

0 ≤ α−i ⊥
T

∑
t=1

xit − Dl
i ≥ 0, i ∈ [m]

0 ≤ β+
it ⊥ xu

it − xit ≥ 0, i ∈ [m], t ∈ [T]

0 ≤ β−it ⊥ xit − xl
it ≥ 0, i ∈ [m], t ∈ [T]

α+i − α−i + β+
it − β−it = uit − qt, i ∈ [m], t ∈ [T]

where 0 ≤ L ⊥ R ≥ 0 denotes that L ≥ 0, R ≥ 0, and either L = 0, or R = 0. The latter
complementarity constraint can be described by two linear constraints using an extra binary
variable and some big M constant, which is a standard rewriting technique. One issue
with this transformation is the choice of the big M constant. In the above mathematical
program, the Du

i , ∑T
t=1 xu

it−Dl
i , xu

it, and xu
it− xl

it will do for the corresponding R expressions.
However, in the L expressions, the maximum values of the α+i , α−i , β+

it , and β−it variables
have to bound in the optimal solutions. Since the primal program (4)–(6) always has a finite
optimum for each follower i, the dual LP (9) always admits a basic optimum solution. It is
not hard to see that the values of α+i and β+

it are bounded by maxt uit, provided this quantity
is non-negative; otherwise, they are 0. For α−i and β−it , the upper bound is maxt(qu

t − uit),
provided this quantity is positive, and otherwise 0.

6.2. Solution of the General Pessimistic Variant

In the pessimistic variant of the bilevel tariff optimization problem, the followers
are adversarial toward the leader. Suppose the tariff vector q is fixed by the leader. By
Proposition 1, each follower i loads the periods in non-increasing uit − qt order. In case
of ties, the period with smaller qt − ct value must be loaded first. Hence, follower i loads
the time periods in the order given by the permutation πi of {1, . . . , T} satisfying the
following conditions:

• Either uiπi(t) − qπi(t) > uiπi(t+1) − qπi(t+1), or
• uiπi(t) − qπi(t) = uiπi(t+1) − qπi(t+1), and qπi(t) − cπi(t) ≤ qπi(t+1) − cπi(t+1) for

t = 1, . . . , T − 1.

The next goal is to characterize the optimal solution of the followers. First suppose that
Dl

i = Du
i :

Proposition 4. For a fixed price vector q, let permutation πi be defined as above. If Dl
i = Du

i ,
then the optimal solution of follower i has the following structure: There exists an index k such
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that xiπi(t) = xu
iπi(t)

for t ∈ [1, k], xiπi(k+1) = Dl
i −∑k

t=1 xu
iπi(t)

−∑T
t=k+2 xl

iπi(t)
, and xiπi(t) =

xl
iπi(t)

for t ∈ [k + 2, T].

Proof. By definition, uiπi(t) − qπi(t) ≥ uiπi(t+1) − qπi(t+1) for t < T. Hence, the follower
maximizes its profit by saturating the xit in the order given by πi, which at the same time
minimizes the objective function of the leader for the fixed price vector q.

Now, consider the case when Dl
i < Du

i . Let the vectors
¯
xi ∈ RT and x̄i ∈ RT be the

optimal solutions of follower i when the total consumption must be equal to Dl
i or Du

i ,
respectively.

Proposition 5. For a fixed price vector q, let permutation πi be defined as above. If Dl
i < Du

i ,
then the optimal solution of follower i has the following structure: there exists an index k such that
xiπi(t) = x̄iπi(t) for t ∈ [1, k], and xiπi(t) = ¯

xiπi(t) for t ∈ [k + 1, T]. Moreover, k = T unless there
exists an index t such that either uiπi(t)− qπi(t) = 0 and qπi(t)− cπi(t) > 0, or uiπi(t)− qπi(t) < 0,
in which case (k + 1) is the smallest index with this property.

Proof. First, suppose that k = T. Then follower i will certainly assign the largest possible
consumption to xiπi(t) if uiπi(t) − qπi(t) > 0. Moreover, in all the positions t with uiπi(t) −
qπi(t) = 0, if any, it holds that qπi(t) − cπi(t) ≤ 0, since k = T, and then again, follower i will
maximize the xiπi(t). In both cases, the maximum consumption is reached by setting xiπi(t)
to x̄iπi(t). Finally, since k = T, there can be no t such that uiπi(t) − qπi(t) < 0.

Now suppose k < T. Then, in position k + 1, either uiπi(k+1) − qπi(k+1) = 0 and
qπi(k+1) − cπi(k+1) > 0, or uiπi(k+1) − qπi(k+1) < 0 holds. The best option for follower
i is to maximize the consumption xiπi(t) for t ∈ [1, k], i.e., xiπi(t) = x̄iπi(t) for t ∈ [1, k].
However, to maximize its utility, and minimize the leader’s profit, from position k + 1
on, it has to assign the least possible amount to get a feasible solution, and accordingly,
for t = k + 1, . . . , T, xiπi(t) = ¯

xiπi(t).

The above propositions can easily be turned into algorithms; the details are omitted.

Definition 6. It is said that (q?, x?) satisfies the optimality conditions if x?i fulfills the conditions
of Proposition 4 if Dl

i = Du
i , or Proposition 5 if Dl

i < Du
i , for i ∈ [1, m]; q? satisfies the optimality

conditions of Proposition 3.

Lemma 4. Fix some ε > 0. If an optimal solution (x?, q?) of the optimistic variant of the bilevel
tariff optimization problem is such that either q?t < qu

t for all t, or q?t > 0 for all t, then the price
vector q? can be slightly perturbed such that x? becomes the unique optimal solution of the followers
for the modified price vector, and the objective function value of the leader decreases by less than ε.

Proof. First suppose q?t < qu
t for all t. Let σ be a permutation of [T] such that q?

σ(t) − cσ(t) ≥
q?

σ(t+1) − cσ(t+1) for t = 1, . . . , T− 1. Define q̃σ(t) := s · (q?
σ(t) + δ(T−t+1)) for t ∈ [T], where

δ > 0 is a parameter, and s is a scaling factor such that ∑T
t=1 q̃t = QT. For δ sufficiently small,

q̃ is feasible for the leader, and if uit − q?t > uik − q?k , then uit − q̃t > uik − q̃k. Moreover,
if uit − q?t = uit′ − q?t′ , and q?t − ct > q?t′ − ct′ for some t 6= t′, then ut − q̃t > ut′ − q̃t′ .
Hence, for q̃, both the optimistic and the pessimistic answers of the followers are equal to
x?. Finally,

m

∑
i=1

T

∑
t=1

(q̃t − ct)x?it ≥
m

∑
i=1

T

∑
t=1

(q?t − ct)x?it − ε

for a sufficiently small δ.
Now suppose q?t > 0 for all t. Then a very similar transformation can be applied,

but this time the prices are decreased by some power of δ > 0 sufficiently small; the details
are omitted.
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Let S be the supremum of the leader’s objective function value (7) over all feasible solutions.

Theorem 5. Suppose qu
t > 0 for all t ∈ [T], and Q > 0. For any ε > 0, the pessimistic problem

admits a solution (q̃, x̃) such that ∑m
i=1 ∑T

t=1(q̃t − ct)x̃it ≥ S− 2ε, q̃t < qu
t for all t ∈ [T], and x̃

is the unique answer of the followers for q̃.

Proof. Take any solution (q, x) such that ∑T
t=1(qt − ct)xt ≥ S− ε, and (q, x) respects the

optimality conditions. Let UB := {t ∈ [T] | qt > 0 and qu
t − qt = min{qu

τ − qτ : τ ∈
[T], qτ > 0}}. Let δ1 be a small positive number. A new price vector q′ is defined from q
as follows.

q′t =
{

qt − δ1 if t ∈ UB,
qt otherwise.

If UB = ∅, then qt = 0 for all t ∈ [T], and ∑t∈[T] qt = T ·Q must hold, since q satisfies
the optimality conditions by assumption. However, this contradicts the previous general
assumptions, namely, T ·Q > 0 and qu

t > 0 for all t ∈ [T].
Observe q′t ≤ qt for all t. Then, δ1 is chosen small enough such that for each t ∈ [T], it

holds that

• q′t ≥ 0;
• If qt − ct > qt′ − ct′ for some t′, then q′t − ct > q′t′ − ct′ ;
• If uit − qt > uit′ − qt′ for some t′, then uit − q′t > uit′ − q′t′ ;
• If qt − ct > 0 then q′t − ct > 0, and
• if uit − qt < 0 then uit − q′t < 0 for each follower i.

It follows immediately that q′ is feasible for the leader.
Consider a particular follower i. Without loss of generality, the optimal ordering of the

time periods for follower i is given by the identity permutation defined by πi(t) = t. Let
us examine how this ordering changes for the updated q′ vector. Suppose 1 ≤ t1 < t2 ≤ T.

• If ui,t1 − qt1 > ui,t2 − qt2 , then ui,t1 − q′t1
> ui,t2 − q′t2

and the order of the two time
periods does not change.

• If ui,t1 − qt1 = ui,t2 − qt2 and qt1 − ct1 ≤ qt2 − ct2 then three cases can be distinguished:

– If q′t1
= qt1 and q′t2

< qt2 then ui,t1 − q′t1
< ui,t2 − q′t2

. Hence, the order of periods
t1 and t2 will change for q′ in order to satisfy the optimality conditions.

– If q′t1
< qt1 and q′t2

= qt2 then ui,t1 − q′t1
> ui,t2 − q′t2

. Hence, the order of t1 and
t2 will not change for q′.

– If qt1 − qt2 = q′t1
− q′t2

, then the order of t1 and t2 will not change for q′.

Consider any follower i, and let x′i be its pessimistic response for q′, and π′i the
corresponding permutation of the time periods. Clearly, ∑T

t=1(q
′
t − ct)∑T

i=1 x′it ≤ S by the
definition of S. Let ` be the largest index such that xi,` > xl

i,`. Then clearly, xi,t = xu
i,t

for all t < `, and xi,t = xl
i,t for all t > ` by the optimality conditions. Analogously, let

`′ be the unique index such that x′i,π′i (t)
= xu

i,π′i (t)
for t < `′, x′i,π′i (t)

= xl
i,π′i (t)

for t > `′,

and x′i,π′i (`′)
> xl

i,π′i (`
′). Let t1 and t2 be the smallest and the largest indices, respectively,

such that ui,t1 − qt1 = ui,` − q` = ui,t2 − qt2 . Observe that in π′i ,

{π′i(t) : t ∈ [t1, t2]} = [t1, t2] and {π′i(t) : t ∈ [1, t1 − 1]} = [1, t1 − 1] (11)

by the choice of δ1. This implies `′ ≥ t1. It is argued that

m

∑
i=1

T

∑
t=1

(q′t − ct)x′it ≥
m

∑
i=1

T

∑
t=1

(qt − ct)xit − ε. (12)

Two cases can be distinguished. First suppose `′ ≤ t2. Then (11) implies that in π′i ,
the time periods t1, . . . , t2 can be in any order. Since qt − ct ≤ qt+1 − ct+1 for t ∈ [t1, t2 − 1]
(since xi is the pessimistic answer of follower i for q), it follows that any permutation of
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t1, . . . , t2 is more beneficial for the leader for the price vector q. However, if two or more
indices are swapped in π′i , then it means that the corresponding qt variables are decreased
by δ1 each, whence the objective function decreases by at most δ1(xu

it − xl
it) in these time

periods, and (12) follows for a sufficiently small δ1.
Now suppose `′ > t2. Then (11) implies Dl

i ≤ ∑`
t=1 xt < ∑`′

t=1 x′
π′i (t)

≤ Du
i . Hence,

uiπ′i (`
′) − q′

π′i (`
′) ≥ 0, and thus uiπ′i (`

′) − qπ′i (`
′) ≥ 0 by the choice of δ1. On the other hand,

ui,`+1 − q`+1 ≤ 0. Since π′i(`
′) ≥ `+ 1, it follows that 0 = ui,`+1 − q`+1 = uiπ′i (`

′) − qπ′i (`
′).

Moreover, ` ≤ t2 < π′i(`
′) implies q`+1 − c`+1 ≥ 0; otherwise, for q, follower i could use

the period `+ 1 to decrease the objective function value of the leader. Let t3 > t2 be the
largest index such that ui,t − qt = 0. Since qt − ct ≥ q`+1 − c`+1 for all t ∈ [t2 + 1, t3], it can
be concluded that qπ′i (t)

− cπ′i (t)
≥ 0, for t ∈ [t2 + 1, t3], and thus q′

π′i (t)
− cπ′i (t)

≥ −δ1 for

t ∈ [t2 + 1, t3]. However, this implies (12) for a sufficiently small δ1.
To finish the proof of the Theorem, let σ be a permutation of [T] such that q′

σ(t)− cσ(t) ≤

q′
σ(t+1) − cσ(t+1) for t = 1, . . . , T − 1. Define q̃σ(t) := q′

σ(t) + δ
(T−t+1)
2 for t ∈ [T], where

δ2 > 0 is a parameter. For a sufficiently small δ2, q̃ is feasible for the leader; it preserves
the permutation π′i for each follower i (that is, uiπ′i (t)

− q̃π′i (t)
≥ uiπ′i (t+1) − q̃π′i (t+1) for

t ∈ [T − 1]); and for q̃ the optimistic and the pessimistic solutions coincide. Hence,
the followers have a unique answer x̃, and

m

∑
i=1

T

∑
t=1

(q̃t − ct)x̃it ≥
m

∑
i=1

T

∑
t=1

(q′t − ct)x′it ≥ S− 2ε

and the theorem is proved.

The main idea of the following algorithm is exploiting that there is a pessimistic
solution (x̃, q̃), which has a value very close to the pessimistic optimum, while no q̃t is at
upper bound. Thus, all upper bounds were slightly decreased, and then the optimistic
variant was solved with the perturbed data. Finally, the prices were modified such that the
solution value decreased only by a small amount, but the followers’ solution is unique.

Notice that in the first step of the algorithm, the pessimistic answer x is computed
based on the permutations πi, i ∈ [m], corresponding to the vector q. In Step 2 the MILP (10)
is solved by using a general mixed-integer linear programming solver.

Proposition 6. Algorithm 1. PESSIMISTIC SOLUTION outputs a feasible solution (q̃, x′) for the
bilevel tariff optimization problem which respects the optimality conditions, and has an objective
function value S− ε for any ε > 0 and for δ1 > 0 and 0 < δ2 << δ1 sufficiently small.

Algorithm 1. PESSIMISTIC SOLUTION

1. If Q = 0, then let q := (0, . . . , 0), compute a pessimistic answer x for the fixed q and STOP.
2. Let δ1 be a small positive number. Let q̄u

t = qu
t − δ1 for all t ∈ [T] such that qu

t > 0,
and Q′ = Q− δ1. Compute an optimistic solution (q′, x′) of (10) with the parameters q̄u

t , Q′

for the leader, and unchanged parameters for the followers.
3. Let σ be a permutation of [T] such that q′

σ(t) − cσ(t) ≥ q′
σ(t+1) − cσ(t+1) for t = 1, . . . , T − 1.

Let 0 < δ2 << δ1, and define q̃σ(t) := q′
σ(t) + δ

(T−t)
2 for t ∈ [T]. Raise all components of q̃

until there exists t ∈ [T] such that q̃t = qu
t or ∑t∈[T] q̃t = T ·Q. Output (q̃, x′) and STOP.

Proof. If the algorithm stops in the first step, then the leader has a unique feasible solution,
and a pessimistic answer x will do.

Now, by Theorem 5, there is a feasible price vector q̃ such that q̃t ≤ qu
t − δ1 for some

small enough δ1 > 0, and it admits a pessimistic answer x̃ of the followers such that the
leader’s objective function value is close to the supremum S. In Step 2, the upper bounds
qu

t and Q are decreased slightly, before solving the optimistic variant of the bilevel tariff
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optimization problem. The computed optimal solution, (q′, x′), is the best solution for the
leader with the decreased upper bounds on the prices. Hence, it cannot be worse than
(q̃, x̃). Finally, Lemma 4 can be applied to conclude that after perturbation; the resulting
price vector along with x′ constitutes a solution only slightly worse than (q′, x′).

7. Experimental Evaluation
7.1. Numerical Example

This section demonstrates the proposed approach, and emphasizes the importance of
being very conscious of the assumptions made, potentially implicitly, in regard to the way
the followers select their response to the decision of the leader (e.g., the optimistic or the
pessimistic assumption). In the example, the problem faced by an electricity retailer (leader)
and its residential consumers (followers) is investigated on a daily time horizon divided
into 24 hourly time units. Two types of consumers are distinguished, with household
appliances and EV charging modeled as deferrable loads, respectively. Loads considered
for the first consumer type were a 1.5 kW dishwasher and a 0.5 kW washing machine,
both with a one-hour washing cycle. The consumers had slight preference for scheduling
their load as early as possible, modeled with monotonously decreasing utility values.
One-thousand such individual consumers were considered, organized into eight groups
with different time windows for these loads. Each homogeneous consumer group was
modeled as a separate follower, resulting in eight followers, each with Dl

i = Du
i = 250 kWh,

i = 1, ..., 8.
The other type of consumers wished to charge their EVs, equipped with a 75 kWh battery

from 20% to 100% using a 11 kW wall charger (which corresponds to the battery capacity of
the most popular EV worldwide in 2019 and the power output of the corresponding charger).
The EV was connected to the grid from 20:00 to 06:00 the next morning. These consumers
had a stronger preference for scheduling their load as early as possible, in order to have their
vehicles fully charged, even if they had to leave home earlier than usual. The ensemble of 20
such consumers is the 9th follower in the problem, with Dl

9 = Du
9 = 1200 kWh. For the sake

of simplicity, other, inflexible loads are disregarded.
Market prices reflect the hourly prices recorded on the Hungarian power exchange

(HUPX) on 1 January 2020, from 08:00, varying between 2.771 and 5.047 ct/kWh. The re-
tailer must set an electricity tariff subject to ql

t = 2 ct/kWh and qu
t = 6 ct/kWh, for all t,

with Q = 4 ct/kWh.
Figure 1 displays the solution of this problem subject to the commonly applied opti-

mistic assumption. The diagram shows the wholesale market price, the calculated tariff
offered to consumers, the leader’s net benefit (qt − ct) (ct/kWh, left vertical axis), and the
grid-level load resulting from the followers’ demand response (kW, right vertical axis).
With the appropriate tariff, the electricity retailer could motivate its consumers to schedule
all their deferrable loads into periods when electricity is cheap, yet the retailer can realize a
massively positive profit of 4983 cents.

A closer look into the sub-problem faced by follower 1 with household appliances
(Figure 2) explains that the retailer achieved the above by compensating for the decreasing
utility of followers 1–8 with a similar, decreasing tariff between 08:00 and 20:00, which
resulted in a constant net benefit (ui,t − qt) of 5.155 ct/kWh for followers 1–8 in this time
interval. Since the followers were indifferent about the choice between these time periods,
by the optimistic assumption, they decided on the period which was the most favorable for
the leader: the period 08:00–09:00 in case of follower 1. In a similar fashion, the net benefit
of follower 9 with EV charging (see Figure 3) was a constant 3.755 ct/kWh for 21:00–02:00
and 03:00–05:00. Hence, consumers charged their EVs in the period 21:00–02:00, to the
benefit of the leader. However, this choice comes purely from an unnatural assumption of
the mathematical model, which cannot be enforced in reality.
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Figure 1. Optimistic bilevel solution: grid-level consumption.
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Figure 2. Optimistic bilevel solution: consumption of follower 1 with household appliances.
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Figure 3. Optimistic bilevel solution: consumption of follower 9 with EV charging.

Given that various time periods bring similar net benefits for the followers, they may
equivalently schedule their loads in other periods. Figure 4 depicts a solution in which
the leader applies the same tariff, calculated using the optimistic assumption, but among
periods that bring identical net benefits for the followers, they select the one that is the least
favorable for the leader. In this case, followers 1–8 with household appliances schedule all
their deferrable load into period 19:00–20:00 (see Figure 5), where the wholesale market
price is higher than the tariff announced by the leader. Similarly, follower 9 charges the EVs
partly in periods 03:00–05:00, resulting in further loss for the leader (see Figure 6). Hence,
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given that the retailer cannot realize its optimistic assumption, its assumed that positive
profit can easily turn into considerable loss, −220 cents for the solution depicted.

At the same time, by Proposition 6, the leader can slightly modify the tariff to ensure
that the followers have a unique optimal response, with loads identical to the optimistic
solution and a tariff arbitrarily close to the optimistic tariff. Consequently, the profit of the
leader is also arbitrarily close the the value calculated using the optimistic assumption.
This pessimistic solution is not depicted in separate diagrams, since it is arbitrarily close to
the optimistic solution displayed in Figures 1–3.
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Figure 4. Optimistic tariff with the least favorable follower response: grid-level consumption.
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Figure 5. Optimistic tariff with least favorable follower response: consumption of follower 1 with
household appliances.
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7.2. Computational Experiments

Computational experiments investigated the efficiency and the scalability of the
proposed approach on randomly generated problem instances of various sizes. Namely,
the number of consumers (consumer groups), m, was taken from {5, 10, 15, 20, 25}, and the
number of time periods, T, from {12, 24, 36, 48}. Ten random instances were generated for
each combination of m and T, resulting in 200 instances altogether.

The instances were similar in their structure to the numerical example presented
above: half of the consumers captured different groups of households with deferrable loads
(e.g., washing machines) that can be scheduled into a single time period. Other consumers
modeled EV charging, where the load had to be distributed over 4–8 periods due to the
upper bound xu

it. In both cases, the load amounts, the time windows, and the utility values
were generated randomly.

The proposed approach was implemented in FICO Xpress 8.8 in the Mosel program-
ming language. During the experiments, the computational time required for solving the
proposed MILP formulation (10) of the optimistic variant of the bilevel tariff optimization
problem was measured. Given this optimistic solution, the pessimistic solution can be
derived in negligible time using the pessimistic solution algorithm. The time limit was set
to 300 s. All experiments were run on a personal computer with Intel i7-10510U 1.80 GHz
CPU and 16 GB RAM.

The computational results are displayed in Table 3, where each row contains aggre-
gated results over the 10 instances for a given problem size. Column Opt shows the number
of instances solved to optimality out of 10; Time contains the average computation time in
seconds; columns Gap/avg. and Gap/max. display the average and the maximum optimality
gap for the given problem size. For each instance, the gap is computed as (UB− LB)/UB,
where UB and LB are the upper and lower bounds, respectively.

Table 3. Results of computational experiments.

m T Opt Time [s] Gap [%]

Avg. Max.

5 12 10 0.08 - -
24 10 0.16 - -
36 10 0.72 - -
48 10 1.40 - -

10 12 10 0.28 - -
24 10 2.73 - -
36 10 5.06 - -
48 10 13.92 - -

15 12 10 1.83 - -
24 10 6.01 - -
36 10 30.85 - -
48 10 47.88 - -

20 12 10 4.39 - -
24 8 81.29 0.58 5.34
36 9 66.10 0.20 2.03
48 7 172.74 1.37 12.76

25 12 10 5.00 - -
24 5 185.13 0.90 3.41
36 5 250.15 2.12 11.81
48 5 203.51 13.11 100.00

The results show that the proposed approach could solve all instances with moderate
sizes, i.e., with m ≤ 15 or T = 12 to optimality in less than a minute. An increase of
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m has a stronger influence on the computational time than an increase of T. For larger
problems, the solver often hit the time limit (for 10–30% of instances with m = 20, and 50%
of instances with m = 25). In such cases, the optimality gap was reasonable, below 15%
for all instances, except for a single instance with m = 25 and T = 48 for which the solver
could not find an integer solution within the time limit; this is accounted for as a gap of
100%. For even larger instances, the development of more efficient solution algorithms
is recommended.

8. Conclusions and Managerial Implications

This paper gave a detailed analysis of a simple bilevel tariff optimization problem
for demand response management. Key properties of the optimal solutions were proven
formally. It was shown that in some special cases with a single follower (e.g., when the
electricity retailer can offer a dedicated tariff for an individual consumer) the optimal
solution can be calculated analytically. For the general case with multiple followers,
efficient solution approaches were proposed both for the optimistic and the pessimistic
variants, based on a MILP formulation that exploited complementarity for the follower’s
LP sub-problem. Hence, to the best of the authors’ knowledge, this paper proposed the first
efficient exact solution approach for the pessimistic variant of the problem. Moreover, it
was shown that in most cases, the supremum of the pessimistic variant equals the optimum
of the optimistic variant, which means that with fully rational followers, the leader can
attain a similar profit without the impracticable optimistic assumption.

8.1. Managerial Implications

The main finding of the research is related to the importance of defining clearly
the assumption of how the followers select their response to the decision of the leader:
almost all previous studies in the literature implicitly make the optimistic assumption that
followers select the most favorable response for the leader, but this assumption cannot
be enforced in practice. Instead, the followers typically have many optimal responses,
and they may easily select another response that dramatically decrease the profit of the
leader. This problem is addressed by the pessimistic variant of the bilevel problem, which
assumes that the followers may select their optimal response that is the least favorable
for the leader, and hence safeguards the leader from the consequences of an unexpected
response. While the pessimistic variant of bilevel optimization problems is often harder
to solve than the optimistic variant, this paper showed that for the studied bilevel tariff
optimization problem, the pessimistic variant can also be solved efficiently.

8.2. Directions for Future Research

Future research should focus on generalizing the proposed approach to the pessimistic
variant of richer bilevel models for energy management, including batteries and generators
controlled by the leader or the followers, or specialized applications such, as HVAC.
Moreover, the applicability of robust optimization approaches to these bilevel problems
should be investigated, for instance, with uncertain consumer parameters or sub-optimal
responses from followers.
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