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Abstract: The paper applies the scenario approach to stochastic model predictive control for
renewable energy systems. First, the controllable and the (quasi-periodic) uncontrollable parts
are decomposed. The latter is modeled by a Box-Jenkins system with appropriately chosen
inputs. For the controllable part, a linear state space model is used with an affine state-
feedback controller. Several numerical experiments are presented on a public lighting microgrid,
e.g., about forecasting the energy balance, the effects of various controller parametrizations,
reoptimization frequencies, and discarding unfavorable scenarios. The results indicate that even
a low order, time-independent controller with a slow reoptimization frequency can be efficient.
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1. INTRODUCTION

Model predictive control (MPC) or receding horizon control
(RHC) is a widespread control design technology that
builds on advancements in mathematical optimization and
provides solutions which can handle flexible constraints
imposed on the states and the inputs (Maciejowski, 2002).

The parameters of the models are often uncertain, since
they are typically based on empirical data, which should
be taken into account during optimization. Robust MPC
optimizes w.r.t. the worst-case situation, while stochastic
MPC incorporates a probabilistic description of the un-
certainties and uses chance-constraints, namely, it allows
constraint violations with some given probability. This,
however, often leads to hard problems (Mesbah, 2016).

The scenario approach provides a promising compromise
(Calafiore and Campi, 2006; Garatti and Campi, 2013). It
assumes that we can generate i.i.d. (independent and iden-
tically distributed) samples of the uncertainties. This ap-
proach leads to efficient MPC solutions with distribution-
free stochastic guarantees (Calafiore and Fagiano, 2012;
Schildbach et al., 2014). Scenario-based MPC has many
applications from river control (Nasir et al., 2018) to
dispatching in power systems (Modarresi et al., 2019).

The paper investigates the applicability of scenario-based
stochastic model predictive control (SMPC) to a real re-
newable energy system, a public lighting microgrid, that
has a bi-directional connection to the power grid, and
contains photovoltaic (PV) panels, LED luminaries, which
regulate their lighting levels, and a battery. The control
objective is to minimize the total energy cost with con-
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straints on limited-time island mode operations, in case of
power outages (Kovács et al., 2016). Such systems are of
course only partially controllable as the energy production
and consumption are determined by external factors.

We start by decomposing the states into fully controllable
and uncontrollable, but observable, parts. We apply a Box-
Jenkins model with special inputs for the uncontrollable
part, and compare its performance with NARX models.

The process noise is estimated by its empirical distribution
function (cf. bootstrap) taking the time-varying nature of
the problem into account, as the system is quasi-periodic.
With the identified model and the noise distribution at
hand, samples of potential future trajectories (“scenarios”)
can be generated a priori, before optimization.

Linear state space models are used for the controllable part
with an affine feedback controller. Various parametriza-
tions are considered for the controller, as the number of
decision variables heavily influences the scenario approach,
especially if some of the scenarios are discarded.

Finally, several numerical experiments are presented on
the aforementioned public lighting microgrid. Potential
models for the uncontrollable part are evaluated and the
efficiency of scenario-based SMPC is investigated. Simu-
lation studies on various parametrizations, optimization
horizons and reoptimization frequencies are shown.

2. DECOMPOSABLE MARKOV MODEL

We interact with an uncertain dynamical system that we
model with the following (possibly nonlinear) process,

xt = f(xt−1, ut, εt ), (1)

where xt ∈ Rdx is the state, ut ∈ Rdu is the control input,
and εt ∈ Rdεt is the driving noise term, at time t.



In some situations {xt} is only partially controllable and
it can be decomposed into two parts (possibly after a state
transformation), {x′t} and {x′′t }, where {x′′t } is unaffected
by the chosen inputs (uncontrollable). Recall that in the
classical case of linear time-invariant (LTI) systems, such
states exist if the controllability matrix is not full rank, and
the aforementioned partition of states can be achieved by
a suitable change of basis (cf. Kálmán decomposition). For
the nonlinear case, see for example (Cheng et al., 2010).

Having such a decomposition allows us to write

x′t = f ′(xt−1, ut, εt ), (2)

x′′t = f ′′(x′′t−1, εt ), (3)

where functions f ′ and f ′′ are the controlled and uncon-
trolled parts of the dynamics, respectively. Note that x′t is
allowed to depend on x′′t−1, but not the other way around.

We consider time-varying, state-feedback controllers, i.e.,

ut = πt(xt−1), (4)

where function πt is called the (Markov) control policy at
time t. A sequence of control policies, {πt}, is denoted by
π and the set of all such policy sequences is denoted by Π.

Henceforth, we will make a notational distinction between
generic state and input variables, {xt} and {ut}, and the
realized ones, {x∗t } and {u∗t }. Similarly, πt will denote a
generic policy, while the “true”, realized policy is π∗t .

3. MODEL PREDICTIVE CONTROL

In this section we briefly overview the relevant approaches
and results from the theory of model predictive control.

At first, for simplicity, assume that there is no external
driving process, therefore the system is deterministic. Let
us denote the current time by t0, then ideally we aim at
finding a policy π that optimizes the cost-to-go or value
function Jπ which is R-valued and often takes an additive
form summing the immediate (or stage) cost of each visited
state-input pair. Formally, the cost-to-go of policy π is

Jπ∞(x∗t0)
.
=

∞∑
k=0

`k(x∗t0+k, u
∗
t0+k+1), (5)

where {`k} are (given) R-valued immediate-cost functions.
Dependence on k allows, e.g., discounting future costs. An
issue is that at time t0 we only know {x∗t } up to x∗t0 , but
do not know exactly how the process will evolve using π.

MPC uses the model to estimate the progress of the system
and replaces Jπ with a finite horizon version, Jπn ,

Jπ∞(x∗t0) ≈ Jπn (x0)
.
=

n−1∑
k=0

`k(xk, uk+1) + `>n (xn), (6)

where x0 = x∗t0 and x1, . . . , xn are generated by the model

and `>n is an optional term for the terminal cost (e.g.,
an estimate of the remaining costs). Then, we optimize
Jπn (optionally w.r.t. some constraints on the states and
inputs) on a receding horizon. Namely, after optimization,
we only execute the first input, π1(x0) becomes u∗t0 , and we
discard the rest. After obtaining x∗t0+1 at t0 + 1, we repeat
the process: we solve another optimization problem, now
starting from x∗t0+1, execute its first input, and so on.

Formally, the optimization scheme of MPC is as follows:

minimize
π∈Π

Jπn (x0)

subject to x0 = x∗t0
uk = πk(xk−1)

xk = f(xk−1, uk)

u ∈ U , x ∈ X
k = 1, . . . , n

(7)

where x
.
= (x0, x1, . . . , xn)T, u

.
= (u0, u1, . . . , un)T, π

.
=

(π1, . . . , πn) are sequences of states, inputs and policies,
respectively, and X , U are given (constant) constraint sets
for (the allowed sequences of Markov) states and inputs.

This problem is an abstract description of the optimization
involved in an MPC step, but in general it is intractable.
Furthermore, unless some assumptions on the policies are
made, the problem can even be infinite dimensional.

This latter problem can be addressed, e.g., if the control
policies are parametrized by a finite dimensional vector.

In the deterministic case, it is often enough to optimize
over input sequences resulting in (open-loop) planning
problems. Even in this case the receding horizon approach
ensures a closed-loop overall behavior, as the starting state
is updated in each MPC step (Maciejowski, 2002). In order
to make the optimization problem above tractable, J , f ,
X and U are typically chosen to be convex.

If the system dynamics can be decoupled into a control-
lable, f ′, and uncontrollable, f ′′, part, then by definition
all uncontrolled states {x′′k} can be calculated in advance.
Hence, they can be treated as constants from the viewpoint
of optimization, and therefore any (even nonconvex) f ′′

can be used without making the problem intractable.

Now, assume that the system is uncertain, i.e., there are
{εk} variables in the model. If we assume that they are
stochastic, then Jπn (x0) becomes a random variable and
therefore a type of stochastic dominance concept should be
selected to make the optimization meaningful. A standard
choice is to optimize the expected value of the objective
function with (joint) chance constraints, which leads to
the following stochastic programming problem:

minimize
π∈Π

E [ Jπn (x0) ]

subject to x0 = x∗t0
uk = πk(xk−1)

xk = f(xk−1, uk, εk)

Pε (u ∈ U , x ∈ X ) ≥ 1− δ
k = 1, . . . , n

(8)

where ε
.
= (ε1, . . . , εn) is a random matrix, and δ is the

(given) allowed probability of constraint violation.

There are a lot of variants of this problem, e.g., there
could be individual chance constraints (if X builds up from
the intersection of several convex sets) or hard constraints
(which should always be satisfied, e.g., for all inputs),
see (Mesbah, 2016). These problems are typically hard to
solve, unless some sampling-based approximation is used.
Then, the expectation in the objective is often replaced
by its sample average, or the maximum over the samples
corresponding to value-at-risk (Schildbach et al., 2014).



An arch-typical choice for f is the case of linear dynamics

xt = f(xt−1, ut, εt) = Axt−1 +B ut + εt, (9)

where A and B are (constant) matrices of appropriate size.

For uncertain systems it is advantageous to optimize over
feedback controllers (Mayne et al., 2000), instead of control
sequences. A typical choice is to use a linear controller,
i.e., ut = Ktxt−1, which however, may lead to nonconvex
optimization problems (Goulart et al., 2006).

This nonconvexity issue of the resulting MPC optimization
can be avoided by observing that (Nasir et al., 2018)

ut = Ktxt−1 = Kt

t−1∏
i=1

(A+BKi)x0 +

t−1∑
j=2

Kt

t−1∏
i=j

(A+BKi)εj−1 +Ktεt−1,

(10)

with ε0 = 0, thus, the policy can also be parametrized as

ut = πt(xt−1) = ϕt +

t−1∑
i=1

Φt,iεi, (11)

to ensure that we have a convex problem (Goulart et al.,
2006). Note that, of course, εt = xt−Axt−1−B ut, thus,
available. This solution is called the full affine controller.

As we will see, the number of decision variables plays an
important role in the scenario approach, thus, we consider
two subclasses of affine controllers, which require less
parameters to describe. The first one is defined as

ut = πt(xt−1) = ϕt +

t−1∑
i= 1∨

(t−1−p)

Φt,iεi, (12)

where a∨ b = max(a, b), to which we will refer as a (time-
varying) affine controller with past order p.

Finally, if ϕt = ϕ and Φt,i = Φi for all t, i, then we talk
about a time-independent controller with past order p.

An alternative, which even works for nonstochastic uncer-
tainties, is to look for a worst-case solution which is robust
w.r.t. all possible uncertainties. Henceforth, we assume
that our policies are affine and they are parametrized by
θ ∈ Rm, i.e., θ encodes vectors {ϕt} and matrices {Φi,t}.

Given a scalar h, we will use the notation (h; θ)
.
= (h, θT)T.

Let us introduce uncertainty-dependent constraint sets:

Z(ε)
.
=
{

(h; θ) ∈ Rm+1 : Jπ,εn (xε0) ≤ h, xε0 = x∗t0 ,

uεk = πk(xεk−1 | θ ), xεk = f(xεk−1, u
ε
k, εk ),

xε ∈ X , uε ∈ U , k = 1, . . . , n
}
,

(13)

where ε ∈ Rn is a given uncertainty sequence, and πk(u)
.
=

πk(u | θk) is a notation to emphasize that {πk} are
parametrized by θ. We also assume that Jπ,εn (x∗t0) is a
convex function in θ, thus Z(ε) is convex for all ε.

Then, the optimization step of robust MPC becomes:

minimize
h∈R, θ∈Rm

h

subject to (h; θ) ∈ Z(ε), for all ε ∈ E,
(14)

where E is the (not necessarily convex) set of all possible
uncertainties. Obviously, h is the maximum of Jπ,εn (x∗t0),

where the maximum is taken over E, hence, this program
minimizes the objective w.r.t. the worst-case situation.

Note that typical issues with such worst-case approaches
are that (i) they often lead to overly conservative solu-
tions; moreover, (ii) the optimization problem above is, in
general, semi-infinite, as E can be an uncountable set.

4. SCENARIO-BASED STOCHASTIC MPC

If the problem is stochastic (i.e., there is a probability
distribution over the uncertainties), and we have access to
a generative model (e.g., we can simulate i.i.d. realizations
of variable ε), then the scenario approach is a promising
technique to modulate the robustness of the solution, see
(Calafiore and Campi, 2006; Garatti and Campi, 2013).

Assume we generate N i.i.d. “scenarios”, ε(1), . . . , ε(N);
then, we can define the following (random) scenario prob-
lem as an approximation of the original worst-case one:

minimize
h∈R, θ∈Rm

h

subject to (h; θ) ∈ Z(ε(i)), for i = 1, . . . , N,
(15)

which (sampled) problem is now a standard (finite) convex
programming problem, assuming {Z(ε(i))} are convex.
Let us denote the optimal solution by z?N

.
= (h?; θ?). A

natural question is: what can we say about the rest of the
uncertainties, for example, how much of them are violated?

The violation probability of a fixed z ∈ Rm+1 is defined by

V (z)
.
= P { ε ∈ E : z /∈ Z(ε) } . (16)

In other words, V (z) ∈ [0, 1] quantifies the probability that
a randomly selected noise realization sequence, ε, results
in a constraint, Z(ε), that is violated by z = (h; θ).

Remark: z?N is a random variable, since the scenario prob-

lem (15) depends on the randomly sampled ε(1), . . . , ε(N),
hence, its violation probability, V (z?N ), is also random.

Nevertheless, it can be proved (Garatti and Campi, 2013)
that the violation probability of z?N

.
= (h?; θ?) satisfies

P {V (z?N ) > δ } ≤ β(δ, d,N), (17)

for all δ ∈ (0, 1), assuming (15) is feasible and has a unique
solution for all ε ∈ E, where β(δ,N) is the tail of the beta
distribution with parameters (d,N − d+ 1), that is

β(δ, d,N)
.
=

d−1∑
i=0

(
N

i

)
δi(1− δ)N−i, (18)

where d = dim(z?N ), i.e., the number of decision variables.

Surprisingly, the bound on the violation probability V (z?N )
is independent of the probability distribution by which the
scenarios, {ε(i)}, are generated. Further, as the number of
scenarios grows, β(δ, d,N) tends to zero exponentially fast.

Given a maximum allowed constraint violation probability,
δ, and a confidence probability, 1 − β, we can compute
the sample size that is sufficient by finding the smallest
integer, N , such that β(δ, d,N) ≤ β, for example, by
binary (logarithmic) search. 1 Then, we can claim with

1 Suitable upper and lower bounds for the initialization of the
logarithmic search can be found in (Garatti and Campi, 2013).



confidence at least 1− β that the constraints are satisfied
at least with probability 1− δ (Garatti and Campi, 2013).

An explicit expression can also be provided for the needed
number of scenarios (Alamo et al., 2015) given δ, β, namely

N ≥ 1/δ
(
d− 1 + log(1/β) +

√
2(d− 1) log(1/β)

)
, (19)

which guarantees that P {V (z?N ) ≤ δ } ≥ 1− β.

Note that this formula only logarithmically depends on β,
thus, even if β is very small, it does not increase N much.

The effectiveness of the obtained solution can often be
increased if some scenarios are discarded. Of course, re-
moving constraints increases the constraint violation prob-
ability. Nonetheless, it can be shown (Campi and Garatti,
2011) that if we remove k scenarios and β satisfies(

k + d− 1

k

) k+d−1∑
i=0

(
N

i

)
δi(1− δ)N−i ≤ β, (20)

then we can guarantee V (z?N−k) ≤ δ with confidence 1−β.

This result is independent of the algorithm for selecting
the scenarios to be removed, but k should be chosen a
priori. Trying all possible choices of k scenarios would be
computationally very expensive, but one can choose, e.g.,
the constraints that have the highest Lagrange multipliers.

Remark: our scenario problem, (15), corresponds to the
value-at-risk formulation of the problem (Schildbach et al.,
2014), as we want to minimize (under chance constraints)
the maximum cost-to-go value over the sampled uncertain-
ties (noise trajectories), instead of their sample average.

An important property of this approach is that since the
optimization step of SMPC is performed periodically and
in each step the constraint violation probability is below
δ, then the expected time-average of closed-loop constraint
violations also remains upper bounded by δ, under some
mild technical conditions (Schildbach et al., 2014).

5. RENEWABLE ENERGY SYSTEMS

The proposed scenario-based SMPC approach has been
applied to control the energy management of the E+grid
experimental lighting microgrid (Kovács et al., 2016). The
system comprises 191 intelligent LED luminaries that
adjust their lighting levels according to the actual traffic
conditions, energy generation by roof-mounted PV panels
with a total active surface area of 152.5 m2 and peak power
of 21 kWp, as well as battery storage with a capacity
of 18.5 kWh. Batteries and bidirectional grid connection
make the system an active player in the electricity market:
it can charge the batteries with electricity produced during
the day or purchased from the grid in valley periods, and
then use this energy to operate the luminaries during the
night or feed it into the grid in peak periods.

Nevertheless, the operation of the system must be robust
against potential power outages. This requirement is cap-
tured by chance constraints stating that at any point in
time, the batteries must store sufficient energy to cover
the net consumption of the following three hours. With
this constraint, the objective is to minimize the cost of
electricity consumed subject to a given time-of-use elec-
tricity tariff (or equivalently, to maximize profit when the
system is a net producer and tariff is suitable).

Table 1. Comparing Time-Series Models

Model Type
Performance by Model Order

1 2 3 4 5 6

MLP
RMSE 0.534 0.531 0.520 0.540 0.494 0.507

STD 0.127 0.132 0.167 0.150 0.128 0.160

SVR
RMSE 0.563 0.539 0.519 0.527 0.513 0.527

STD 0.092 0.135 0.151 0.162 0.135 0.148

BJ
RMSE 0.480 0.481 0.482 0.471 0.461 0.458

STD 0.126 0.133 0.133 0.154 0.155 0.154

5.1 Uncontrollable Part

Decomposing the uncontrollable elements is straightfor-
ward in the case of the particular microgrid we consider,
as neither energy production nor energy consumption can
be directly controlled by the system; the controller can
decide only the amount of energy purchased or sold.

In order to generate forecasts for the scenario approach,
we model the energy balance, which is the difference of the
energy production and the energy consumption.

Two Nonlinear AutoRegressive eXogenous (NARX) mod-
els, a Multilayer Perceptron (MLP) based and a Support
Vector Regression (SVR) based with Gaussian kernels,
and a (linear) Box-Jenkins (BJ) model were compared
regarding their capacity of predicting the energy balance.

Let εt denote the energy balance at time t, where in our
case the time step is one hour. The system is quasi-periodic
with a 24-hour period. Based on historical data, we can
compute the average energy balance for each hour of the
day, denoted by {vt}. Note that it is (fully) periodic.

The NARX models of the energy balance take the form

εt = g(εt−1, . . . , εt−p, vt) + nt, (21)

where nt is the process noise at time t, and p is called the
order of the model. Note that g is time-independent, but
since it depends on vt and the noise can be time-varying
(see later), the approach is appropriate. The difference
between the two models is that in one of them g is realized
by an MLP, while we apply SVR for the other one.

In our case, the Box-Jenkins (BJ) model takes the form

εt = F−1(q)B(q) vt−kv +D−1(q)C(q)nt, (22)

where B, C, D and F are finite polynomials in q−1, the
backward shift operator; namely, q−1εt = εt−1 .

In our experiments, we set kv = 0, the degree of C was 0,
the degree of B was 1, and the degrees of F and D were set
to p, which we henceforth refer to as simply the “order”.

Table 1 demonstrates the effectiveness of the three models
evaluated by ten-fold cross validation on a dataset of 500
points. The average and standard deviation (STD) of the
root mean square errors (RMSE) are displayed for various
models and model orders on the validation (test) datasets.

For the MLP, one hidden layer was used with 8 neurons
having the logsig activation function (and a linear one for
the output neuron). For the SVR, ν-SVR was used with
Gaussian kernels. It was realized by the LibSVM library 2

with parameters ε = 0.01, ν = 1, c = 1, and γ = 0.1.
2 https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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The results indicate that BJ models were the best for this
particular problem, though the various models behaved
similarly. We used BJ with p = 1 as our base model.

Having a model, we can compute (estimate) realizations
of the noise terms and build an empirical distribution
function (EDF) for each hour of the day. Then, we can
simulate possible future trajectories using the model and
by sampling noises from the EDF, often called bootstrap.
Figure 1 illustrates generating trajectories by this way.

5.2 Controllable Part

In the E+grid system, the main aim of the controller is
to trade with the electricity in a cost-effective way, while
guaranteeing that the system can still operate for r = 3
hours, even in case of a potential power outage.

The cost-to-go function of a policy π is defined as

Jπn (x0) =

n∑
t=1

αt−1
(
c+t u

+
t − c−t u−t

)
, (23)

where α ∈ (0, 1) is a discount factor (in the experiments,
α = 0.95), c+t and c−t are the costs of buying and selling
electricity (in the experiments: c+t = 1.0 and c−t = 0.95),
u+
t and u−t are the amount of bought and sold electricity.

They are the positive and the negative components of ut.

We consider three types of controllers discussed in Section
3: the full affine controller, (11), the controllers with fixed
past orders, (12), and the time-independent controllers.
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Note that, in our case, these controllers are (potentially
time-varying) affine functions of the energy balance, {εt}.
The uncertainty-dependent constraint sets, with one of the
aforementioned controllers (parametrized by θ), are

Z(ε) =
{

(h; θ) ∈ Rm+1 : Jπ,εn (x0) ≤ h, xε0 = x∗t0 ,

uεt = πt(x
ε
t−1 | θ), xεt = xεt−1 + uεt + εt,

uεt = u+
t − u−t , u+

t ≥ 0, u−t ≥ 0,

B ≥ xεt ≥ −εt − · · · − εt+r,

R ≥ −uεt − εt ≥ −R, t = 1, . . . , n
}
,

(24)

where xt is the state of charge of the battery, εt is the
energy balance (recall: the difference of energy production
and consumption), R is the maximum charge rate of the
battery, and B is the maximum capacity of the battery.

Then, we can simulate N i.i.d. “scenarios”, namely, energy
balance trajectories (as described in Section 5.1), and solve
the resulting scenario problem, (15), which is in this case
a standard (finite) linear programming (LP) problem.

Several numerical experiments were initiated to test the
SMPC approach. In all experiments, the bound on the
constraint violation probability was δ = 0.1, and the
confidence probability was 1 − β = 0.999. Ten-fold cross
validations were made, hence, the averages as well as the
standard deviations of the results are displayed. Each of
the ten generated datasets contained 128 real energy bal-
ance data, with the corresponding generated trajectories.
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Table 2. Number of Discarded Trajectories vs Con-
straint Guarantees (N = 1000, d = 3, β = 0.001)

430 151 67 43 28 21 15 8 3

50% 80% 90% 93% 95% 96% 97% 98% 99%

As we saw in Section 4, the number of decision variables
heavily influences the necessary number of trajectories to
guarantee a given chance constraint. Figure 2 presents
experiments about controllers with restricted number of
parameters. In that experiment, the horizon was n = 6 and
N = 500 trajectories were generated, to help comparing
the solutions. It can be observed that the simplest time-
independent controller (even with very low past order)
achieved similar results to the full affine controller.

One of the advantages of using a feedback controller is
that it can be applied for a longer period of time, hence,
we may not need to reoptimize the controller in each MPC
step. Figure 4 demonstrates, via the example of a (time-
independent) controller with past order 1 and horizon
n = 12, that the efficiency only slightly decreases over time
if we keep using the controller for more than one step.

The cumulative rewards (the profit for selling electricity)
of various controllers over a 72 hour period are demon-
strated by Figure 3. That experiment also studied the
effects of various horizon lengths and reoptimization fre-
quencies. The results show that although the full affine
controller with reoptimization frequency 1 (which had 54
parameters for a horizon of n = 6, and needed 783 tra-
jectories to guarantee the constraints with 90 %) was the
best, the much simpler time-independent variants (with
past order p = 2, having only 4 parameters, which just
needed 126 trajectories for a 90 % guarantee) achieved
comparable results, surprisingly, also the one which was
not reoptimized at all, during the whole experiment.

Finally, Figure 5 presents an experiment in which N =
1000 scenarios were generated, but several of them were
discarded. The performance over the 128 steps of a time-
independent controller with past order 1 are shown. To
select which scenarios to discard, we simulated the con-
troller (obtained in the previous optimization step) on all
the 1000 trajectories and removed the ones which achieved
the lowest rewards. Table 2 overviews the guarantees that
the constraints are not violated after discarding various
number of scenarios, see formula (20). Note that β = 0.001
was fixed, and there were only 3 decision variables. Figure
5 demonstrates that we can trade-off the constraint viola-
tion probability for achieving higher total rewards.

6. CONCLUSIONS

The paper studied a sampling-and-discarding approach
to SMPC for renewable energy systems. After the sys-
tem was decomposed into controllable and uncontrollable
parts, the value-at-risk formulation of the scenario ap-
proach for SMPC was described and its theoretical guar-
antees were surveyed. The ideas were then applied to a
public lighting microgrid. Several experiments were pre-
sented (e.g., about generating trajectories by bootstrap,
the effects of controller parametrizations, reoptimization
frequencies and discarding unfavorable scenarios) demon-
strating the viability of the approach, even for low order,
time-independent controllers that are rarely reoptimized.
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