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Abstract—This paper proposes a bilevel programming model to
day-ahead electricity tariff optimization in smart grids to balance
grid-level demand and supply at all times. In this Stackelberg
game approach, the leader is the grid operator, who aims to
set the tariff to ensure the balance of supply and demand.
The followers are groups of consumers, who, in response to
the observed tariff, schedule their controllable consumption and
determine the charging/discharging policy of their batteries to
minimize their cost. The bilevel optimization problem is refor-
mulated into a single-level quadratically constrained quadratic
program (QCQP), which is then solved by a successive linear
programming (SLP) algorithm. The approach is illustrated on
an example with three different consumer groups.

I. INTRODUCTION

A key challenge in the operation of smart grids is achieving
optimal demand response management to balance electricity
demand and supply at all times. The primary motivation
for consumers to contribute to the stability of the grid is
considered to be an appropriate, time-varying electricity tariff;
hence, the grid operator can exploit the consumers’ cost
minimizing behavior to pursue the grid-level, social objective.
In this paper, we investigate an electricity tariff optimization
problem in a smart grid setting where the grid operator must
announce time-varying electricity prices one day ahead, with
hourly resolution. Consumers respond to the announced energy
tariff by optimizing the schedule of their controllable loads
and by determining their battery charging/discharging policy.
It is assumed that the objective of the grid operator is to
maintain the balance between demand and supply, whereas
the consumers’ optimization criterion is a combination of their
cost of electricity and their achieved utility.

This problem is analyzed in a game theoretical perspective.
A bilevel optimization model is proposed, where the grid
operator is the leader and the consumer groups (CGs), formed
of individual consumers with similar characteristics, act as
multiple independent followers. For solving this bilevel prob-
lem, we reformulate it to a single level optimization problem
by exploiting duality for the followers’ problem, which is
represented as a linear program. Reformulation results in a
quadratically constrained quadratic program (QCQP). Since
this QCQP does not exhibit properties that would render it
tractable by exact optimization methods, we use successive
linear programming (SLP) for solving it [1].

This paper is organized as follows. First, a brief review
of the related literature is given. Then, the tariff optimiza-

tion problem is defined formally, and a solution approach is
proposed. The approach is illustrated on an example with
three CGs, and the results are discussed in detail. Finally,
conclusions are drawn and directions for future research are
proposed.

II. LITERATURE REVIEW

Game theoretic approaches to tariff optimization in smart
grids have received considerable attention recently [2]. Most
of the contributions focus on a real-time pricing scenario:
a Stackelberg approach is investigated for demand response
scheduling under load uncertainty in [3]. In [4], a multi-leader,
multi-follower Stackelberg game is defined for demand re-
sponse for a large population, and closed-form expressions are
derived for the unique equilibrium solution. Electric vehicle
charging is modeled as a generalized Stackelberg game with
the grid as the leader and multiple plug-in electric vehicle
groups as followers in [5]. The followers play a generalized
Nash game to establish their equilibrium strategies, which
determines their response to the prices set by the grid. A
similar game model is applied in [6] to the management of
consumer-to-grid systems to encourage consumers to feed just
the required amount of energy into the grid while maintain-
ing social optimality. Regarding day-ahead tariff models, [7]
formulates a Stackelberg game and solves it using an iterative
heuristic approach. Two different games related to demand
side management are studied in [8]; a Nash game between
consumers equipped with batteries and a Stackelberg game
between the utility provider and the consumers.

For modeling the consumers’ energy management problem,
linear programming (LP) models capturing active-power-only
power flow equations are extensively used in the literature, see,
e.g., [9]. More sophisticated models that cover reactive power
and voltage magnitudes, as well, are discussed in [10, 11].

An introduction to bilevel programming, including basic
modeling and solution techniques is given in [12, 13]. Ap-
proaches to encoding continuous bilevel optimization prob-
lems into equivalent single level problems using the optimal
value and the KKT reformulations are investigated in [14].
Bilevel programming approaches, similar to the models pre-
sented in this paper, have been investigated in various fields
of application, such as inventory management [15] or tariff
setting for the airline industry [16]. A recent survey on bilevel
programming for price setting problems is given in [17].
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III. PROBLEM DEFINITION

Consider a smart power grid that serves various consumers
in a given area. Each consumer can be ordered into one of
the finitely many consumer groups (CGs), each comprising
consumers with similar profiles regarding energy consump-
tion (controllable and uncontrollable), production, and storage
requirements and capabilities. The system architecture is de-
picted in Figure 1.

The ensemble of consumers in CGi is characterized by its
fixed, uncontrollable production C+

i,t and consumption C−
i,t in

each time period t = 1, ..., T . In addition, CGi requires a
(potentially zero) controllable consumption of Mi over the
finite time horizon, where in each time period, a maximum
of L̄i,t can be consumed. Setting L̄i,t = 0 for some t
can be used to define time windows for the controllable
consumption. To capture the CGs’ preferences on the timing
of the controllable consumption, (the monetary equivalent of)
the utility of scheduling one unit of controllable consumption
in time period t is denoted by Ui,t.

Moreover, CGi may be equipped with a battery to store
energy. The battery is characterized by its capacity Bi, the
maximum charge and discharge rates R+

i and R−
i , the cycle

efficiency of the battery ηi, and the initial battery state of
charge bi,0. The consumer may wish to maintain a given, time-
varying minimum state-of-charge Bi,t in the battery in order
to safeguard from unexpected power outages.

It is assumed that every CG chooses its battery charge
and discharge rates r+i,t and r−i,t, as well as its controllable
consumption Li,t in such a way that it optimizes the objective
function composed of maximizing the utility and minimizing
the cost of energy w.r.t. the energy tariff set by the grid
operator. It is emphasized that this CG model is generic
enough to capture a wide variety of consumers, including
households or offices with uncontrollable consumption only
(and therefore, unresponsive to the energy tariff), consumers
equipped with renewable energy generation and/or storage
devices, owners of plug-in electric vehicles, or complex sub-
grid systems.

In this paper, we focus on the problem faced by the grid
operator, who wishes to apply demand response management
by setting the electricity tariff to match future electricity
demand and supply in the best possible way. The grid operator
applies the same time-of-use, variable electricity tariff to all
consumers. The tariff is specified in the form of the day-
ahead electricity purchase price Q+

t and feed-in price Q−
t

for periods t = 1, ..., T . The objective of the grid operator
is to minimize the difference between the target grid-level
consumption Dt and the actual consumption of the consumers,∑N

i=1(x+i,t − x
−
i,t), in a quadratic norm.

The applied notation is summarized in Table I. In order to
ensure the feasibility of the followers’ problem, the following
straightforward assumptions are made:

CG
1

CG
2

CG
N

Tariff
Consumption

Fig. 1. System architecture with a grid operator and multiple CGs.

T∑
t=1

L̄i,t ≥Mi ∀ i (1)

Bi,t ≤ Bi ∀ i, t (2)

bi,0 ≤ Bi ∀ i (3)

bi,0 + tR+
i ≤ Bi,t ∀ i, t (4)

With the assumptions stated, the followers’ problem has a
feasible solution under any decision of the leader on Q+ and
Q−, since ignoring the battery (r+i,t = r−i,t = 0, bi,t = bi,0,
∀i, t), and distributing the controllable consumption arbitrarily
among time periods in such a way that the bounds L̄i,t are
respected always leads to a feasible solution.

It is assumed that the grid operator can compensate for
an arbitrary deviation of the grid-level consumption from Dt

using backup generators. The grid operator is aware of the
decision model and the parameters of the CGs, which leads
to a bilevel optimization problem with the grid operator as
the leader and the CGs as multiple followers. We adopt the
optimistic bilevel assumption, i.e., in case a followers has
multiple optimal solutions, then it selects one among them
that is the most favorable for the leader.

IV. SOLUTION APPROACH

A. Overview

Before the detailed presentation of the proposed models and
algorithms, we give an overview of the solution approach to
the above energy tariff optimization problem, to be solved
by the grid operator. The approach exploits that the optimal
response of an individual follower depends solely on the
energy tariff set by the leader, while it is independent of
the responses of fellow followers. Hence, the problem can
be modeled as a bilevel optimization problem with a single
leader (the grid operator) and multiple independent followers
(the CGs).

First, the models of an individual follower and the leader
are formally defined. Then, these are combined into a single



TABLE I
THE NOTATION USED IN THE PAPER.

Dimensions
T Number of time periods
N Number of consumer groups
Parameters
C+

i,t Uncontrollable production of CG i in period t
C−

i,t Uncontrollable consumption of CG i in period t
Mi Total controllable consumption of CG i during the horizon
L̄i,t Maximum controllable consumption of CG i in period t
Ui,t Utility of controllable consumption of CG i in period t
Dt Target grid-level consumption in period t
Q Maximum electricity price
Q Minimum electricity price
R+

i Maximum battery charge rate at CG i

R−
i Maximum battery discharge rate at CG i

ηi Cycle efficiency of the battery at CG i
bi,0 Initial battery state of charge at CG i
Bi Battery capacity at CG i
Bi,t Minimum battery state of charge at CG i in period t
Leader’s variables
Q+

t Electricity purchase price in period t
Q−

t Electricity feed-in price in period t
∆t Absolute difference between target and actual demand

in period t
Followers’ variables
x+i,t Electricity purchase rate of CG i in period t
x−i,t Electricity feed-in rate of CG i in period t
Li,t Controllable consumption of CG i in period t
r+i,t Battery charge rate at CG i in period t
r−i,t Battery discharge rate at CG i in period t
bi,t Battery state of charge at CG i at the end of period t
Objective values
f Objective value of the leader (grid operator)
gi Objective value of follower (CG) i

level QCQP reformulation of the bilevel problem. Finally, an
SLP algorithm is proposed for solving the resulting QCQP
formulation.

B. Consumer Groups’ (Followers’) Problem

An individual follower’s optimization problem looks at
scheduling the controllable load, determining the battery
charge/discharge policy, as well as the corresponding grid
purchase/feed-in policy in order to maximize the individual
follower’s utility and minimize its energy cost w.r.t. the energy
tariff set by the leader. It can be encoded into a linear program
(LP) as follows, with the leader’s variables appearing in the
objective function only.

Minimize

gi(Q
+, Q−) =

T∑
t=1

(
Q+

t x
+
i,t −Q

−
t x

−
i,t − Ui,tLi,t

)
−
Q+

T +Q−
T

2
bi,T (5)

subject to

C+
i,t − C

−
i,t + x+i,t − x

−
i,t − Li,t = r+i,t − r

−
i,t ∀ t (6)

ηi r
+
i,t − r

−
i,t = bi,t − bi,t−1 ∀ t (7)

T∑
t=1

Li,t = Mi (8)

0 ≤ Li,t ≤ L̄i,t ∀ t (9)

Bi,t ≤ bi,t ≤ Bi ∀ t (10)

0 ≤ r+i,t ≤ R
+
i ∀ t (11)

0 ≤ r−i,t ≤ R
−
i ∀ t (12)

0 ≤ x+i,t, x
−
i,t ∀ t (13)

The follower’s objective (5) is comprised of the total cost
of energy, i.e., the cost of energy purchased minus the income
from feeding energy into the grid; the CG’s utility achieved by
the timing of the controllable consumption; plus a valuation
of the energy stored in the battery at the end of the planning
horizon. The latter component is necessary in order to avoid
end-of-horizon effects, e.g., followers selling all the energy
stored in the batteries. Constraint (6) encodes that the energy
balance at the consumer group is maintained. Equation (7)
computes the battery state of charge based on the charge and
discharge rates. Constraints (8) and (9) ensure that the amount
and the timing of the controllable consumption satisfies the
requirements. Finally, inequalities (10-13) define the range of
the battery state of charge, the charge and discharge rates,
as well as the electricity purchase and feed-in rates at the
consumer group.

It is noted that all constraints in the followers’ model are
linear in the followers’ variables, whereas the objective con-
tains the leader’s variables as multipliers, making it a bilinear
(quadratic) expression. The models of different followers are
linked only via the leader’s decision problem.

C. Grid Operator’s (Leader’s) Problem

Minimize

f =

T∑
t=1

∆2
t (14)

subject to

∆t ≥ Dt −
N∑
i=1

(x+i,t − x
−
i,t) ∀ t (15)

∆t ≥
N∑
i=1

(x+i,t − x
−
i,t)−Dt ∀ t (16)

Q ≤ Q−
t ≤ Q+

t ≤ Q ∀ t (17)(
x+i,t

x−i,t

)
∈ arg min

{
gi(Q

+, Q−) | (6)− (13)
}
∀ i (18)

The leader’s objective is to minimize the squared deviation
between the target and the actual grid-level consumption. Con-
straints (15) and (16) calculate this (absolute) deviation from



the planned energy purchase and feed-in of the followers.1

Inequalities (17) define the range of the energy tariff variables,
where a strictly positive lower bound Q is required to exclude
degenerate solutions with Q−

t = Q+
t = 0, which would render

all solutions of the followers optimal. Finally, constraint (18)
states that the grid purchase and feed-in values are determined
by the followers using the above optimization model.

D. Single Level QCQP Reformulation

The key to reformulating the above bilevel problem into a
single level optimization problem is modeling the followers’
optimality condition (18). Exploiting LP duality for the fol-
lowers’ model, the optimality condition (18) can be replaced
by the conjunction of the followers’ primal formulation, (6)-
(13) and its dual formulation, with the primal and the dual
objectives connected by an equality constraint. In this repre-
sentation, the leader’s variables, Q+

t and Q−
t , appear only in

the objective function in the followers’ primal, and hence, in
the right hand side of the followers’ constraints in the dual
formulation. Non-linear terms in this single level equivalent
model include the followers’ primal objective (5), which is
a bilinear expression containing the multiplication of the
followers’ and the leader’s variables; and the leaders quadratic
objective (14). Since displaying the complete QCQP model
requires extensive additional formalism for the followers’ dual
model, it is presented in the on-line appendix [18].

E. Solution Method

For solving the above single level QCQP reformulation
of the original bilevel optimization problem, we propose
using a successive linear programming (SLP) approach. SLP
solves non-linear problems by iteratively building local LP
approximations of the original problem, and solving each ap-
proximation using standard LP techniques [1]. The algorithm
departs from an initial solution x0, and in each iteration k,
it builds a local linearization of the original problem around
xk, denoted as LPk. The optimal solution of LPk is looked for
with a certain step bound, −s ≤ x−xk ≤ s. If the optimal LP
solution is feasible with a given tolerance, then it is accepted as
the next solution xk+1 (and possibly s is increased); otherwise
xk+1 = xk and s is decreased.

SLP is known to be an efficient heuristic with good conver-
gence properties for problems where most of the constraints
are linear, which is the case for the above problem. On the
other hand, SLP is not an exact solution approach, i.e., it may
converge to a local optimum. In the actual implementation,
the algorithms of the SLP package of Fico Xpress were used,
with initial solution values set to Q−

t = Q+
t = Q.

V. ILLUSTRATIVE EXAMPLE

In the following sample problem, we address the problem
of electricity tariff setting for demand response management

1Formally equivalent simplifications of this model exist, e.g., by lifting up
∆t =

∑N
i=1(x+i,t−x

−
i,t)−Dt into the objective. However, the SLP solution

approach is sensitive to the representation, and the proposed model achieved
reliably better solutions in experiments than trivial simplifications.
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Fig. 2. Solution with optimized tariff: grid-level consumption over time.

in a smart grid on a one-day horizon, with the time horizon
staring at 8:00, using hourly time units. The grid serves the
following three CGs:

• An energy-positive solar street lighting system equipped
with PV generation and battery storage, called
E+grid [19, 20]. The data used is gathered from a
physical prototype system with 191 intelligent LED
luminaries and 151.2 m2 of active PV surface area. On
a sunny day in October, the system is a net producer (up
to 15 kW) during the day, and a net consumer (up to
3.5 kW) during the night. The lighting system realizes
demand response by optimizing the charging/discharging
schedule of its 20 kWh battery storage.

• An electric vehicles CG that appears as controllable load.
Individual vehicles are connected to the grid between
17:00–20:00 and disconnected between 6:00-8:00 in the
morning. Three EVs, with a 24kWh battery pack in
each vehicle, have to be recharged from a 50% state to
100%. This is modeled as a controllable load of 36kWh,
limited to the above period. The vehicle-to-grid (V2G)
option is ignored. The CG has a slight preference for
scheduling the charging process as early as possible,
which is reflected in utility values U2,t decreasing linearly
over time.

• A households and offices CG with uncontrollable con-
sumption only. In the experiment, the data of 15 average
Hungarian households with hourly resolution was used,
corresponding to consumption profile with high consump-
tion (5–6 kW) during the day, a peak around 19:00–20:00,
and a valley period (3.8–5 kW) during the night. There
are no decision variables related to this CG.

The grid operator must set time-varying purchase and feed-
in prices between Q = 1 and Q = 100 c/kWh. We assume
that the objective of the grid operator is to ensure a constant
target consumption of 2.49 kW throughout the horizon.

The results of tariff optimization are displayed in Figures 2-
5, for the overall grid and for each individual CG. The
diagrams compare the optimized consumption profile to the
baseline consumption, where the latter is received by schedul-
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Fig. 3. Solution with optimized tariff: consumption and battery state of the
E+grid lighting system CG over time.
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Fig. 4. Solution with optimized tariff: consumption and cumulated load of
the electronic vehicle CG over time.

ing the controllable loads as early as possible and not using
the batteries. The optimized purchase tariff is also shown in
Figure 2: low prices are applied in the valley period (<1.5
c/kWh until 16:00, <18 c/kWh until 18:00), whereas high,
slightly decreasing prices are used afterwards (99.68 c/kWh at
18:00, decreasing by 0.05 c/kWh per hour). This corresponds
to a peak-to-average ratio of 1.68.

As a result of the optimized tariff, the grid-level con-
sumption was considerably smoothed compared to the base-
line consumption, but constant consumption throughout the
horizon could not be achieved. The optimized consumption
is characterized by two separate, even periods. The time
period until 16:00 is dominated by the PV production of the
E+grid system, with a nearly constant consumption of -4 kW
(production of 4 kW). After a short transition, the consumption
is stabilized at 8.56 kW after 18:00.

The applied tariff motivated the E+grid CG to charge its bat-
tery in the valley period, to reach a fully charged state at 17:00,
and to gradually discharge the battery afterwards. The time
period relevant for the EV CG is after 17:00, when the vehicles
are connected to the grid. In this period, the slight decrease
of the purchase prices over time compensates the CG for its

0

1

2

3

4

5

6

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7

C
o

n
su

m
p

ti
o

n
 [

kW
] 

Household 

Consumption

Fig. 5. Solution with optimized tariff: consumption of households CG over
time.

linearly decreasing utility function, and therefore, an arbitrary
scheduling of the controllable load became optimal for the
CG. Together with the optimistic bilevel assumption applied,
this tariff facilitated a perfectly balanced consumption profile
within the relevant time period. There are no controllable
variables for the households CG. This tariff and consumption
profile is globally optimal for the grid operator, since the
two periods before and after 17:00 cannot be balanced better:
controllable loads cannot be anticipated and all batteries are
fully charged at 17:00.

An aspect of the results that requires further discussion
is the application of the optimistic bilevel assumption. As
seen above, the assumption may lead to favorable results
in the computational model that are hard to reproduce in
practice, unless some sophisticated communication and control
method is implemented between the grid operator and the CGs.
Nevertheless, by the structure of the model, the grid operator
can abuse this assumption only for at most one CG at a time.
Hence, the significance of this unrealistic effect diminishes as
the number of CGs increases.

For the actual implementation in Fico Xpress 7.5, solving
problem instances similar to the above sample problem (with
N = 3 and T = 24) took less than 1 second on a personal
computer with an Intel i5 2.40Ghz CPU and 4GB RAM.
The SLP solution procedure converged to a locally optimal
solution, which was often also the global optimum, within 5-
20 iterations.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper proposed a game theoretic approach to energy
tariff optimization in a smart grid. In the bilevel optimization
model, the grid operator is the leader who aims to set the
energy tariff in such a way that the grid-level consump-
tion, emerging from the tariff-aware, rational behavior of
the consumers as followers, tracks the desired profile. The
bilevel optimization problem was first compiled into a single
level QCQP, then solved by a successive linear programming
algorithm using a black box solver. The novelty of the pro-
posed method lies in the application of formal mathematical



programming techniques to a game theoretical approach to
demand side management. The efficiency of the method was
illustrated in an example with three CGs.

Obviously, there are numerous straightforward extensions
of the above model, e.g., with multiple controllable loads and
batteries for each CG. Constraints can be added to protect the
consumers from extreme energy tariffs set by the grid operator,
e.g., by fixing the average tariff over time. It is also possible to
combine the goal of load balancing and the economic objective
of the grid operator into a single objective.

Future research will address the detailed analysis of al-
gorithm performance. The computational complexity of the
problem must be proven (NP-hardness is conjectured), and
relevant polynomially solvable cases should be identified.
Extensive computational experiments, including instances with
more consumer groups, must be performed.

Another important pre-condition of the applicability of
bilevel models is the ability of the leader to identify the models
and parameters applied by its followers, which is a non-trivial
problem in practical application scenarios characterized by in-
formation asymmetry. For this purpose, we plan to investigate
an inverse optimization approach; given historical pairs of a
follower’s input and response, the inverse optimization model
seeks for parameters that ensure that every response is optimal
for the corresponding input. We plan to implement a model
similar to an analogous case in inventory control [21].
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