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Computer and Automation Research Institute, Budapest, Hungary

E-mail address: akovacs@sztaki.hu

June 23, 2009

Abstract

This paper addresses the problem of storage assignment in a warehouse char-
acterized by multi-command picking and served by milkrun logistics. In
such a logistic system, vehicles circulate between the warehouse and the
production facilities of the plant according to a pre-defined schedule, often
with multiple cycles (routes) serving different departments. We assume that
a request probability can be assigned to each item and each cycle, which
leads to a special case of the correlated storage assignment problem. A MIP
model is proposed for finding a class-based storage policy that minimizes
the order cycle time, the average picking effort, or a linear combination of
these two criteria. Computational experiments show that our approach can
achieve an up to 36-38% improvement in either criterion compared to the
classical COI-based strategy.

Keywords: Storage assignment, correlated, warehousing, milkrun, mixed-
integer programming.

1 Introduction

The storage assignment problem involves the placement of a set of items in a ware-

house in such a way that some performance measure is optimal. We investigate
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this problem in the context of a warehouse from where items are delivered to the

production departments of the plant by milkrun logistics, i.e. vehicles circulating

according to pre-defined schedules. It is assumed that each milkrun cycle serves

the material requirements of different departments, and departments assemble di-

verse sets of end products, which implies that each milkrun cycle has a different

probability of requiring an item. We consider the milkrun routes to be part of

the input, and hence, disregard the vehicle routing aspect of the problem. Item

requests are processed simultaneously by multiple human order pickers.

The most important performance measures in a warehouse are generally re-

lated to the time or effort required for order picking, i.e. the retrieval of items

from the shelves and delivering them to the point where they will be picked up by

the appropriate vehicle. Informally, these performance measures can be optimized

by placing high-runner items near to the entrance of the warehouse, and by storing

items that are often ordered together close to each other. Technically, this prob-

lem is a special case of correlated storage assignment, where the organizational

structure behind the correlation among request probabilities of different items is

known and can be exploited by a mathematical model. We present a mixed integer

programming (MIP) formulation of the problem that can be solved by commercial

software in practically relevant problem sizes.

We show that minimizing order cycle time (maximum of individual pickers’

times) and minimizing expected picking effort (sum of pickers’ times) are con-

flicting criteria. Our MIP allows controlling the trade-off between these criteria

by minimizing a linear combination of the two, or minimizing one of them subject

to an upper bound on the other. The novel strategy has been compared to classi-

cal cube-per-order index-based (COI) techniques in computational experiments,

where it achieved an up to 36-38% improvement compared to COI, according
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either criterion.

1.1 A Motivating Industrial Application

Our research was motivated by an industrial application in a warehouse of an elec-

tronics manufacturer. The warehouse serves directly the requests arriving from

a couple of manufacturing and assembly departments located on the same site.

The examined warehouse stores a huge variety of small electronic components,

some of them consumed in large quantities by the plant. Large and heavy goods,

packaging material, or items that require special handling are stored in separate

warehouses. At the time of writing this paper, the warehouse is about to be ex-

tended significantly. A decision support tool is looked for to compute the best

storage policy for the initially almost empty warehouse. The main objective is

minimizing the picking effort needed for retrieving the requested items.

The warehouse is located in a spacious hall. After the extension, it will be

divided to four floors, with each floor consisting of a matrix structure of ca. 10

aisles and 4 cross-aisles. All items are stored in uniform boxes that can be easily

handled by a human picker. However, the company is planning to apply a couple

of different box sizes in the future to better match the characteristics of different

items. The total number of storage places approaches 105, while the number of

different items stored is expected to increase to 5000 in the future. The stock

held of a given item occupies 1-100 storage places, but only a single oldest box is

opened for picking. Therefore, stock splitting is not applicable.

The requested items are retrieved and delivered to the single entrance of the

warehouse simultaneously by a group of human order pickers. For the sake of

clear responsibilities, disjoint areas of the warehouse are assigned to individual

pickers. At the entrance of the warehouse, the picked items are loaded onto little
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trains, which circulate according to a pre-defined periodic schedule in a milkrun

system. The schedule contains 4 train departures – so-called milkrun cycles –

in each hourly period. Each cycle serves the material requirements of different

departments of the factory. About the half of the items are consumed in several

milkrun cycles. It is possible to estimate the probability pk
i that a pick list in cycle

k contains item i based on historic data, with occasional adjustments based on

forecasts when the product mix changes. However, more precise data, e.g. the

covariance of the random variables cannot be reliably extracted from this data.

Stock level forecasts are, however, available.

1.2 Related Literature

The storage assignment problem involves deciding where and how to store a set

of items in order to ensure optimal operation of the logistic system (de Koster

et al., 2007). Since order picking is the most critical and laborious operation in

the warehouse, it is common to optimize a measure of order picking performance,

e.g. to minimize expected picking (or travel) times, or order cycle times. The two

main families of storage strategies are the dedicated and the shared strategies.

Dedicated strategies store always the same item in the same slot. For this kind of

strategy and single-command picking, Heskett (1963) proved that the cube-per-

order index (COI) policy minimizes the average picking (or travel) time. This

policy sorts the items by increasing COI, i.e. the ratio of the stock volume to

the demand rate, and then places them sequentially to the closest free slots to the

entrance. The reciprocal of COI is called the turnover rate.

Shared storage strategies, in contrast, do not reserve slots for specific items,

which makes them more convenient when stock levels change over time. The

most important representatives of shared storage strategies are class-based storage
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strategies (Hausman et al., 1976; Petersen and Aase, 2004). These form classes of

items and partition the warehouse floor to zones, and finally assign each class of

items to a specific zone. Storage within a zone is random. In the case of single-

command (single-item) picking, it is typical to apply 2–6 zones, and define classes

based on the turnover rates of the items. In order to compensate for inventory level

changes, some empty reserve slots are kept in each zone. The positioning of zones

is addressed, e.g. in (Le-Duc and De Koster, 2005).

An alternative to class-based strategies is the duration of stay (DoS) policy

(Goetschalckx and Ratliff, 1990), which places different units of the same item

to different zones, depending on their expected duration of stay. Hence, when

a large shipment of an item arrives, a smaller quantity that will be used shortly

is stored near to the pick-up point, while the rest is put further away. The DoS

policy is optimal for single-command systems with perfectly balanced input and

output, i.e. when the quantity of arriving and departing items is the same for each

set of items that share the same turnover rate. However, (Kulturel et al., 1999)

has shown in simulation experiments that under more realistic assumptions, class-

based strategies outperform the DoS policy.

The case of multi-command picking (or multi-item orders) opens new grounds

for optimization: items that are frequently ordered together can be stored near to

each other in order to save travel time. This question is addressed in different

versions of the correlated storage assignment problem (CSAP) (Garfinkel, 2005).

Since most variants of CSAP are too difficult to be solved by exact methods for

practically relevant problem sizes, various heuristics have been studied. A general

approach is the cluster-first / zone-second heuristic (Frazelle and Sharp, 1989):

items are first clustered according to some measure of correlation, and then clus-

ters are assigned to zones based on their turnover rates. However, this decompo-
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sition may cause difficulties when there are multiple storage types, or zones with

different capacities and access times. Typically, a characterization of correlations

is extracted from historical data, but in some applications product structure can

also be used (Brynzér and Johansson, 1996).

Multi-command picking is often combined with multiple order pickers, each

assigned to disjoint zones, working simultaneously on the same order. This exten-

sion results in a situation where the classical optimization criteria are in conflict.

Roughly speaking, placing the items with positive correlation into the same zone

decreases expected total travel times, but may increase order cycle times, while

distributing them evenly does vice versa. The storage assignment problem with

multi-command picking has been investigated with the criteria of minimizing the

travel time between two products in the same order (Frazelle, 1990), minimiz-

ing total travel time (Brynzér and Johansson, 1996), minimizing the number of

multi-zone orders (Garfinkel, 2005), and balancing the workload among pickers,

i.e. assigning the same number of items from each order to each zone (Jane and

Laih, 2005).

For correlated assignment with a dedicated storage policy, Mantel et al. (2007)

introduced the order oriented slotting strategy and some corresponding heuristics.

The problem is examined by Sadiq et al. (1996) in a dynamic setting, with a

periodic revision of the assignments due to the variation of item turnovers over

time. Hence, decisions are made on re-warehousing (re-locating) the items.

The concept of milkrun logistics originates from the dairy industry. The no-

tion covers a transportation network where all input and output (I/O) material

requirements of several stations are covered by one vehicle that visits all these

stations, and circulates according to a pre-defined schedule (Baudin, 2005). This

transportation concept is economical when the I/O volume of each single station
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is essentially smaller than a truckload. The milkrun concept is frequently applied

in internal plant logistics to transport raw materials, finished goods, and waste be-

tween manufacturing or assembly stations and the warehouses of the plant. Often,

the plant is too large to cover it by a single milkrun cycle (single vehicle route),

and therefore multiple cycles are applied. This leads to a special type of correla-

tion among the request probabilities of items in the warehouse. To the best of our

knowledge, this special case of the correlated storage assignment problem has not

been studied yet in the literature.

2 Problem Definition

Below we give a formal definition of the storage assignment problem for the above

warehouse configuration and milkrun logistic system, which we will denote as

SAP-MR. A class-based storage strategy is looked for, with zones defined and

order pickers assigned to zones a priori.

Let us assume that the warehouse floor is divided into P × B disjoint zones,

where P is the number of order pickers, andB is the (maximum) number of zones

that belong to a picker. Each zone 〈p, b〉 (with p = 1, ..., P and b = 1, ..., B) has

a capacity of Cp,b completely identical slots (with Cp,b = 0 allowed, which means

that some of the pickers have less than B zones assigned). The warehouse has a

single entrance. There is a set of N items to be placed in this warehouse. Each

item i must be assigned to a single zone, where it will occupy si slots.

Orders are generated to this warehouse in accordance with the fixed milkrun

schedule: each time before a vehicle departs, an order is created that contains all

the items that are requested at the destinations of the vehicle. Each vehicle depar-

ture belongs to one of the K milkrun cycles. The probability that item i requested
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in milkrun cycle k is denoted by pk
i , and it is assumed that pk

i is independent of

the probabilities that characterize other items or other cycles. It is assumed that

the ordered quantity of an item does not influence essentially the picking time of

the item.

An order is handled by all the pickers simultaneously: each picker retrieves the

items stored in the zones assigned to him, and carries the items to the warehouse

entrance using a cart with unlimited capacity. The order picking time of each

individual picker is composed of the access times hp,b to the visited zones 〈p, b〉

and a constant retrieval time e for each item picked. It is assumed that the zones of

each picker are located sequentially behind each other. Hence, if there is an item

to be picked in zone 〈p, b〉, then all the zones 〈p, b′〉 with b′ ≤ b must be crossed

(accessed) to pick it. Accordingly, hp,1 stands for the double travel time between

the entrance and zone 〈p, 1〉, while hp,b with b ≥ 2 denotes the double travel time

between zones 〈p, b− 1〉 and 〈p, b〉.

The SAP-MR problem looks for finding an optimal class-based storage strat-

egy, i.e, an assignment of items to zones. We consider SAP-MR with two different

performance measures: minimizing order cycle time, T , which equals the maxi-

mum of the expected picking times of individual pickers; and minimizing average

picking effort,W , which is the sum of the individual picker’s picking times. These

two optimization criteria are in conflict, as it will be illustrated in an example in

Section 2.1. Furthermore, they can have different relative importance in different

applications. Consequently, we might wish to minimize one of these criteria, a

weighted sum of the two, or potentially minimize one criterion subject to an up-

per bound on the other. In this paper, we focus on minimizing the weighted sum,

but it is straightforward to adapt the model to any of the previous scenarios.

The example in Figure 1 presents the schematic drawing of a warehouse oper-
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Figure 1: A warehouse operated by 3 pickers, with 3 zones for each picker. Phys-
ically, each zone is composed of a matrix structure of aisles and cross-aisles.

ated by 3 order pickers. The notation used in this paper is summarized in Table 1.

Possible extensions to this basic model will be discussed later in Section 5.

2.1 Comparison to Classical Models

The solution of SAP-MR is an assignment of items to pre-defined zones, i.e., a

classical class-based storage policy that can be implemented easily in existing

ERP systems. Nevertheless, our approach computes this policy as a solution of

an optimization problem incorporating a rather sophisticated warehouse model.

This leads to significantly better performance compared to classical policies that

classify the items solely by their turnover rates.

We model explicitly the times required for each individual picker to retrieve

the required items from the warehouse. This allows us to measure the warehouse

performance from several aspects, and to find the most suitable tradeoff between

the different objectives. Namely, in this study we consider the order cycle time

and the average picking effort, which are conflicting criteria. To illustrate this,

let us consider a warehouse with two pickers and two zones for each picker, and

a single milkrun cycle. Assume there are two items, each of them occupying a
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Dimensions
N Number of items
P Number of pickers
B Number of zones per picker
K Number of milkrun cycles

Parameters
pk

i Request probability for item i in cycle k
si Capacity requirement of item i
Cp,b Capacity of zone 〈p, b〉
hp,b Access time to zone 〈p, b〉
e Unit item retrieval time
αT Weight factor of the picking time criterion
αW Weight factor of the picking effort criterion

Variables
xi

p,b Binary variable indicating whether item i is assigned to zone 〈p, b〉
qk
p,b Probability of accessing zone 〈p, b〉 in cycle k
ak

p,b Auxiliary binary variable, indicates whether the saturated sum
approximation of qk

p,b equals 1
rk
p,b Expected number of items picked from zone 〈p, b〉 in cycle k
tkp Picking time for order picker p in cycle k
T Order cycle time
W Average picking effort

Table 1: Notation used in the paper.

complete zone. Let e = 1, h1,1 = h2,1 = 5 and h1,2 = h2,2 = 1. Now, there are

two reasonable solutions to this problem. On the one hand, assigning both items

to the same picker (e.g., picker 1) results in t1 = 8 and t2 = 0, hence, T = 8

and W = 8. On the other hand, assigning the items to different pickers leads to

t1 = t2 = 6, hence, T = 6 and W = 12, as illustrated in Fig. 2. Therefore,

SAP-MR is a multi-criteria optimization problem. Our model allows to control

the tradeoff between the two criteria by minimizing their linear combination, or

by minimizing one of them subject to an upper bound on the other.

On the other hand, the consideration of milkrun cycles leads to a special case

10



 (a) (b) 

Figure 2: Two solutions of a sample problem. In solution (a), T = 8 and W = 8,
whereas in solution (b), T = 6 and W = 12. Hence, T and W are conflicting
criteria.

of the correlated storage assignment problem (CSAP). Exploiting the correlation

among request probabilities of different items by a mathematical model helps

achieve better warehouse performance than with classical models that disregard

any relation among the items.

Since milkrun logistics are commonly applied in internal plant logistics, SAP-

MR is a practically relevant special case. Moreover, data for characterizing the

correlation among items can be extracted reliably from existing databases, and as

it will be shown, the resulting problem can be solved by commercial MIP solvers

in reasonable time.

3 A Mathematical Programming Approach

3.1 Estimating Picking Times

With a given storage assignment, the probability that item i will be picked from

zone 〈p, b〉 in cycle k is pk
i x

i
p,b. This zone must be accessed by the picker if and

only if there is an item to be picked in this zone, or another zone behind it. Hence,

the probability that zone 〈p, b〉 must be accessed in cycle k equals
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qk
p,b = 1−

∏
b′≥b

∏
i

(1− pk
i x

i
p,b′). (1)

Furthermore, the expected number of items that must be picked from zone

〈p, b〉 equals

rk
p,b =

∑
i

pk
i x

i
p,b. (2)

Hence, the expected picking time of picker p in cycle k is

tkp =
∑

b

(hp,bq
k
p,b + erk

p,b). (3)

Then, the average picking effort is the sum of the expected picking times of

individual pickers,

W =
1

K

∑
k

∑
p

tkp. (4)

The order cycle time is the expected maximum of the picking times of indi-

vidual pickers. To obtain T , we estimate the expected value of the maximum by

the maximum of the expected values:

T ≈ max
k

max
p
tkp. (5)

Most of the above equalities can be handled well in a mixed-integer program-

ming (MIP) model, except for (1). To overcome this difficulty, we apply the first-

order saturating sum approximation of qk
p,b as follows:

qk
p,b ≈ min(

∑
b′≥b

∑
i

pk
i x

i
p,b′ , 1). (6)
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Note that the above approximation always overestimates the probability of

accessing the zones. Nevertheless, when this probability is either close to 0 or

1, this approximation is sufficiently precise. On the other hand, our model may

underestimate T .

3.2 A MIP Model

The MIP model of SAP-MR is presented below.

Minimize

αWW + αTT (7)

subject to

W =
1

K

∑
k

∑
p

tkp (8)

T ≥ tkp ∀p, k (9)∑
p

∑
b

xi
p,b = 1 ∀i (10)∑

i

six
i
p,b ≤ Cp,b ∀p, b (11)

tkp =
∑

b

(hp,bq
k
p,b + erk

p,b) ∀p, k (12)

rk
p,b =

∑
i

pk
i x

i
p,b ∀p, b, k (13)

qk
p,b ≥ ak

p,b ∀p, b, k (14)

ak
p,b ≥

1

M
(
∑
b′≥b

∑
i

pk
i x

i
p,b′ − 1) ∀p, b, k (15)

qk
p,b ≥

∑
b′≥b

∑
i

pk
i x

i
p,b′ − Mak

p,b ∀p, b, k (16)

xi
p,b ≥ 0 ∀p, b, i (17)

ak
p,b ∈ {0, 1} ∀p, b, k (18)
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The model addresses the minimization of a linear combination of the average

picking effort, W , and the order cycle time, T (7). The former is computed as the

sum, while the latter as the maximum of the individual pickers times (8 and 9).

Each item must be assigned to exactly one zone (10), in such a way that the ca-

pacity constraints are respected (11). Equality (12) states that the picking time of

individual pickers is composed of zone access times and unit item retrieval times.

Constraint (13) describes how the expected number of items to be picked is com-

puted for individual pickers. Finally, inequalities (14–16) encode the saturated

sum approximation of the probability of having to access a given zone in a given

milkrun cycle. Parameter M is a sufficiently large number, e.g.

M = max
p,b

Cp,b max
i,k

pk
i

si

. (19)

For efficiency reasons, we allow variables xi
p,b to be fractional. This corre-

sponds to splitting the stock (and also the request probabilities) of item i among

several zones. Nevertheless, typical MIP solution methods, applying simplex-

based algorithms for solving the LP sub-problems in a branch-and bound search,

ensure that relatively few items will be split, which can be handled by rounding

without major difficulties.

3.3 Discussion and Extensions

The SAP-MR problem, as it has been stated above, is NP-hard. This can be shown

by reduction from the two-partition problem. Note however, that the complexity

status depends on various details of the model. If the saturating sum approxi-

mation (6) is replaced by a maximum approximation (qk
p,b ≈ maxi p

k
i x

i
p,b′), then

the MIP reduces to an LP, and the problem becomes solvable in polynomial time.
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We do not suggest, however, the use of the maximum approximation, because it

does not capture an essential characteristic of the request probabilities, namely

that the joint probability of ordering at least one of the many low-turnover items

from a zone can be high. At the same time, if the assignment variables, xi
p,b,

were constrained to be integral, then the problem would be NP-complete indepen-

dently of the approximation applied, because it would contain bin packing as a

sub-problem.

The above presented MIP generalizes naturally to more realistic warehouse

models and picking processes, including

• various slot types; this requires stating the capacity constraints (11) sepa-

rately for each slot type in the MIP.1

• different milkrun cycles occurring with different frequencies; this implies

that different milkrun cycles have to be considered with different weights

when computing the average picking effort (see Eqn. 8);

• different pickers having different number of zones assigned;

4 Computational Experiments

The performance of the proposed approach to SAP-MR has been investigated in

computational experiments from two aspects: the improvement it achieved com-

pared to a COI class-based strategy, and the computational effort required.

The experiments were performed on randomly generated problem instances.

The parameters of our problem generator were the number of items (N ∈ {1000,

1Note that the problem cannot be decomposed by slot types, since the sub-problems would be
still interconnected through the access probabilities of the zones.
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2000, 3000}), the number of pickers (P ∈ {2, 4, 6}), the number of zones per

picker (B ∈ {1, 2, 3}), and the warehouse completeness (γ ∈ {0.6, 0.9}) that in-

dicates the ratio of the total capacity requirement of the items to the warehouse

capacity. The number of milkrun cycles was fixed to K = 4. We also fixed the

unit item retrieval time to e = 1, and used four different schemes for determining

the access times to zones (see Table 2). Generating 5 instances with all the 216

possible combinations of the above parameters resulted in 1080 problem instances

altogether. For each problem instance, we computed the optimal storage assign-

ments corresponding to the scenarios shown in Table 3 using the proposed MIP

approach, and a reference solution using COI.2

The proposed MIP has been implemented in ILOG CPLEX version 9.1. The

experiments were run on a 1.86 GHz Intel Xeon computer with 2 GB of RAM

under a MS Windows Server 2003 operating system, with a time limit of 1200

CPU seconds for each instance and each strategy.

N Access times Corresponding warehouse structure
δ1 hp,b = 10 + 5b All pickers on the same floor, quick access
δ2 hp,b = 20 + 10b All pickers on the same floor, slow access
δ3 hp,b = 10p+ 5b Pickers on different floors, quick access
δ4 hp,b = 20p+ 10b Pickers on different floors, slow access

Table 2: Access time schemes.

4.1 Comparison to the COI class-based strategy

For the comparison of the different strategies, the values of T and W originat-

ing from the MIP solutions were used. Note that when implementing a storage
2Technically, the COI approach has been implemented as a pre-assignment of the variables

xi
p,b in the MIP according to the turnover rates of the items. Hence, TCOI and WCOI have been

computed in a similar fashion as all other performance measures.
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Scenario Objective values Weights
αT αW

Minimize order cycle time Tmin 1 0
Minimize average picking effort Wmin 0 1
Tradeoff between the two criteria T ∗ W ∗ 1 1

Table 3: Optimization scenarios investigated.

strategy in reality, those values depend on various aspects neglected in this study,

such as the physical layout of the aisles and cross-aisles and the picking strategy.

Hence, the figures presented below are indicative values, and better estimates can

be computed only by a more detailed simulation of the picking process.

Observe that the COI class-based strategy is also a feasible solution of the pro-

posed MIP. This implies that our approach leads to at least as good performance as

COI, which means Tmin ≤ TCOI ,Wmin ≤ WCOI , and T ∗+W ∗ ≤ TCOI +WCOI

for the three optimization scenarios. The relevant question is the extent of cost

saving for the different warehouse structures. Table 4 presents the results grouped

by the number of pickers, P , number of zones per picker, B, and access schemes,

δ, which were the parameters that affected the performance the most. Each row

displays average results over 30 instances, for each of the three optimization sce-

narios. The results show that the improvement compared to COI is the largest for

high values of P and B, and access schemes δ1 and δ2 (especially δ1 in case of

the order cycle time criterion). The latter observance is explained by the fact that

when different pickers have very different access times (access schemes δ3 and

δ4), then COI leads to close-to-optimal strategies.

For the order cycle time criterion, the largest improvement achieved was 36.7%

for the P = 6, B = 1, δ1 instances. The smallest difference was 1.8% for P = 2,

B = 1, δ3, while the average improvement was 21.3%. For the average pick-
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ing effort criterion, our approach reached a 38.7% improvement for the P = 6,

B = 3, δ2 instances, and an average decrease of 19.4%. At the same time, this

criterion could not be improved for the P = 2, B = 1 instances. This was due

to the characteristic of those problem instances that one of the two zones could

be filled with items whose joint request probability was lower than 1 according to

the saturating sum approximation, which guarantees that the simple COI strategy

is optimal.

Another important observation is that for most of the instances, the two con-

flicting criteria can be improved simultaneously compared to COI. This is illus-

trated by the results for the tradeoff optimization scenario. The choice of weights

αT = αW = 1 favors rather the order cycle time criterion when there are few

pickers (P = 2), whereas it leads to a more significant decrease of the average

picking effort otherwise. Nevertheless, this behavior alters with different choices

of weights.

4.2 Run times

For each instance and each strategy, we measured the run time necessary for the

MIP solver to find a proven optimal solution. We experienced that the run times

depend mostly on the number of binary variables (number of pickers, P , number

of zones per picker, B, and number of milkrun cycles, K), and much less signif-

icantly on the number of continuous variables (including, notably, the number of

items, N ) or other parameters. Hence, Table 5 presents the results grouped by

P and B in rows, and contains the different optimization scenarios in columns.

Columns Opt display the number of instances out of 120 that could be solved to

optimality, while columns Time show the average run times measured in seconds,

or 1200 when the time limit was hit. The results illustrate that minimizing the

18



P B δ Order cycle time Avg. picking effort Tradeoff
Tmin/TCOI Wmin/WCOI T ∗/TCOI W ∗/WCOI

2 1 δ1 0.756 1.000 0.847 1.083
δ2 0.839 1.000 0.932 1.054
δ3 0.899 1.000 0.961 1.027
δ4 0.982 1.000 1.000 1.000

2 2 δ1 0.770 0.821 0.813 0.919
δ2 0.843 0.793 0.892 0.886
δ3 0.800 0.967 0.847 1.040
δ4 0.847 0.961 0.909 0.987

2 3 δ1 0.747 0.767 0.776 0.878
δ2 0.806 0.736 0.842 0.854
δ3 0.780 0.837 0.864 0.908
δ4 0.837 0.814 0.936 0.860

4 1 δ1 0.653 0.906 0.802 0.930
δ2 0.773 0.892 0.892 0.895
δ3 0.899 0.879 0.937 0.914
δ4 0.944 0.865 1.040 0.901

4 2 δ1 0.693 0.722 0.837 0.781
δ2 0.798 0.693 0.920 0.747
δ3 0.771 0.851 0.860 0.897
δ4 0.823 0.835 0.964 0.887

4 3 δ1 0.696 0.670 0.833 0.759
δ2 0.780 0.641 0.947 0.708
δ3 0.723 0.774 0.878 0.826
δ4 0.778 0.754 0.963 0.804

6 1 δ1 0.633 0.838 0.795 0.858
δ2 0.763 0.818 0.886 0.821
δ3 0.889 0.797 0.986 0.873
δ4 0.836 0.779 1.034 0.846

6 2 δ1 0.687 0.683 0.854 0.741
δ2 0.799 0.657 0.957 0.702
δ3 0.773 0.781 0.955 0.849
δ4 0.774 0.767 1.064 0.824

6 3 δ1 0.700 0.639 0.859 0.719
δ2 0.793 0.613 0.988 0.678
δ3 0.724 0.747 0.989 0.804
δ4 0.738 0.732 1.021 0.803

Table 4: Comparison to the COI approach, for three different optimization scenar-
ios. The figures show the quotient of the objective values achieved by the proposed
method and the COI approach. Values below 1 indicate improved performance.
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order cycle time is in general less complicated than minimizing the average pick-

ing effort or finding a tradeoff. A commercial solver is able to solve instances to

proven optimality within reasonable response time if P ×B ×K ≤ 40.

P B Tmin Wmin T ∗ and W ∗

Opt Time (sec) Opt Time (sec) Opt Time (sec)
2 1 120 0.0 120 0.0 120 0.0

2 120 3.0 120 6.7 120 9.2
3 120 16.0 120 26.0 120 44.0

4 1 120 2.0 120 26.3 120 27.9
2 120 26.3 100 358.9 106 353.7
3 120 207.8 85 567.3 67 675.6

6 1 120 6.7 108 356.0 103 356.5
2 120 98.5 61 765.6 60 759.0
3 87 432.9 35 966.0 30 989.3

Table 5: Computation times for different problem sizes and performance mea-
sures. Opt shows the number of instances solved to optimality out of 120, Time
displays the average solution times in seconds.

5 Conclusions and Discussion

In this paper we investigated the problem of storage assignment optimization in

warehouses served by milkrun logistics. We showed that the milkrun system leads

to a correlation among the request probabilities of items that can be exploited in a

mathematical programming model. The proposed approach offers a number of ad-

vantages over previous clustering-based solution methods for the correlated stor-

age assignment problem. It allows the explicit modeling of picking performance,

and finding the optimal tradeoff between conflicting criteria such as the minimal

order cycle time and the average picking effort. It can handle richer warehouse

models, such as zones with different capacities, or it can be extended easily to

various slot types. A MIP model of the problem has been proposed, and it has
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been shown in computational experiments that the proposed approach results in

an up to 36-38% decrease of order cycle time or average picking effort compared

to the classical COI approach. We see as a promising direction for future research

the extension of this approach to dynamic warehousing environments, i.e., the ad-

justment of an existing storage assignment to changes in item properties, with the

consideration of re-warehousing costs.
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