Kovacs, A.: Parameter elicitation for consumer models in demand response management. Proc. of the IEEE Global Power, Energy
and Communication Conference (GPECOM 2019), pp. 456-460, 2019.

Parameter Elicitation for Consumer Models 1n
Demand Response Management

Andras Kovacs
EPIC Center of Excellence in Production Informatics and Control
Institute for Computer Science and Control, Hungarian Academy of Sciences
andras.kovacs @sztaki.mta.hu

Abstract—Game theoretic models to demand response manage-
ment typically assume that the electricity retailer has a perfect
knowledge about the decision model that its consumers apply for
scheduling their consumption, together with the exact parameter
values. It is clearly impossible to satisfy this assumption in
practice, which is a major barrier to the practical application
of those approaches. At the same time, historic consumption
data contains precious information about consumer behavior; in
case of a variable, time-of-use electricity tariff, this also includes
information about load flexibility at the consumer. This paper
looks for ways to reconstruct the consumer’s decision model from
historic data accessible for the retailer. Assuming that consumer
behavior can be captured by some formal mathematical model
with a reasonable accuracy, we propose computational methods
for eliciting parameter values for that consumer model by using
inverse optimization and successive linear programming tech-
niques. While the proposed approach is applicable to arbitrary
consumer models that can be formulated as a linear programs,
this paper investigates a special case with multiple types of
controllable loads at the consumer, under a single smart metering
device. Initial experimental results are presented and directions
for future research are suggested.

Index Terms—Smart grids, demand response management,
parameter elicitation, inverse optimization.

I. INTRODUCTION

Understanding and predicting the behavior of electricity
consumers is critical for the stability and for the efficient
operation of power grids. Accordingly, the profiling of con-
sumers has been a focus of both researchers and practitioners
[1]. However, in the context of demand response management
(DRM), consumption is not a fixed characteristic of the
consumer, but it is dynamically and intentionally modified
by the service provider via some control signals, typically,
price signals. The characterization of consumer behavior by
formal models directly applicable in mathematical approaches
to DRM remains a major challenge. This paper takes a step
towards responding this challenge by proposing computational
methods for eliciting consumer model parameters from historic
data.

A. Requirements of Mathematical Models of DRM

A plethora of game theoretic models has been proposed
for DRM [2]-[6], with a common and critical assumption
that the retailer (typically, leader in a Stackelberg game)
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has a perfect knowledge about the decision model that the
consumers (followers in the game) use for scheduling their
consumption in response to the electricity tariff offered by the
retailer. For instance, in case of a consumer with deferrable
loads, a formal model would typically assume that the total
load over a finite (e.g., daily) horizon is given and fixed, as
well as the utility incurred by scheduling the load in a given
time period.

However, this assumption can be hardly satisfied in reality,
since the retailer can only make imperfect predictions about
the behavior of its consumers. Furthermore, few consumers
decide on their consumption according to a well-defined opti-
mization model, and hence, it is also doubtful how precisely
the models applied in the literature can capture real consumer
behavior. It is typically agreed that for residential consumers,
aspects of human behavior cannot be omitted, why economic
rationale prevails for industrial consumers. Furthermore, load
responsiveness depends on the type and controllability of the
equipment, though, the spreading use of intelligent control
devices will also facilitate active and conscious participation
in DRM programs [7].

B. Approaches to Characterizing Consumer Behavior

There are various approaches investigated in the literature
to characterize consumers from the point of view of DRM
potential. A recent study [1] classifies these approaches into
technological engineering models and econometric empirical
studies. The former approach constructs detailed models of
the individual load components and calculates the cumulated
consumption from these components. These allow a formal
modeling of power systems and evaluating candidate solutions
even before the physical implementation of the system. At the
same time, the accuracy of these approaches in practical appli-
cations is often disputed. In contrast, econometric studies do
not define technical models and do not make strict assumptions
on the composition of the load, but apply statistical analysis
on measured data to correlate consumption to a set of external
variables. These approaches estimate a so-called customer
baseline load (CBL), i.e., the consumption that would arise
without any DR incentives, and then correlate the deviation
from CBL with the DR signal and a set of external variables.

The same paper [1] introduces a probabilistic characteriza-
tion of consumer’s responsiveness to occasional DR signals in
the form of price-and-volume signals, which request individual
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consumers to decrease their consumption to a given level for
a given payment. Another study [8] addresses quantifying the
DRM potential in electric vehicle (EV) charging based on
two real-world data sets. In contrast to most earlier studies
that simply calculate the ratio of the connection time that the
EV spent charging, this study uses a more elaborate model
of the charging process to assess flexibility. A framework
for the comprehensive assessment of consumer responses
to electricity tariffs, and for deriving indications for tariff
design is presented [9]. While the above approaches serve
with a wide-ranging and well-established characterization of
consumer behavior, they do not lead to formal decision models
directly applicable in mathematical or game theoretical models
of DRM.

C. Contribution of the Paper

This paper takes a step towards bridging the gap between the
requirements of mathematical DRM models and the available
methods for characterizing consumer behavior, by proposing
computational techniques for eliciting parameters of formal
consumer models from historic data. The proposed approach
relies on inverse optimization techniques [10], [11] and succes-
sive linear programming (SLP) [12], [13]. While the approach
is applicable to consumer models encoded in the form of linear
programs (LP), this paper illustrates the approach on a specific
consumer model that is often applied in the literature. Initial
experimental results are presented and analyzed to evaluate
the effectiveness of the approach and to point out relevant
directions for future research.

II. PROBLEM DEFINITION

While this paper aims at developing a generic approach
to parameter elicitation for consumer models, the approach
is presented on a specific model that is often investigated in
the literature, with multiple controllable loads for the single
consumer. According to this model, the consumer must decide
on the timing of N different types of controllable load over
a finite time horizon divided into 7' time periods of equal
length. For each type of load + = 1,..., N, the total demand
M over the horizon is given, in addition to the upper bounds
L;; on the load in each period. Scheduling a unit of load of
type ¢ into period ¢ incurs a monetary equivalent utility of
U; . for the consumer. The unit price of electricity (), also
varies over time. Then, the problem of the consumer consists
in maximizing the criterion composed of its total utility minus
the cost of electricity. This problem can be formulated as an LP
as follows. Symbols in brackets on the r.h.s of the constraints
stand for the dual variables assigned to the constraint, whereas
the applied notation is summarized in Table I.

Maximize
T N
ZZ(Ui,tIi,t — QiTiy) (D

t=1 i=1

subject to
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ag=M Vi o |aj] (2)
t=1
iy < Liy Vit [Bi] (3)
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In this LP formulation, the objective (1) states that the con-
sumer maximizes its total utility minus the cost of electricity.
Equality (2) declares that the total load of type ¢ must equal
M;, whereas constraint (3) specifies the upper bound on the
per period load for each type. This problem, with decision
variables x; ;, will be called the direct problem.

This paper assumes that the above optimization model cap-
tures the consumer’s behavior with some reasonable accuracy.
The electricity retailer is aware of the electricity Nprice @: and
the cumulated electricity consumption z; = » . | ;¢ of the
consumer, but it cannot observe the detailed, per device con-
sumption profile x; ; or the parameter values that the consumer
used when scheduling its consumption. Then, the focus of the
paper is eliciting the unknown parameter values U; ;, M;, and
L;  from historic data given in the form of tuples (QF, 2%),
k = 1,..,K ie., the consumer’s past demand responses
to the variation of the electricity tariff. It is also assumed
that each sample is available with the same time resolution,
ie, QF = [QF,Q5,...,Qk) and 2F = [2F, 25, ..., 2K]. This
problem will be referred to as the inverse problem, and the rest
of the paper addresses the solution of this inverse problem.

III. SOLUTION APPROACH

This section proposes an inverse optimization solution ap-
proach to the parameter elicitation problem. For this purpose, it
looks for a combination of parameter values U; ¢, M;, and L; ;
(common over all samples) such that for each historic sample
k, the historic electricity tariff Q* induces an approximate

. ~ N . . .
consumption Z = Y ;' z¥, that is as close to the historic

TABLE I
NOTATION USED IN THE PAPER. WHEREVER NECESSARY, THE NOTATION
WILL BE EXTENDED WITH UPPER INDEX o* TO DENOTE THE VALUE OF
ENTITY o IN SAMPLE k.

Notation [ Observable
Dimensions

T Number of time periods Yes

N Number of controllable loads Yes

K Number of historic samples Yes

Grid parameters

Q¢ [ Unit price of electricity [$/kWh] [ Yes

Consumer’s parameters
M; Total controllable load during the horizon [kWh] No

L+ Maximum controllable load scheduled [kWh] No
Ui ¢ Utility of controllable load scheduled [$/kWh] No
Decision variables of the consumer

Tit Controllable load of type ¢ in period ¢ [kWh] No
Zt Cumulated consumption of the consumer [kWh] Yes
Auxiliary variables

a; Dual variable for constraint (2) No
Bit Dual variable for constraint (3) No
£t Model prediction error in period ¢ No




consumption 2z as possible. In this setting, =, (and the

induced ZF) are an optimal solution of the direct problem faced
by the consumer.

This optimization problem is formulated by exploiting LP
duality for the direct problem, which states that a given
solution is optimal if and only if the primal and dual objectives
are equal. Accordingly, the proposed mathematical formulation
is composed of the following main parts: the primal of the
direct problem stated above; the dual of the direct problem; a
constraint that the primal and the dual objectives match each
other; and an objective function and constraints that ensure
that the approximation error is minimized. For the consumer
model at hand, this formulation can be defined as follows:
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K T
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This formulation minimizes the total error of the approxi-
mation (5), where the error is defined as the absolute differ-
ence between the measured consumption and the cumulated
consumption implied by the model (6)-(7). Primal constraints
define the total load (8) and the maximum load per period
(9) similarly to that in direct problem of the consumer. The
corresponding dual constraints are formulated in (10). Equality
(11) states that the value of the primal objective must equal the
dual objective. Finally, constraint (12) states that all variables
are non-negative, except for af , which is unconstrained.

Formulation (5)-(12) corresponds to a quadratically con-
strained quadratic program (QCQP), since terms U, ;x;; in
the primal objective, as well as M;af and L;;fF, in the
dual objective in line (11) are quadratic. All other constraints
and the objective are linear. Since constraint (11) is non-
convex, no efficient exact solution approach can be expected
for this problem. Therefore, an SLP [12], [13] solution ap-
proach was adopted. This approach iteratively builds local LP

approximations of the original problem, solves them using
standard LP techniques, and then modifies the actual QCQP
solution according to the optimal LP solution. This technique
can be expected to show good computational performance on
problems where most constraints are linear, which also holds
for the above formulation. At the same time, it is an iterative
heuristic that may be trapped in local minima. This solution
approach was implemented in FICO Xpress 7.8 using the SLP
package.

IV. EXPERIMENTAL EVALUATION
A. Design of Experiments

Computational experiments analyzed the effectiveness of
the proposed approach on randomly generated data. Problem
instances were generated by fixing 7' = 12 and varying N
from 1 to 5 and K from 25 to 200. For each value of NV, an
initial instance was created by combining loads with different
characteristics, i.e., given parameters U, M, and L7 ,. These
parameter values will be referred to as the original parameter
values.

Then, a set of K historic samples were artificially computed
by solving the direct problem using the original parameter
values and a randomized tariff Q¥, resulting in preliminary
consumption values %k Then, a random perturbation was
applied to the preliminary values to reflect the requirement
that the approach is expected to work in applications were the
consumer model is only an imperfect characterization of the
true consumer behavior. Hence, the historic samples contained
consumption values zF = F(1 + U(—n, 7)), where U(a,b)
stand for the continuous uniform random distribution between
a and b. The value of m was varied between 0 and 0.2,
where 7 = 0 stands for the pure theoretic case where the
applied consumer model describes precisely the behavior of
the consumer, and increasing values of the 7 correspond to
less and less accurate consumer models.

The proposed approach was evaluated by eliciting the
consumer parameters from the generated historic samples,
and then solving a reference problem, i.e., an instance of
the consumer’s direct problem, both the original parameter
values (U;";, M, and L7 ;) and the elicited parameter values
(Ui, M;, and L;4). The root mean square error (RMSE)
was computed on the resulting load curves of the cumulated
consumption.

B. Results with a Single Load Type

For instances with a single type of load (N = 1), the
proposed approach showed very promising performance. The
elicited parameter values allowed us to reproduce the load
curves derived from the original parameter values with a very
good accuracy. The load curves derived from the original
parameter values and from the elicited parameter values with
only a few samples () = 25) and a high perturbation
(m = 0.2) are compared in Fig. 1. This image captures the
worst elicitation result in case of N = 1, while for other
scenarios, the curves match each other even closer. The RMSE
of the elicitation for different combinations of K and 7 is
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Fig. 1. Comparison of the load curves over time for N = 1 with the original
parameters values and the elicited parameters (K = 25, 7 = 0.2).
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Fig. 2. RMSE of the elicitation for N = 1 over different values of K and 7.
The orange dot highlights the scenario for which the load curve was analyzed
in the previous figure.

depicted in Fig. 2. An orange dot indicates the combination
of K and 7 applied in the previous comparison of the power
curves. A very positive result is that the error of the elicitation
converges to zero as the number of samples K increases.
Computation times were below 3 seconds even for the largest
instances with K = 200.

C. Results with Multiple Load Types

In contrast to the above findings, results with multiple load
types (N > 2) are more ambiguous. Qualitatively, the power
curves stemming from the elicited parameter values give a
good approximation of the original power curve (Fig. 3), but
the errors are considerably higher (Fig. 4). Furthermore, the
errors do not converge to zero with the increase of the number
of samples, which is clearly a negative result. Computation
took a couple of minutes for the largest instances (N = 5,
K = 200).

Additional validation experiments confirmed that the origi-
nal values for U; ¢, M;, and L; ; incur a (close-to-)optimal so-
lution of the mathematical program (5)-(12), and also result in
an order of magnitude lower errors than displayed above. This
means that the proposed mathematical model is an appropriate
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Fig. 3. Comparison of the load curves over time for N = 3 with the original
parameters values and the elicited parameters (K = 25, m = 0.2).
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Fig. 4. RMSE of the elicitation for N = 3 over different values of K and .
The orange dot highlights the scenario for which the load curve was analyzed
in the previous figure.

and effective formulation of the parameter elicitation problem.
At the same time, the SLP solution approach readily offered by
the commercial solver could not deliver a high-quality solution
of the mathematical program, but stopped with a considerable
optimality gap. This implies that future research must address
the development of a more efficient solution approach for the
proposed model.

V. CONCLUSIONS AND FUTURE RESEARCH

This paper proposed a novel computational approach to
eliciting parameters of electricity consumer models from his-
toric data, by the application of inverse optimization and SLP
techniques. While the approach was illustrated on a specific
consumer model that involves multiple controllable loads, the
approach itself is rather generic: it can be applied to arbitrary
consumer models formulated as linear programs, which is the
typical representation in the literature. Initial computational
experiments on randomly generated test instances showed
promising results. The proposed mathematical formulation
effectively captured the parameter elicitation problem, and
the SLP solution approach achieved favorable results on the
special case of the problem with N = 1. The approach



also delivered reasonable results for the generic case with an
arbitrary N, but the convergence properties of the algorithm
did not meet our expectations.

Accordingly, future work will first focus on the develop-
ment of more efficient computation techniques for parameter
elicitation. These techniques need to be adapted to and vali-
dated on different consumer models, such as consumers with
controllable loads, batteries, HVAC, etc. In the long run, the
ultimate objective is the assessment of the appropriateness of
these consumer models for DRM by validation on real test
data. We believe that this is a crucial step towards the practical
application of game theoretic models for DRM.
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