
Generating Human Work Instructions from Assembly Plans

Csaba Kardosa,b, András Kovácsa, Balázs E. Patakic, József Vánczaa,b

aEPIC Center of Excellence in Production Informatics and Control, Inst. Comp. Sci. & Control, Hun. Acad. Sci.
bDepartment of Manufacturing Science and Technology, Budapest University of Technology and Economics,

cDepartment of Distributed Systems, Institute for Computer Science and Control, Hungarian Academy of Sciences,
{csaba.kardos, andras.kovacs, pataki.balazs, vancza}@sztaki.mta.hu

Abstract

Despite enormous robotization efforts, most of the as-
sembly process is still executed by human workforce
in many industries performing the assembly of me-
chanical products. Therefore, a crucial component of
any automated planning system in those applications
is the worker instruction system that presents the au-
tomatically generated plans to human assembly work-
ers. In case of complex products and processes, find-
ing the most efficient presentation to workers with dif-
ferent skills and background is a great challenge. This
paper proposes novel methods for generating context-
dependent, animated work instructions from automati-
cally generated assembly plans. The proposed approach
is demonstrated on an industrial case study that involves
the manual assembly of an automotive supercharger.

Introduction
While a significant portion of the research on automated
planning and scheduling focuses on decision making in
autonomous systems, in many applications, the generated
plans are still executed by human actors. In such applica-
tions, a key success factor is the effective instruction system
that presents the complex plan to the human worker. This is
the case in mechanical assembly as well: despite intensive
robotization efforts, the assembly of mechanical products in
many industries still requires human workforce.

The motivation for replacing classical static, often still
paper-based work instructions by enhanced digital Worker
Instruction Systems (WIS) and automatically generated in-
structions is manifold. Firstly, shortening product life cy-
cles and increasing variety make it difficult to maintain
and regularly update static instructions, and hence, the abil-
ity to dynamically adjust the digital content to the chang-
ing production environment is the most attractive charac-
teristic of WIS (Leu et al. 2013; Lušić et al. 2014). Most
commercial WIS implementations offer interfaces to Enter-
prise Resource Planning (ERP), Product Lifecycle Manage-
ment (PLM) and Manufacturing Execution Systems (MES),
which enables the import of product and process data, sup-
ports the definition of instruction templates, and hence, al-
lows maintaining consistent and up-to-date work instruc-
tions.

In line with the above, vast effort is being invested

into computer-aided process planning (CAPP) techniques to
manage the complexity of planning, and to support the pro-
cess engineer in defining the most efficient assembly pro-
cesses for the products (Hu et al. 2011; Ghandi and Mase-
hian 2015). As the final step of the process planning work-
flow is the generation of program codes for robotic resources
and instructions for human workers, the automation of pro-
cess planning is incomplete without automated methods for
instruction generation as well (Kaipa et al. 2012).

Finally, it must be recognized that the increasing com-
plexity of products and production systems puts a heavy
cognitive load on assembly workers as well (Leu et al. 2013;
Lušić et al. 2016). Therefore, human workers need en-
hanced support from the WIS, in the form of unambigu-
ous instructions delivered using the modality that suits the
given environment the best; in addition to classical text in-
structions, figures, videos, 3D animations, audio instruc-
tions, or even augmented reality (AR) can be used, too.
Instructions can be tailored further by exploiting context
awareness (Bader and Aehnelt 2014; Bannat et al. 2008;
Claeys et al. 2016). Efficient WIS and instructions have a
special role in supporting the training of the workers (Micha-
los et al. 2014) and in solving one-of-a-kind issues in main-
tenance and rework operations (Fiorentino et al. 2014).

This paper presents novel methods for the automated gen-
eration of work instructions for mechanical assembly. The
methods proposed in this paper support the final step of the
workflow in a full-fledged workcell configuration toolbox,
which includes efficient optimization methods for assembly
sequence planning, resource assignment (i.e., action plan-
ning) and path planning, by presenting the resulting plans
to human workers. For fully exploiting the opportunities of
digital WIS, the methods support the generation of context-
aware instructions augmented with 3D animations of the as-
sembly process.

Problem Definition
The objective of assembly workcell configuration is to man-
age the journey of assembled products on their way from
design ideas to the reality of production. Its two main sub-
problems, which approach the same problem from the view-
points of the assembly process and the assembly resources,
respectively, are assembly process planning and workcell
layout design. Both of these sub-problems involve various



Figure 1: Workflow of assembly workcell process planning. The sub-problem in scope, instruction generation, is highlighted in
blue.

types of decisions. In case of assembly process planning, it
is common to differentiate macro-level planning, which is a
combinatorial problem involving decisions on the assembly
task sequence and the resources assigned to the tasks; and
micro-level planning, which is responsible for elaborating
the details of each individual task. The latter includes, e.g.,
assembly path planning, fixturing, or tooling. The workflow
of assembly workcell configuration applied in this paper, de-
parting from the conversion of legacy CAD models of the
product into feature-based models directly processable for
automated planners, and concluding at the generation of hu-
man work instructions and robot program codes, is presented
in Fig. 1.

In case of assembly tasks performed by human workers,
the final step of the workcell configuration workflow is the
generation of work instructions for the workers, which is
the focus of this paper. Instructions must be generated from
a structured representation of the assembly process plan,
which includes the sequence of assembly tasks, a feature-
based representation of the technological content of each
task, as well as a collision-free assembly path. It has to
be noted that in an actual manufacturing environment, hu-
man supervision and interaction are still inevitable before
finalizing instructions. Therefore, there are two main user
roles in an instruction generation system: process engineers
who participate in the creation of instructions, and workers
to whom the instructions are delivered via the multi-modal
interfaces. The goal here is to automatically generate draft
instructions that will be verified and finalized by a process
engineer. Thus, effective work instructions must fulfill the
following key requirements:

• Instructions must be easily and unambiguously inter-
pretable by the workers. For this purpose, classical textual
instructions can be accompanied by images or animations.

• Context-dependent instructions should be applied to fit
the actual conditions, e.g., the worker’s skill, language,
devices and presentation preferences, as much as possi-
ble.

• Instructions should be delivered using the modality that
suits the actual application the best. Beyond instructions
displayed on screens, audio instructions are also in scope.

• The generation of instruction should be automated as
much as possible. Nevertheless, the system should enable
editing and approving the instructions by a process engi-
neer.

• It should be possible to generate the instructions from
legacy representations, such as the existing CAD models
of the products.

In the sequel, a brief overview is given of the overall
methodology applied to assembly workcell configuration,
focusing on sub-problems related to assembly process plan-
ning, and then the proposed approach to work instruction
generation is presented in detail.

Assembly Planning Approach
Feature-based Assembly Model
A key challenge in process planning in any manufacturing
domain is to match the different views of the planning prob-
lem, related to geometry, technology, tooling, etc. The clas-
sical approach to responding to this challenge is to use a so-
called feature-based representation, in which features give
a holistic description of the micro-worlds related to an in-
dividual manufacturing or assembly operation. Examples of
features in assembly include placing two parts on each other,
insertion of a part into a hole on another part, or screwing.
The complete specification of such a feature then consists of
the geometries of the corresponding parts, the relative po-
sition of the parts in the target configuration, and the def-
inition of the movement that can join the parts, including
the direction of the motion and the technological parame-
ters. The model also allows organizing individual features
that belong together in a sense, e.g., parallel screwing fea-
tures that join the same parts, into so-called composite fea-
tures. The assembly planner then assigns a single assembly
task to the composite feature, which involves creating all in-



y
x

z

y
x

z

y

x

z

y

x

z

t

t0

y

x

z

y
x

zy

x

z

l

y

x

z

Placing Insertion Screwing RLW (circular)

Goal position: P(x,y,z,α,β,γ)

Safety distance: d

Direction: -Z

Insertion depth: di

Goal position: P(x,y,z,α,β,γ)

Safety distance: d

Direction: -Z

Threaded depth: t

Non threaded depth: t0

Lead: l

Torque: M

Goal position: P(x,y,z,α,β,γ)

Safety distance: d

Direction: -Z

Goal position: P(x,y,z,α,β,γ)

Radius: r

Incidence angle (max): α

Welding speed: S

Welding power: P

d d

d

Figure 2: Types of assembly features and their parameters.

dividual features in parallel or in a given sequence, as de-
fined by the ordering flag in the composite (see details later).
Some assembly features and their parameters are presented
in Fig. 2, whereas a generic presentation of feature-based as-
sembly planning is given in (Wang, Keshavarzmanesh, and
Feng 2011).

Formally, there is given a set of assembly tasks (and po-
tentially some auxiliary tasks) that must be executed in an
appropriate order using suitable resources to arrive from the
set of parts into an assembled product. The technological
content of each assembly task is specified by the assembly
feature assigned to it, which defines the set of base parts and
moved parts, along with the parameters of the motion that
joins the two sets of parts (Fig. 2). This motion can be sub-
divided into two phases: an approach motion that takes the
parts from their storage locations to a so-called near posi-
tion using an arbitrary collision-free trajectory, and the lo-
cal motion from the near position into the final configura-
tion. The latter, local motion is perfectly defined in the as-
sembly feature. It is assumed that each assembly task re-
quires two resources for its execution: a fixture that holds the
base parts at their place and a tool that executes the task on
the moved parts. The assembly planner also adds so-called
changeover tasks to the plan at points where some of the as-
signed resources differ between consecutive assembly tasks.
The details of the feature-based assembly process planning
model are presented in (Kardos, Kovács, and Váncza 2016;
2017).

Assembly Sequence Planning and Resource
Assignment
Since assembly process planning involves making diverse
types of decisions, it is typical to solve it using decompo-
sition into macro-level planning, which is a combinatorial
problem responsible for defining the structure of the plan,
and micro-level planning, which elaborates the details of
each individual task. In this paper, the decomposition ap-
proach presented in (Kardos, Kovács, and Váncza 2017) is
adopted, which uses a macro-level planner to optimize the

assembly task sequence and the assignment of the resources
(tools and fixtures) to the tasks, while a collection of micro-
level sub-problem solvers ensures that the planned tasks can
be implemented in physical reality. Sub-problem solvers in
the current implementation include technological feasibility,
collision avoidance, fixturing, and tooling modules.

The solution approach proposed in (Kardos, Kovács, and
Váncza 2017) is Benders decomposition with a mixed-
integer linear programming (MILP) model applied to solv-
ing the macro-level planning master problem and various
customized lower-level solvers generating feasibility cuts
for the master problem. This approach guarantees the opti-
mality of the macro-level plan and its micro-level feasibility
according to all micro-level aspects investigated. The MILP
formulation of the master problem is solved using the com-
mercial mathematical programming software FICO Xpress
7.8. The Benders framework, as well as the sub-problem
solvers responsible for technology, fixturing, tooling, and
collision avoidance, have been implemented in Python. The
latter module performs collision detection using the Flexible
Collision Library (FCL) (Pan, Chitta, and Manocha 2012)
on the STL triangle mesh models of the involved objects.

Assembly Path Planning
Assembly path planning is performed for each task sepa-
rately at two distinct phases of the workflow: (1) during
assembly process planning as a micro-level sub-problem to
assess the geometrical feasibility of an assembly sequence,
and (2) during motion planning for generating the motion
sequence to be actually executed. In both phases, the mo-
tion path of the ensemble of moved parts and the attached
tool (gripper or an actual tool, e.g., screwdriver), treated as a
single solid object, is planned from a remote position to the
near position of the corresponding assembly feature. The
base parts and the fixture are considered to be the obstacles.
Planning is performed using an implementation of the clas-
sical Rapidly-exploring Random Trees (RRT) algorithm.

In phase (1), when the workcell layout is unknown and
the actual resources to carry out the task are not selected



yet, path planning handles the moved parts as free-flying
objects with 3 or 6 degrees of freedom (DoF): for most of
the assemblies investigated during preliminary experiments,
it was found that allowing translational movements results
in a feasible path when there exists one. Nevertheless, the
path planner can consider 6-DoF problems as well for more
complicated geometries. The only answer expected from the
path planner in this phase is a yes (a collision-free path has
been found) or no (the iteration limit has been hit without
finding a collision-free path) answer, and the quality of the
path is disregarded.

In contrast, at the phase of motion planning, the goal is
to generate paths that will be actually executed. Here, the
details of the method differ for robots and for humans. For
tasks performed by humans, which is the focus of the present
paper, path planning is still performed for free-flying objects
(hence, it is implicitly assumed that where parts and tools fit,
there the human worker can also access the location of the
task). However, path smoothing is applied to the results of
RRT to arrive at a path which looks reasonable to workers on
animated work instructions. For a robotic task, path planning
is performed in the robot’s joint space, taking into account
the results of workcell layout design, including the pick-up
and put-away locations of the parts and equipment (the latter
function is not fully implemented yet).

Generating and Presenting Work Instructions
Assembly systems are moving towards using digital tech-
nologies for handling and dispatching work instructions.
Digital WISs offer, on the one hand, consistency and main-
tainability for the content, while on the other hand, they also
provide a wide set of multi-modal, interactive input/output
interfaces. In a modern changing and complex assembly pro-
duction environment, it is also important that the WIS is
connected to the execution control and supervisory systems,
which provide information regarding the shop floor status,
thus tailoring the delivered information to the actual context.

The approach of the paper follows the workflow shown
in Fig. 3, which explains how WIS is involved in the gen-
eration and the context aware delivery of instructions. The
aim of automated instruction generation is to create ani-
mated 3D and textual content. An assembly process engineer
can use this content as a basis for finalizing the instructions
(by tailoring or extending them with additional content, e.g.,
videos, pictures, etc.). However, during instruction genera-
tion, it has to be taken into consideration that workers may
have different skills, language proficiency and content de-
livery devices at hand. These properties define the part of
the worker context which needs to be addressed during in-
struction generation. After content generation, instructions
are delivered by the WIS according to the complete context,
which is defined by the following aspects:

• Process context: the task to be executed, which triggers
the instruction delivery, coming from execution tracking.

• Worker activity context: actions performed by the workers
which form commands toward the execution tracking sys-
tem. The commands (e.g., acknowledgement, failure) are

Figure 3: Overview of WIS’s role in generation and context-
aware delivery of instructions. The connection to the work-
cell configuration is highlighted in blue.

interpreted by the WIS and sent to the execution tracking
system.

• Worker location context: actual position of the worker in
the shop floor, which identifies the worker in the workcell,
thus enables delivering location-aware instructions (e.g.,
increasing font size or volume when the worker is further
away from the devices).

• Worker properties context: skills, preferences of the
worker. This information, stored in the worker database,
has to be taken into account during instruction generation
and delivery in order to ensure that the displayed instruc-
tions match the requirements of the given worker.

For the automatic generation of work instructions the fea-
tures serve as basic templates of instructions. Each individ-
ual feature-based task defines the micro-world of its execu-
tion. In the presented approach, instructions are skill level-
dependent: more skilled workers only require the core in-
structions (highlighted in bold in the template below). The
following hierarchical template structure is used for generat-
ing instructions from the feature-based plan representation:

1. simple feature task(feature, base part, moved part, skill)

1.1. approach(location(moved part)) - Approaching loca-
tion

1.2. pick up(moved part) - Picking up part
1.3. core task(base part, moved part, type(feature)) -

Performing the core corresponding to the feature type
* insert(base part, moved part) - Inserting moved part

into base part
* place(base part, moved part) - Placing moved part to

base part
* screw(base part, moved part) - Inserting and tighten-

ing screw (moved part) into base part

2. changeover task(old equipment, new equipment), [part],
skill)



2.1. release(old equipment) - Releasing installed equip-
ment (tool or fixture)

2.2. pick up(old equipment)
2.3. approach(pick up location(old equipment))
2.4. put away(old equipment)
2.5. approach(pick up location(new equipment))
2.6. pick up(new equipment)
2.7. install(new equipment, [part]) - Install tool / Grasp

part in fixture
3. composite feature task({simple feature}, ordering, skill)
• ordering - Specifying sequence for features inside com-

posite features
* parallel
* sequential
* arbitrary

3.1. composite header(simple feature task(), ordering) -
Performing multiple tasks in composite feature based
on the first task according to ordering

3.2. repeat(simple feature, ordering) - Performing a list of
simple features according to ordering

For the above hierarchical approach to work, the follow-
ing helper functions are required:
• subassembly(part) - Returns the subassembly to which the

part belongs
• pick up location(object) - Returns the pick-up location of

the object
• put away location(object) - Returns the put away location

of the object
• type(simple feateure) - Returns the type of the simple fea-

ture

Generating Textual Instructions
Textual instructions traditionally serve as the elementary
method for delivering information to workers. The paper-
based and the newer digital approaches are both limited by
the human effort required to keep them up-to date, which
opens up potential for automated or semi-automated textual
instruction generation.

Textual instructions are generated for task execution by
using the following instruction templates and the data from
the tasks:
• approach(location): “Go to location”
• pick up(object): “Take object [in subassembly subassem-

bly(object)]”
• insert(base part, moved part): “Insert part moved part [in

subassembly subassembly(move part)] into base part [in
subassembly subassembly(base part)]”

• place(base part, moved part): “Place part moved part [in
subassembly subassembly(move part)] to base part [in
subassembly subassembly(base part)]”

• screw(base part, moved part): “Insert screw moved part
into base part [in subassembly subassembly(base part)]
and tighten it”

Figure 4: An example of a task delivered to a less skilled
worker in more details.

• composite header(simple feature task, ordering): “Exe-
cute on all items in the ordering order.”

• release(object): “Release object”

• grasp(fixture, part): “Grasp part [in subassembly sub-
assembly(part)] in fixture fixture”

For workers with advanced skill levels, only the core as-
sembly instructions are delivered using repetition and order-
ing flags for composite instructions, while for workers in
training every step is displayed (e.g., approach, pick-up, core
instruction). This is in line with industrial practice, where
the supervision of task execution is done on a lower level for
workers in training, hence it is required to display and have
every step acknowledged. This approach also allows using
a single workflow for generating content for both beginner
and experienced workers.

Generating Visual Instructions
Micro-level planning enables using the geometrical models
in generating animated instructions as well. In order to im-
plement this, X3D format was chosen for displaying 3D in-
struction content.

X3D is an extension of the VRML format and is part
of the HTML5 standard, which means content can be dis-
played and manipulated through web-browsers. It also sup-
ports linking geometries to reference frames and thus en-
ables building up kinematic chains. Using this approach the
assembly tree and its components are represented in a mul-
tiple level reference frame hierarchy. Additionally, rearrang-
ing the nodes of the model is done through the HTML’s Doc-
ument Object Model (DOM) (e.g., attaching the model of



<X3D>
<Scene>
<Transform DEF=” Subassembly 2 ”>
<Transform DEF=” Subassembly 1 ”>
<Transform DEF=” Heat p r o t e c t i o n ”>
<Shape><I n d e x e d T r i a n g l e S e t . . . ></Shape>
</Transform>
<Transform DEF=” R e s o n a t o r bot tom ”>
<Shape><I n d e x e d T r i a n g l e S e t . . . ></Shape>
</Transform>

</Transform>
<Transform DEF=” Sound p r o t e c t i o n ”>
<Shape><I n d e x e d T r i a n g l e S e t . . . ></Shape>
</Transform>

</Transform>
</Scene>

</X3D>

Table 1: A sample assembly tree with three parts and the structure of the corresponding X3D representation.

the tool to the moved object).
The geometric models applied in planning are triangle

mesh models, which offer generic and open access repre-
sentation. These models can be easily translated into the (in-
dexed) triangle set representation of the X3D format. More-
over, as the required resolution for displaying instruction is
lower than that of planning, in order to enhance the ren-
dering speed, the 3D models are resampled by applying
edge decimation algorithms over the triangle meshes (e.g.,
quadratic edge collapse (Garland and Heckbert 1997), see
Fig. 5).

Each geometry in the model (parts, tools, fixtures) are
translated into X3D format in such a way that the shape
node containing the indexed face set representation of the
geometry is appended to a transform node. The transform
node allows the application of geometric transformation to
its children shapes by exposing its translation and orienta-
tion fields. Similarly to parts, each node in the assembly tree
(i.e., subassembly) is represented by its own transform node
and therefore contains all the previously assembled parts of
its branch (see Table 1).

Building up the X3D scene in a structure symmetrical to
the assembly tree enables setting attributes of already assem-
bled parts in either one field at the top of the hierarchy, or
by searching recursively via the DOM structure of the X3D-
scene (e.g., by using jquery). This applies to transformations
(position and orientation, exposed by the transform node;
note that planning assumes that parts once assembled remain
in this state) and to display options such as switching ren-
dering and changing color. Hence, the scene (the displayed
objects and their position and orientation) can be set to suit a
given state defined by an assembly step. Also, the models of
tools and fixtures are attached to the corresponding parts or
subassemblies dynamically, according to the displayed step.
Each assembly step is described by the following data:

• ID of the assembly step

• IDs of the moved parts/subassemblies

• IDs of the base parts/subassemblies

• Transformation of the near position

• Nodes of the path

• ID of the tool

• Tool Center-Point Frame (TCPF) transformation of the
tool

• ID of the fixture

• Transformation of the fixture

For displaying 3D instructions two cases are distin-
guished: (1) showing a static view of components in assem-
bled or disassembled (near position) state; (2) animation of
movement provided by path planning. In both cases, it might
be required to show only the base and moved components,
therefore turning off rendering for all the nodes which are
not in the branch of the assembly tree starting from the sub-
assembly node of the actually displayed assembly step. The
implemented visual instructions are the following:

• approach(location): static view of location

• pick up(object): static view of object

• insert(base part, moved part): animation of local and ap-
proach motion

• place(base part, moved part): animation of local and ap-
proach motion

• screw(base part, moved part): animation of local and ap-
proach motion

• composite header(simple feature, ordering): visualiza-
tion according to the underlying simple features and or-
dering flag

• release(object): static view of object

• grasp(fixture, part): static view of fixture and part



(a) (b)

Figure 5: Two triangle mesh models, representing the same object before (a) and after (b) resampling. By applying a 0.9
reduction the number of vertices were reduced from ˜90k to ˜10k, which has a significant impact on the rendering speed.

Figure 6: Illustration of X3D animation of two components
being assembled, the moved component is shown in green.

As there is no animation in case (1), the assembled and
the disassembled state can be displayed by simply apply-
ing the transformation of the near position to the transform
node of the moved component. The transformation applies
to all the children nodes (i.e., parts or subassemblies). To
create animated movements along the nodes of the path, the
Interpolator X3D node is utilized, which implements linear
interpolation between each node (see Fig. 6). The duration
of the interpolation is calculated assuming a constant speed
along the path.

Figure 7: Assembly process plan for the case study, show-
ing the assembly steps from S00 to S11. Parts in composite
features (i.e., screws) are highlighted in orange.

Case Study
The proposed approach is demonstrated in a case study from
the automotive industry. The assembly, namely the inlet by-
pass is part of a so-called supercharger component com-
posed of 29 parts. The inlet bypass is built up by 12 parts: 6
main components and 6 screws (see Fig. 8). There are five
simple features and two composite features, either of them
involving joining a set of parts by 3-3 screws, and one aux-
iliary task. Solving the CAPP model of the problem resulted
in the assembly sequence shown in Fig. 7, which minimizes
the time of tool and fixture changeovers.

The demonstration is part of a research project aiming
to develop a WIS for supporting multi-modal and context-



Figure 8: The assembly of the case study contains 12 compo-
nents (6 screws). The coloring of the parts is similar to that
in the assembly process plan (Fig. 7), except for the screws
in the composite features.

aware instruction delivery in flexible workcells. The de-
veloped system is connected to a workcell-level controller,
which controls and tracks task execution and triggers in-
struction delivery to multiple devices. The WIS has a
frontend-backend architecture, where the content database
of the backend is populated with the automatically gener-
ated instructions based on the CAPP solution. The frontend
is responsible for delivering the instructions to the devices
of the worker (e.g., smartphone, tablet, screen, headphones).
The visual instructions are delivered through a responsive
HTML5 web-page, which also utilizes a text-to-speech li-
brary for the audio delivery of the textual instructions.

In the case study, instructions were generated for work-
ers with two different skill levels. One is the worker with
advanced skills, who receives only the core instructions, the
other is the worker under training, who receives more de-
tailed instructions. Figs. 4 and 9 show screenshots of the
WIS frontend. In addition to displaying the generated in-
structions, the WIS frontend can also be configured to dis-
play safety or quality symbols (see the upper right corner
of Figs. 4 and 9). The research project is now in its clos-
ing phase, where the focus is on the development of demon-
strator case studies and the evaluation of the perceived work
experience with using the generated content and the multi-
modal content delivery system.

Conclusions
This paper presented a novel approach to the automated
generation and the presentation of context-sensitive work
instructions for human workers in mechanical assembly.
The methods have been implemented and integrated into a
module of a comprehensive assembly workcell configura-
tion toolbox, to visualize the assembly plans generated by a
mixed-initiative, optimizing process planner. The generated
work instructions contain both textual instructions, delivered
either visually on a screen or as an audio stream using text-
to-speech tools, as well as X3D animations. The main ad-
vantage of the approach is the ability to efficiently generate
and present customized, context-sensitive instructions that
take into account the workers’ skill levels, language, devices
and presentation preferences.

In order to proceed from the current, prototype-level im-
plementation to an industrial deployment, future work must

Figure 9: An example of a composite task delivered to an
expert worker using the repetition and ordering flags.

focus on extending the instructions to satisfy all relevant
industrial standards, such as placing identifiers and safety
symbols on the instruction screens, preferably in an auto-
matically generated way. In a wider context, the further de-
velopment of various planning functions in the overall as-
sembly workcell configuration toolbox holds numerous re-
search challenges. Above all, a stronger support and inte-
gration is required for the generation of the feature-based
assembly model from legacy design representations.

Acknowledgements
This research has been supported by the GINOP-2.3.2-15-
2016-00002 grant on an “Industry 4.0 research and inno-
vation center of excellence” and by the EU H2020 Grant
SYMBIO-TIC No. 637107.

References
Bader, S., and Aehnelt, M. 2014. Tracking assembly pro-
cesses and providing assistance in smart factories. 161–168.
SCITEPRESS—Science and Technology Publications.
Bannat, A.; Wallhoff, F.; Rigoll, G.; Friesdorf, F.; Bubb, H.;
Stork, S.; Müller, H. J.; Schubö, A.; Wiesbeck, M.; and Zäh,
M. F. 2008. Towards optimal worker assistance: A frame-
work for adaptive selection and presentation of assembly in-
structions. In Proceedings of the 1st International Workshop
on Cognition for Technical Systems, COTESYS.
Claeys, A.; Hoedt, S.; Landeghem, H. V.; and Cottyn, J.
2016. Generic model for managing context-aware assem-
bly instructions. IFAC-PapersOnLine 49(12):1181–1186.
Fiorentino, M.; Uva, A. E.; Gattullo, M.; Debernardis, S.;
and Monno, G. 2014. Augmented reality on large screen for
interactive maintenance instructions. Computers in Industry
65(2):270–278.
Garland, M., and Heckbert, P. S. 1997. Surface simplifica-
tion using quadric error metrics. In Proceedings of the 24th



Annual Conference on Computer Graphics and Interactive
Techniques, 209–216. ACM Press.
Ghandi, S., and Masehian, E. 2015. Review and taxonomies
of assembly and disassembly path planning problems and
approaches. Computer-Aided Design 67-68:58–86.
Hu, S.; Ko, J.; Weyand, L.; ElMaraghy, H.; Lien, T.; Ko-
ren, Y.; Bley, H.; Chryssolouris, G.; Nasr, N.; and Shpi-
talni, M. 2011. Assembly system design and operations for
product variety. CIRP Annals—Manufacturing Technology
60(2):715–733.
Kaipa, K.; Morato, C.; Zhao, B.; and Gupta, S. K. 2012.
Instruction Generation for Assembly Operations Performed
by Humans. In 32nd Computers and Information in Engi-
neering Conference, Parts A and B, volume 2, 1121–1130.
ASME.
Kardos, C.; Kovács, A.; and Váncza, J. 2016. Towards
feature-based human-robot assembly process planning. Pro-
cedia CIRP 57:516–521.
Kardos, C.; Kovács, A.; and Váncza, J. 2017. Decomposi-
tion approach to optimal feature-based assembly planning.
CIRP Annals—Manufacturing Technology 66(1):417–420.
Leu, M. C.; ElMaraghy, H. A.; Nee, A. Y.; Ong, S. K.;
Lanzetta, M.; Putz, M.; Zhu, W.; and Bernard, A. 2013.
CAD model based virtual assembly simulation, planning
and training. CIRP Annals—Manufacturing Technology
62(2):799–822.
Lušić, M.; Schmutzer Braz, K.; Wittmann, S.; Fischer, C.;
Hornfeck, R.; and Franke, J. 2014. Worker information
systems including dynamic visualisation: A perspective for
minimising the conflict of objectives between a resource-
efficient use of inspection equipment and the cognitive load
of the worker. Advanced Materials Research 1018:23–30.
Lušić, M.; Fischer, C.; Bönig, J.; Hornfeck, R.; and Franke,
J. 2016. Worker information systems: State of the art and
guideline for selection under consideration of company spe-
cific boundary conditions. Procedia CIRP 41:1113–1118.
Michalos, G.; Makris, S.; Spiliotopoulos, J.; Misios, I.;
Tsarouchi, P.; and Chryssolouris, G. 2014. ROBO-
PARTNER: Seamless human–robot cooperation for intelli-
gent, flexible and safe operations in the assembly factories
of the future. Procedia CIRP 23:71–76.
Pan, J.; Chitta, S.; and Manocha, D. 2012. FCL: A gen-
eral purpose library for collision and proximity queries. In
IEEE International Conference on Robotics and Automa-
tion, 3859–3866.
Wang, L.; Keshavarzmanesh, S.; and Feng, H.-Y. 2011. A
function block based approach for increasing adaptability of
assembly planning and control. Int J of Production Research
49(16):4903–4924.


