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Abstract: The paper is motivated by making use of solar energy in public lighting services via
an intermediate battery storage. The aim is to develop algorithms for controlling the energy flow
in the system, in such a way that robustness against power outages is guaranteed and the total
energy cost is minimized. A novel approach is proposed which predicts energy production and
consumption by fitting stochastic models to historic data, and solves the resulting optimization
problem on a rolling horizon. Experimental results are also presented, illustrating the behavior
of the controlled energy system in typical winter and summer days.
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1. INTRODUCTION

This research is motivated by a work aimed at making
use of solar energy in public lighting services. To this end,
energy supply from renewable solar sources will be coupled
with dynamically changing demand of street lighting by
optimized and robust energy flow and storage. By com-
bining street lighting, photovoltaic (PV) solar energy gen-
eration, energy storage, and advanced sensor technology
with novel data processing, communication and control
methods, a so-called energy-positive community microgrid
(E+grid) will be formulated. E+grid is designed to achieve
positive energy balance over a one year horizon, while hav-
ing power grid connection to allow bi-directional energy
flow at variable tariff to handle temporal over- or under-
production. So as to be able to provide service also in
areas where power outage is a concern, the system should
be able to operate for a limited time in island mode, too.
Production and use of electricity will be continuously mon-
itored and reported by smart meters that give feedback
for remote decisions. Beyond offering lighting services, the
system will contribute also to the stability of the electrical
grid and become a means for managing peak demand.

The focus of this paper is set on how to collect and process
data both from the demand and supply sides, and how
to control the energy flow within the system, as well as
between E+grid and the overall electricity grid. The major
challenges are (1) to predict future supply and demand
of electricity heavily depending also on uncertain factors
like traffic intensity, weather, energy availability, and (2)
to match future supply and demand of electricity on a
finite horizon in a profit maximizing and robust way, thus
warranting, against all uncertainties, a prescribed level
of lighting service. Of course, this would not be possible
without intermediate storage of electricity, hence control of
the energy flow has to take into account the key technical
features of the complete renewable energy system.

Since the system as a whole is embedded in an highly
uncertain environment, modelling its future behaviour
– particularly, the prediction of its energy supply and
demand – will be based not on the approximated physical
models of its components and their interactions. Instead,
by relying on the results of extensive and continuous
monitoring activity, predictions will be generated from
series of measured historical data. However, so as to keep
reality and the model of the controlled system in as a close
correspondence as possible, control of its energy flow and
prediction of its behaviour will be interleaved: the model
will be mapped to (observed) reality time and again, in
model predictive way of control.

2. LITERATURE REVIEW

2.1 Optimizing the Energy Flow

Optimization of the energy flow in different household and
microgrid energy systems is a widely investigated research
area. The key questions addressed in the related papers
are rather similar: when and how to charge/discharge
batteries or buy/sell electricity in order to maintain the
operation of the energy system at minimum cost or with
maximal profit. Nevertheless, the applied modeling and
solution approaches vary. Many contributions assume that
the future energy consumption and production of the
system is fully known, and hence, apply a deterministic
model. For instance, Vašak et al. (2011a) consider the
problem of power flow optimization in an experimental
microgrid. The total energy cost is minimized subject to
basic technological constraints on power flows and the
state of charge in the different storages, using a linear
programming (LP) formulation.

Gupta et al. (2011) propose a similar model for a complex
hybrid energy system. A rough-cut mathematical model



of each component is given, focusing on the conservation
laws (e.g., power flow) and static technological limits in
a steady-state system. The model minimizes the total
operating cost on a finite, discrete time scale, with several
additional objectives, such as minimizing the frequency
of diesel generator starts/stops. A time-indexed mixed-
integer linear programming model is proposed, but the
model is solved using custom dispatching rules. Clastres
et al. (2010) present a mathematical model for calculating
the optimal operation of a domestic energy system with
PV production. A two-step approach is taken: first, an
operating plan is computed for the next 24 hours, which
determines the schedule of buying and selling electricity
from/to the grid, with the goal of maximizing the profit.
The resulting active power bid is submitted to the dis-
tribution system operator. The second step is the real-
time adjustment of the plan to the realization, with the
objective of fulfilling the bid.

Among the contributions that assume a probabilistic pre-
diction, Livengood and Larson (2009) investigate the opti-
mal control of electricity usage in a residential or small
office environment. They introduce a device called En-
ergy Box that runs as a 24/7 background processor and
controls all appropriate appliances in the building, such
as refrigerators, water heaters, air conditioners, etc. A
probabilistic weather and tariff forecast is assumed on a
finite discrete-time scale. A stochastic dynamic program-
ming approach is applied to compute an optimal energy
management policy. Zavala et al. (2009) propose an on-line
stochastic optimization approach to operate integrated
energy systems based on detailed weather forecast data.
It is shown that pure reactive strategies (those that dis-
regard weather forecasts) lead to higher operating costs,
while employing a weather forecasting model and model
predictive control with stochastic optimization can result
in 18% cost reduction. The developed system includes a
weather forecasting method augmented with a Gaussian
process uncertainty model. Constantinescu et al. (2011)
take a similar approach to the problem of controlling the
production/distribution of a set of thermal power plants in
order to compensate for the uncertain production of wind
power plants. An integrated model is presented where a
probabilistic estimate of wind power production is given
using a Numerical Weather Prediction model enhanced
with an ensemble-based uncertainty quantification strat-
egy. A stochastic programming formulation is applied.

2.2 Predicting PV Production

A key input data for controlling renewable energy systems
is the prediction of energy production and consumption.
While the prediction of the grid load has been a widely
studied problem, production forecast became of interest
with the spreading use of renewable energy: fossil and
nuclear plants were designed to generate electricity in a
stable and controllable way, however, predicting renewable
energy production on a short-term horizon of 24-48 hours
is considered to be a serious challenge as of now. Marquez
and Coimbra (2012) classify short-term PV production
prediction models into the following main categories:

• Clear-sky models have a single input, the cosine of
the solar zenith angle for a given point in time. These

models assume that no meteorological phenomena re-
duce solar irradiance, and, as the name suggests, work
well on clear sky days. Their performance degrades
significantly in cloudy weather.

• Persistence models assume that current meteorologi-
cal conditions, e.g., the cloud cover, persist over time
during the prediction horizon. Hence, they scale the
clear sky estimation for the next point in time with
the actual deviation from the estimate.

• Autoregressive models use machine learning (ML)
methods to estimate future production from a time
series of past production. While the standard autore-
gressive models rely solely on the time series, autore-
gressive models with exogenous inputs use additional
inputs, for example, weather data.

The comparison of the prediction capabilities of sev-
eral ML modes applied in (Marquez and Coimbra, 2012)
showed that ML approaches achieved only marginal im-
provement compared to baseline clear sky or persistence
models. This indicates that production forecast on a clear
day is an easy task, while it is very hard under weather
conditions changing widely. The problem of predicting the
daily solar radiation using a time series approach and ar-
tificial neural networks is addressed in (Paoli et al., 2010).
Vašak et al. (2011b) propose a complex stochastic method
for predicting PV production, which involves analytical
approaches as well as neural networks.

3. PROBLEM STATEMENT

3.1 System Architecture

The full-fledged E+grid architecture contains PV panels
for energy production, inverters, multiple batteries for
energy storage, charge controllers and a switch box, an
ensemble of 100-200 intelligent LED luminaries, as well as
a central control system (CCS). Luminaries are equipped
with communication and smart local control systems, and
they are dimmed according to motion sensor signals. The
system is prepared to buy energy from and sell energy
to the power grid, at variable tariff rates. Smart meters
measure the energy flow between key system components.
Recorded measurement data are transmitted to the CCS
on a regular basis. CCS makes predictions of energy pro-
duction and demand, and controls charging/discharging of
the batteries. Under actual load conditions these decisions
determine the operation of the switch box: if demand
of lighting services cannot be covered by overall internal
supply, electricity is taken from the grid, and vice versa,
internal energy can also be directed towards the grid.
The system’s schematic architecture – highlighting only
its energy related components – is presented in Figure 1.
This figure shows also the key decision variables of the
energy flow optimization problem (see also Table 1).

3.2 Robust Control of the Energy Flow

In this section, we formalize the problem of controlling
the energy flow in a renewable energy system consisting of
uncontrollable generators and loads, a battery, and a bi-
directional grid connection. The notations used through-
out the paper are summarized in Table 1.
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Fig. 1. Schematic architecture of the E+grid system.

An optimal control policy is searched for purchasing and
selling electricity, as well as for charging and discharging
the battery. The problem is solved on a finite horizon,
consisting of a series of discrete time periods, t = 1, ..., T .
It is assumed that expected future production C+

t and
consumption C−t , as well as stochastically guaranteed
(w.r.t. a given probability) lower bounds on production C+

t

and upper bounds on consumption C
−
t are available for the

complete horizon. The time-varying electricity purchase
and feed-in prices Q+

t and Q−t are also known. The battery
is characterized by its capacity B, purchase price P , cycle
life L, maximum charge and discharge rates R+ and R−,
initial state of charge b0, and the efficiency of charging η.
The controller must be robust in the sense that the battery
must be kept at a charge level that ensures an island-
mode operation of at least TI time, even in the worst-case

scenario defined by C+
t and C

−
t .

In the above setting, we would like to minimize the cost
of running the energy system by finding the optimal
electricity purchase rate x+

t , grid feed-in rate x−t , as well as
the battery charge rate r+

t and discharge rate r−t for each
of the time periods. The operating cost also includes the
usage-dependent amortization of the battery. According to
the common linear cycle life assumption, the life time of
the battery is specified in the number of full charge cycles,
and the deterioration caused by a partial charge cycle is
proportional to the charge delivered. Hence, discharging
the battery by r−t incurs an amortization cost of P

BL
r−t .

It is noted that the overall operating cost can be negative,
meaning that the system makes a positive profit by selling
electricity. The following additional assumptions are made:

• If the energy system uses multiple electric phases,
then the problems related to the individual phases
can be solved separately. There is no constraint on
the phase balance;
• There is no upper bound on the power purchased

from, or fed into the grid, since the local load and
feedback capabilities of the grid exceed the maximal
power output of the microgrid;
• The electricity purchase price is never less than the

feed-in price, i.e., Q+
t ≥ Q−t , for each period i;

• The system is expected to survive at most one power
cut with a maximum duration of TI within the
planning horizon. TI is an integer multiple of the
length of the time unit;

Input Parameters

T Number of time units

Q+
t Electricity purchase price in period t

Q−
t Electricity feed-in price in period t

C+
t Predicted electricity production in period t

C+
t Lower bound electricity production in period t

C−
t Predicted electricity consumption in period t

C
−
t Upper bound electricity consumption in period t

B Battery capacity
P Battery purchase price
L Battery cycle life
R+ Battery maximum charge rate
R− Battery maximum discharge rate
b0 Battery state of charge in period 0
η Efficiency of battery charging
TI Required duration of island mode operation

Calculated Parameters

Bt Battery minimum state of charge in period t

Variables

x+t Electricity purchased from the grid in period t

x−t Electricity fed into the grid in period t

r+t Battery charge rate in period t

r−t Battery discharge rate in period t
bt Battery state of charge at the end of period t

Table 1. Notations

• The initial state of charge, the capacity, and the max-
imum discharge rate of the battery are sufficient for
satisfying the requirement on island mode operation
(see details in Section 5.1).

The control problem is solved using a rolling horizon
approach: a plan is computed for a finite horizon, t =
1, ..., T . The planned action is executed for the first time
unit, t = 1, after which an updated plan is computed for
a shifted horizon, t = 2, ..., (T + 1), using revised input
parameters, which involves updating the predictions.

3.3 Prediction

Proactive energy management techniques need to predict
future energy production and consumption, in order to
optimize their energy management policy. However, PV
production is affected by weather conditions and consump-
tion is influenced by human behavior, hence, both of them
are uncertain and complicated to predict.

Predicting PV Production One of the key challenges
to be faced for achieving robust control is to compute
efficient predictions of the PV production for one day
with a resolution of one hour. Not only a deterministic
sequence containing an expected behavior, but suitable
confidence regions should also be constructed, in order
to allow designing a controller which is robust against
power outages. More precisely, given a finite trajectory of
the past production data {C+

t }t≤0 together with some a
priori known physical characteristics of the system, e.g.,
GPS coordinates and model-type, we should construct
{C+

t }Tt=1, a sequence of expected power production, where
T is the decision horizon; as well as lower confidence
bounds {C+

t }Tt=1 of the production, given probability p.

Predicting Energy Consumption Similarly, the energy
consumption should also be predicted (expectations and



confidence bounds) with one hour resolution. The lumi-
naries are equipped with movement sensors and ideally,
we would also have past consumption data for prediction
purposes. However, at the time of this experiment only
movement data were available. Therefore, the problem was
(i) to first estimate the expected cumulative movements in
the area together with its upper confidence bounds; then
(ii) to calculate estimated consumption data from this
information. More precisely, (a) given a finite trajectory
of the past movements {mt}t≤0 , we should construct
{mt}Tt=1, a sequence of expected future movements, where
T is the decision horizon; as well as upper confidence
bounds {mt}Tt=1, given probability p. Then, (b) we should
estimate the expected consumption and its confidence
bounds based on the estimated movements, more precisely,

C−t = g(mt) and C
−
t = g(mt), for a suitable function g.

4. PREDICTING ENERGY PRODUCTION AND
CONSUMPTION

In this section, we discuss how to calculate predictions
based on past PV production and movement data, which
are assumed to be available up to the decision time. In our
experiments the original data had one-minute resolution.

4.1 Time series analysis

A time series is a sequence of data points, typically
representing noisy measurements of a dynamical system
observed at discrete time steps (Box et al., 1994). Fitting
models to time series is one of the fundamental problems
of system identification, a subfield of control theory and
statistics (Ljung, 1999; Söderström and Stoica, 1989).

Discrete-time stochastic systems with exogenous compo-
nents (inputs) coming from a parametrized family of sys-
tems can be typically written in a general form as

Yt , f( θ∗;Yt−1,Ut−1,Nt−1 ), (1)

where Yt is the output of the system at time t and
Yt−1, Ut−1, Nt−1 are the past outputs, inputs and noises
affecting the system up to and including time t− 1, i.e.,

Yt−1 , (Yt−1, Yt−2, . . . ), (2)

Ut−1 , (Ut−1, Ut−2, . . . ), (3)

Nt−1 , (Nt−1, Nt−2, . . . ), (4)

where Yk, Uk and Nk are the output, the input, and the
noise at time k, respectively. Constant θ∗ is the unknown,
true parameter (typically a finite dimensional vector)
which needs to be estimated to determine the system.

Standard stochastic models include general LTI (linear
time-invariant) systems, which can be formalized as

A(θ∗; z−1)Yt ,
B(θ∗; z−1)

F (θ∗; z−1)
Ut +

C(θ∗; z−1)

D(θ∗; z−1)
Nt, (5)

where A, B, C, D and F are (finite) polynomials in z−1,
the backward shift operator (i.e., z−1Yt = Yt−1 ), and Yt,
Ut, Nt are as previously. Special cases of LTI systems
include FIR (finite impulse response), OE (output error),
MA (moving average), ARX (autoregressive exogenous)

and ARMAX (autoregressive moving average exogenous)
models (Ljung, 1999; Söderström and Stoica, 1989).

In some cases linear models are not suitable to describe
the observations. Standard nonlinear models include Ham-
merstein, Wiener and NARX (nonlinear autoregressive
exogenous) systems (Ljung, 1999). Here, for the sake of
brevity, we only describe NARX, which takes the form

Yt , f( θ∗;Yt−1, . . . , Yt−q, Ut−1, . . . , Ut−s ) +Nt, (6)

where q, s are the orders of the system and f is typically
a nonlinear function (wavelet, neural network, etc.).

Having selected a model class, the problem of parametric
identification is that given a (usually finite) realization Dn

of the inputs and the outputs up to time n, more precisely

Dn , ( yn, yn−1, . . . , un−1, un−2, . . . ), (7)

a parameter value, θ̂n should be found which satisfies

θ̂n ∈ arg min
θ∈Θ

ε(θ,Dn), (8)

where ε(θ,Dn) is an error function, which describes how
well the model fits to the data.

The error function usually has an additive structure, i.e.,

ε(θ,Dn) ,
∑

t
ε̂t(θ,Dt) =

∑
t
wt d(yt, f(θ,Dt)), (9)

where {wt} are weights, d(·, ·) is a distance measure and
f(θ,Dt) is defined as, for example,

f(θ,Dt) , f( θ ; yt−1, yt−2, . . . , ut−1, ut−2, . . . , 0, 0, . . . ).

A typical choice for d(·, ·) is to use ‖ yt − f(θ,Dt) ‖2, where
‖ · ‖ is the Euclidean norm, which provides the well-known
(weighted) least-squares error criterion.

4.2 Predicting PV Production

We fitted several dynamical models to the available PV
data. The measured quantities were the PV current (A)
and PV voltage (V), from which we calculated PV power
(voltage × current). We preprocessed the data by removing
outliers (corrupted measurements), normalized the data
and averaged it in windows with one hour length. Averag-
ing helped to decrease the variance and hence to achieve
a better signal-to-noise-ratio (SNR).

Since clear-sky type estimations were available, we also
applied exogenous models and used the normalized (de-
terministic) clear-sky predictions as an input.

Several experiments were performed during which stochas-
tic models were fitted to the available PV time series.
The experimental results part contains six of those mod-
els which allowed multi-step predictions and produced
the best results. These are: autoregressive (AR), autore-
gressive moving average (ARMA), autoregressive exoge-
nous (ARX), state space (STATE), Box-Jenkins (BJ), and
nonlinear autoregressive exogenous (NARX) models. The
above models were used with several settings, e.g., experi-
ments with different orders were performed. The achieved
models were compared according to their prediction errors
on different horizons (1-hour, 3-hour, 6-hour, 12-hour and
24-hour) and validated on an independent (not used during
the estimation) dataset (see also Section 6.1).



The best performing model for the PV production data
was a NARX (6) type of system with combined affine and
wavelet (Goswami and Chan, 2011) type nonlinearities. In
this case, function f takes the form

f( θ ; x ) , a+ bTx+ c(w, x), (10)

where θ = (a, b1, . . . , bq+s, w1,1, w1,2, . . . ) and c(w, x) is a
wavelet function with weights w, formally

c(w, x) ,
k∑
i=1

m∑
j=1

wi,jψi,j(x), (11)

where k, m are the orders and {ψi,j(·)} are constructed
from a suitable mother wavelet (Goswami and Chan,
2011). The orders of the best NARX model were q = 13,
s = 2, cf. (6), while k and m were automatically selected.

Having identified the NARX model, the noise variance is
also estimated. For simplicity, the noise is then assumed
to be zero-mean Gaussian with the estimated variance.
The mean trajectory and the lower confidence bounds are
calculated by using Markov Chain Monte Carlo (MCMC)
simulations, i.e., the mean prediction is the average of
N randomly generated trajectories (N is usually 1000 or
10 000) using the recent sensor measurements as initial
conditions (and clear-sky predictions as inputs for exoge-
nous models), while the lower confidence bound for each
interval is the smallest number which is larger or equal to
at least 1− p portion of the estimations for that interval.

4.3 Predicting Energy Consumption

Energy consumption was predicted using data from several
motion sensors. The movement data was also preprocessed:
the data of all the sensors were aggregated, normalized and
averaged in one hour-wide windows.

Based on the past measurements an average behavior was
calculated for each hour of the day and it was used as
the input for the exogenous models (ARX, BJ, STATE,
NARX). The same type of models were applied as in
the previous case and compared for different prediction
horizons as well as validated on an independent dataset.

According to our experiments, Box-Jenkins (BJ) type
models gave the best predictions for movement data from
the models we tried. BJ models are LTI, cf. (5), but
without polynomial A. The orders of the best BJ model
were 7, 6, 6, 3 for polynomials B,C,D, F , respectively.

Having identified the model, we again estimated the noise
variance and treated the noise as a zero-mean Gaussian.
Then, we used MCMC simulations to estimate the mean
behavior of the system as well as to get a lower confidence
bound for the future movements for each future hour.

Given movement predictions, the expected consumption
is calculated as follows. It is assumed that consumption
is composed of the constant consumption of the energy
system, and the variable consumption of the luminaries
proportional to motion intensity, masked by the public
lighting calendar. For the latter component, a saturation-
type function was used reflecting that a detected move-
ment stimulates several luminaries, but the set of luminar-
ies activated by different movements can overlap. The ratio

of the constant and the variable consumption components
is about 1 : 5 during lighting periods.

5. ROBUST CONTROL OF THE ENERGY FLOW

5.1 Computing the Required Battery Charge

Island mode operation of the system can be ensured by
maintaining the appropriate state of charge in the battery.
While the prescribed duration of island mode operation
is a given constant, the required state of charge varies
over time, depending on the future consumption and
production. Robust control can be achieved by considering
upper bound consumption and lower bound production.
In particular, the state of charge of the battery decreases

by C ′t = max(C
−
t − C

+
t ,−R+) if the system operates in

island mode in time unit t. A decrease of −R+ (i.e., an
increase of R+) arises at the time of production peaks
with low consumption, when the battery charge rate limit
is hit. Hence, in order to maintain island mode operation
in the time interval [t, t + TI − 1], the battery’s state of

charge must be at least Bt−1 =
∑t+TI−1
u=t C ′u at the end of

the previous time unit, which defines a minimum state of
charge constraint in the robust control problem.

Obviously, the island mode operation expectations can be
respected only if the battery parameters are adequate, i.e.,
B ≥ Bt, b0 ≥ B0, and R− ≥ C ′t ∀t.

5.2 LP Formulation of the Control Problem

An LP formulation of the control problem is presented
below for computing a plan on a finite horizon within one
computational step of the rolling horizon scheme.

minimize

T∑
t=1

(
Q+
t x

+
t −Q−t x−t +

P

BL
r−t

)
(12)

subject to

C+
t − C−t + x+

t − x−t = r+
t − r−t ∀ t (13)

ηr+
t − r−t = bt − bt−1 ∀ t (14)

Bt ≤ bt ≤ B ∀ t (15)

0 ≤ r+
t ≤ R+ ∀ t (16)

0 ≤ r−t ≤ R− ∀ t (17)

0 ≤ x+
t , x

−
t ∀ t (18)

The objective (12) is minimizing the total cost, which
consists of the difference of the energy purchased and
sold, plus the amortization of the battery. Constraint
(13) encodes the energy balance in the system. Equality
(14) relates the state of charge of the battery to the
charge/discharge rate, given the loss on the battery. Con-
straints (15-17) define the range of the variables, with
respect to the pre-computed lower and upper bounds on
the battery state of charge and the charge/discharge rates.

6. EXPERIMENTAL EVALUATION

In this section, we first show experimental results of fitting
dynamical models to PV production and movement data,
then present an illustrative example demonstrating the
controlled energy system in summer and winter days.



Estimation Data

Model Orders 1-Stp 3-Stp 6-Stp 12-Stp 24-Stp

AR 5 65,05 27,99 6,78 -2,45 -8,35

ARMA 7 5 65,84 31,40 7,21 5,89 5,70

ARX 5 4 66,73 37,84 16,89 17,97 18,33

BJ 7 5 5 3 68,07 41,73 27,14 31,55 44,25

STATE 5 57,69 20,34 13,53 10,99 28,15

NARX 2 13 71,27 42,77 31,19 27,10 27,21

Validation Data

Model Orders 1-Stp 3-Stp 6-Stp 12-Stp 24-Stp

AR 5 55,57 6,21 -12,93 -14,47 -12,34

ARMA 7 5 56,97 10,47 2,04 0,47 1,16

ARX 5 4 58,25 20,49 16,77 14,22 15,24

BJ 7 5 5 3 57,87 22,56 23,86 21,93 22,83

STATE 5 56,33 15,73 6,86 3,08 25,10

NARX 2 13 62,94 26,03 23,72 25,04 26,48

Table 2. Multi-step prediction of PV energy
production data. The input for the exogenous
models (ARX, BJ, STATE, NARX) was the
prediction of the applied clear-sky type model.

6.1 Model Fitting

Several experiments were performed in MATLAB on the
preprocessed data. Tables 2 and 3 illustrate the multi-step
prediction capabilities of the fitted models, where each
“step” corresponds to one hour of averaged data. Each
type of model was evaluated with various parameters and
model orders, but the tables only contain the fit values of
one selected (“best”) choice for each model. The vector
describing the orders of the models contain the orders in
the following structure: AR (autoregressive part), ARMA
(autoregressive; moving average), ARX (autoregressive;
exogenous), BJ (polynomials B,C,D, F ), STATE (the
same dimension is assumed for the output, input and noise
vectors), NARX (autogressive part; exogenous part). The
nonlinariy of NARX was as in (10). State space models
were identified using a subspace method (N4SID), while
prediction error methods were used for the other cases.

The fit values shown in the tables, and denoted by F (·, ·)
below, are calculated from the (deviation normalized)
root-mean-square error. More precisely, they satisfy

1−F (y, ŷ)

100
=
‖y − ŷ‖
‖y − ȳ‖

=

√∑n
t=1(yt − ŷt)2√∑n

t=1(yt − 1
n

∑n
k=1 yk)2

, (19)

where y and ŷ are n-dimensional vectors of the observed
and estimated outputs of the system, respectively, ȳ is the
sample average, and ‖ · ‖ is the Euclidean norm.

Hence, F (y, ŷ) is a real number in (−∞, 100 ], where bigger
numbers indicate better fits. It is clear from the definition
that F (y, y) = 100 and F (y, (ȳ, . . . , ȳ)T) = 0, i.e., the fit
value of the sequence itself is 100 and if we used the average
as a (time-independent) estimator, we would get zero.

The results of Table 2 indicate that NARX models with
wavelet type nonlinearities provide a good fit for the
purpose of multi-step PV production prediction, where the
exogenous inputs come from a clear-sky model.

Table 3 shows the results for the same models (but with
different orders), in case we wanted to predict movement

Estimation Data

Model Orders 1-Stp 3-Stp 6-Stp 12-Stp 24-Stp

AR 7 61.75 38.12 26.10 25.51 35.55

ARMA 8 5 63.33 35.54 22.58 23.45 27.01

ARX 7 5 62.21 35.71 27.29 26.70 36.16

BJ 7 6 6 3 73.17 47.39 36.27 31.84 52.56

STATE 5 59.62 34.12 21.66 20.99 37.23

NARX 1 4 67.58 43.63 26.86 14.61 16.68

Validation Data

Model Orders 1-Stp 3-Stp 6-Stp 12-Stp 24-Stp

AR 7 45.99 25.25 17.57 8.59 20.40

ARMA 8 5 45.73 26.88 16.91 7.69 20.82

ARX 7 5 46.13 27.05 18.64 12.70 30.85

BJ 7 6 6 3 53.06 32.33 36.86 39.18 49.67

STATE 5 44.21 24.12 17.81 17.06 35.55

NARX 1 4 42.84 18.97 17.28 -8.31 18.98

Table 3. Multi-step prediction of movement
data. The input for the exogenous models
(ARX, BJ, STATE, NARX) was the averaged
amount of past movements in the same hours.

data. The experiments are indicative of the phenomenon
that Box-Jenkins type of models can well predict averaged
movement data, if enough observations from the immedi-
ate past are given as well as the typical movement in the
corresponding hours are known and provided as input.

We used the identified NARX and BJ models in our ex-
periments to get production and consumption predictions,
respectively. The confidence probability of the (lower and
upper) bounds was 95 % in the experiments below.

6.2 Illustrative Examples: Controlling the Energy Flow

The proposed LP model for the robust control problem
has been implemented in FICO Xpress 7.2. Computational
experiments have been performed with data originating
from the above presented experimental lighting microgrid.
The PV generators in the system have been sized to
achieve a slightly positive energy balance over a one-
year horizon, and lead-acid batteries ensure 3 hours of
island mode operation under almost any consumption and
production scenario. A variable energy tariff scheme has
been adapted based on data from an Australian public
utility company, with Q+

t varying between 14.08 and 24.86
c/kWh in three steps and Q−t = 7.5 c/kWh.

Figures 2 and 3 present the optimal energy flow in a
summer and in a winter scenario, respectively. Each dia-
gram shows the corresponding battery charge rate (Chrg,
positive means charging the battery), grid traffic (Grid,
positive means buying electricity), and battery state of
charge (BatSoc) curves over the day. In the summer sce-
nario (Fig. 2), early morning consumption is covered from
the battery. Increasing PV production during the day is
sold to the grid until ca. 14:00, when the system starts to
charge the battery, in order to cover the needs of a poten-
tial island mode operation during the evening consumption
peak. At the end of the planning horizon, surplus energy
in the battery is sold to the grid. However, the actual ex-
ecution of this action is unlikely under the rolling horizon
approach, since this section of the plan will be recomputed
multiple times. The optimal control in a winter day (Fig. 3)
is different due to the fact that consumption dominates
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Fig. 2. Energy flow in the system on a summer day.

0

50

60

70

80

90

100

0

2000

4000

6000

8000
[W] [%]

0

10

20

30

40

‐6000

‐4000

‐2000

1 3 5 7 9 11 13 15 17 19 21 23

Chrg [W]

Grid [W]

BatSoc [%]

Fig. 3. Energy flow in the system on a winter day.

production, and the battery must be kept at nearly full
charge throughout the day. The solution of the proposed
small-size LP model takes negligible computation time.

7. CONCLUSION AND FUTURE RESEARCH

The paper proposed algorithms for controlling the en-
ergy flow in an experimental microgrid for energy-positive
street lighting. The algorithms trade with electricity in
order to maximize profit subject to a given variable energy
tariff, while achieve robustness by maintaining sufficient
charge in the batteries for surviving potential power out-
ages. A rolling horizon controller was presented where each
time-step involves solving an LP problem. The key inputs
of optimization, the prediction of future energy produc-
tion and consumption, are computed by fitting stochastic
models to historic production and movement data. It was
demonstrated that sufficiently precise prediction can be
achieved on a one-day horizon using NARX and BJ mod-
els. As illustrative examples, the behavior of the controlled
system was presented on a typical winter and summer
day. The results illustrate the possible benefits of smart
renewable energy systems in public lighting applications.

The physical E+grid system is currently under construc-
tion in cooperation between GE Hungary Ltd, the In-
stitute for Technical Physics and Materials Science, the
Budapest University of Technology and Economics, and
the Institute for Computer Science and Control. Future
work will focus on the improvement of our production

and consumption estimators with specialized statistical
models as well as improving the controller adopting novel
stochastic control and machine learning principles.
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