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This paper investigates the problem of integrated task sequencing and path planning in Remote Laser
Welding (RLW). It is shown that finding the appropriate order of welding tasks is crucial for exploiting
the efficiency of this new joining technology, and this can be achieved only if the robot path is considered
already at the time of sequencing. For modelling the problem, a novel extension of the well-know Travelling
Salesman Problem with neighbourhoods and durative visits, denoted as TSP-ND, is introduced. Basic
properties of this problem are formally proven, and a GRASP meta-heuristic algorithm is proposed for
solving it. Extensive computational experiments demonstrate that the novel approach solves efficiently
industrially relevant problems, and it achieves substantial improvement in cycle time compared to the
single earlier approach in the literature dedicated to RLW, as well as compared to a decomposition
approach to solving the TSP-ND model.
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1. Introduction

The recent development of a new generation of laser sources, such as Ytterbium fiber lasers, en-
abled laser welding with an operating distance (focal length) above one metre, using a laser scanner
mounted on an industrial robot. The rotating mirrors in the scanner ensure extremely fast posi-
tioning of the laser beam even between distant points on the workpiece. Hence, the emerging
technology, Remote Laser Welding (RLW) is extremely productive; a single RLW robot may re-
place up to 5 classical Resistance Spot Welding (RSW) robots (Buehrle, Bea, and Brockmann
2013). RLW also incurs a significantly lower cost-per-joint than RSW. In addition to the economic
gain, RLW eliminates the most important limitation of earlier joining techniques, the accessibility
issues between the welding gun and the workpiece. This, in turn, removes many earlier constraints
on workpiece design, an advantage that can be turned easily into parts with reduced weight, yet
higher stiffness (Park and Choi 2010).

Nevertheless, due to the high initial investment, the long-term profitability of RLW can be guar-
anteed only if the robot performs effective welding tasks continuously, with as little idle movement
between them as possible. This requires efficient process planning and effective robot program-
ming techniques. A crucial decision in process planning is sequencing the welding tasks. However,
process planing, and specifically task sequencing algorithms tailored to the needs of RLW hardly
exist (Reinhart, Munzert, and Vogl 2008).

Our general objective is developing an interactive off-line programming (OLP) toolbox with
strong optimisation capabilities for RLW (Erdős et al. 2015). In this paper, we propose novel, effi-
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cient methods for integrated task sequencing and path planning. A formal model is introduced that
captures all important aspects of RLW, leading to a novel extension of the well-known Travelling
Salesman Problem (TSP) with neighbourhoods and durative visits. It is shown that the straight-
forward decomposition approach to solving this problem may lead to arbitrarily poor solutions.
Therefore, an efficient GRASP meta-heuristic algorithm is proposed for solving the two components
of the problem in an integrated way. The approach is evaluated on real industrial data.

The adequacy of a model that ignores potential collisions for task sequencing stems from a com-
mon design guideline in RLW that the access volumes of the welding stitches must be left clear.
Still, industrial data shows that this guideline is sometimes overridden by other design objectives,
and hence, the calculated path might need to be adjusted to ensure a collision-free robot trajec-
tory. Algorithms for collision-free path planning that adjust the path calculated by the techniques
proposed below have been introduced in (Kovács 2014), and they are discussed in this paper, too.

This paper is partly based on earlier results published in the conference paper (Kovács 2013),
however, it presents a new, formal model with a proof of its key characteristics, improved algo-
rithms, and computational evaluation on real industrial data.

The paper is organised as follows. First, a brief review of the technological background and
the related literature is given. Then, the task sequencing and path planning problem is defined
(Section 2) and the formal characteristics of the proposed model are investigated (Section 3). The
algorithms proposed for solving the problem are presented in Section 4. Computational experiments
on industrial data are reported in Section 5. Finally, the application of the results in an OLP system
is discussed (Section 6) and conclusions are drawn.

1.1 Technological Background

1.1.1 The Welding Process

An RLW operation consists in joining two or more sheet metal parts at various joints using a laser
beam to transmit the required energy. In this paper, we assume stitch welds, i.e., disjoint linear
or circular welding stitches with a length of 15-30 mm each. During the operation, the parts are
held in a fixture, which is either stationary or attached to a rotating table. It is assumed that the
operation is performed by a single RLW robot. A typical RLW robot consists of a robot arm with
4 rotational joints and a laser scanner. The robot arm moves the scanner with a maximum speed
of 0.2-0.5 m/s, and due to the low scanner weight, with a rather high acceleration. The scanner
contains two mirrors for the rapid positioning of the laser beam (up to 5 m/s), and a lens system
to regulate the focal length. Hence, the robot is a redundant kinematic system with 7 degrees of
freedom, in which the mirrors of the scanner move an order of magnitude faster than the mechanical
joints of the robot arm. A typical RLW robot is depicted in Figure 1.

The robot can weld a stitch if the scanner is located within the focus range (e.g., 800-1200 mm)
from the stitch, and the inclination angle (i.e., the angle between the laser beam and the surface
normal) is not more than a specified technological parameter (e.g., 15 − 30◦). Each stitch must
be welded without interruption, at a pre-defined speed and laser power (e.g., 50 mm/s and 4kW),
which depend on the thickness and the material of the parts to join. The robot can weld the stitch
while in motion, therefore, the trajectory of the scanner must be a curve in the 3D space, such
that sufficient time is spent over each stitch. Typically, there are 30-75 stitches to weld in an RLW
operation in the automotive industry.

Using an industrial robotics analogy, the laser beam can be considered as the end effector of the
robot. This allows us to define the Tool Center Point (TCP) as the end point of the beam, moving
together with the robot and taking different positions over time on the surface of the workpiece.
Furthermore, let us call the mid-point of the last, rotating mirror in the scanner head the Scanner
Center Point (SCP). The SCP can be regarded as the origin of the laser beam, and the beam
connects the SCP and the TCP in a straight line. In our work, we focus on planning the trajectory
of the SCP, in contrast to earlier works that put emphasis directly on the trajectory of the TCP.
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Figure 1. RLW robot welding a car front door, positioned in a fixture. The broken line indicates the path of the robot’s scanner
head, with blue sections standing for movement while welding and yellow sections for idle movement.

1.1.2 Off-line Programming for RLW

In industrial practice, robot programming is still mostly performed by on-line programming, i.e.,
by manually guiding the robot from one position to the next, at very small steps. This approach is
rather time consuming, it does not allow effective optimisation, and hence, easily results in severely
sub-optimal robot paths.

Our goal is to implement a complete OLP toolbox for RLW, which can provide an automated
method for computing close-to-optimal robot programs. This involves, after the validation of the
input by accessibility analysis, the optimisation of the task sequence; robot path planning; the
placement of the workpiece in the robot working area; the inverse kinematic transformation that
converts the path from the workpiece coordinate system to the robot joint coordinate system;
and the simulation of the robot path, including collision detection. Finally, the robot program is
generated in an automated way. This paper focuses on the first planning step, as displayed in
Figure 2. The complete workflow is presented in detail in (Erdős et al. 2015, 2014).

1.2 Literature Review

1.2.1 Mathematical Methods for Task Sequencing

Problems involving the sequencing of a set of robotic tasks are naturally modelled as a Travelling
Salesman Problem (TSP) or one of its numerous extensions. Certain manufacturing technologies,
such as RLW, painting, or inspection, allow some flexibility in choosing the robot positions for each
task. If the candidate positions of the effective tasks form a finite set, the obvious model becomes the
Generalised TSP (GTSP), in which nodes are ordered into classes, and each class must be visited
exactly once. Methods for transforming a GTSP into an ordinary TSP with the same number
of nodes have been introduced in (Noon and Bean 1993) and in (Behzad and Modarres 2002).
Helsgaun (2015) showed that the resulting TSP instances, despite their degenerate structure with
extreme edge weights, can be solved efficiently by using the state-of-the-art TSP solver LKH, with
appropriate parameter settings and post-processing heuristics. Exact and approximation algorithms
for solving GTSPs have been proposed by Rice and Tsotras (2013). The Lin-Kernighan heuristic
has been adapted to the GTSP, and compared with other GTSP heuristics in (Karapetyan and
Gutin 2011).

The continuous space variant of GTSP is called TSP with neighbourhoods (TSPN), where the
shortest tour that visits the given spatial regions is looked for. TSPN was originally introduced
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Figure 2. Workflow in the OLP system (Erdős et al. 2015).

by Arkin and Hassin (1994). The approximability of TSPN is investigated in (Safra and Schwartz
2006). Constant-factor approximation algorithms for TSPN over a set of disjoint, connected regions
in the plane are proposed in (Elbassioni, Fishkin, and Sitters 2009). A mixed-integer non-linear
programming approach to solving TSPN with polyhedral or ellipsoid regions in the 2D or 3D space
is introduced in (Gentilini, Margot, and Shimada 2013).

With a pre-defined sequence, and the additional assumption that the regions to visit are 2D
polygons, TSPN simplifies to the Touring (a sequence of) Polygons Problem (TPP). While TPP
is NP-hard in general, it can be solved efficiently for convex polygons (Dror et al. 2003). TPP
problems in robotics are classically addressed using the Rubberband Algorithm (RBA), which has
been proven to achieve a constant approximation of the optimal solution for a number of TPP
variants in (Pan, Li, and Klette 2010).

1.2.2 Task Sequencing and Path Planning in Manufacturing

We are aware of a single earlier approach to task sequencing and path planning specifically for
RLW and remote laser cutting, introduced in a series of papers (Reinhart, Munzert, and Vogl
2008; Hatwig et al. 2012). The proposed algorithms are designed mostly for planar workpieces:
task sequencing is performed by solving a TSP over the fixed welding stitch positions, and a robot
path is computed in a 2D plane above the workpiece. A similar model is applied and heuristics are
proposed for path planning in laser cutting in (Dewil, Vansteenwegen, and Cattrysse 2014; Dewil
et al. 2015), with sophisticated ordering constraints among the contours to cut.

A generic task sequencing and collision-free path planning model, with illustrations from RSW
is presented in (Saha et al. 2006). A critical assumption is that the robot can execute each effective
task from a relatively small set of candidate configurations, e.g., at most 10 robot configurations
per task, which can be generated a priori. An iterative algorithm is proposed that tries to compute
as few point-to-point collision-free paths as possible, hence avoids solving unnecessary, computa-
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tionally demanding subproblems. The difficulty in applying this approach to RLW stems from the
fact that efficient paths in RLW exploit the free movement of the robot in the continuous space
while welding.

The minimisation of processing time in a milling operation is investigated in (Castelino, D’Souza,
and Wright 2002). A GTSP approach is proposed, where the nodes correspond to the candidate
tool entry/exit points for machining a feature. The problem of 2D cutting path optimisation is
modelled as a TSPN and solved using a two-step genetic algorithm in (Lee and Kwon 2006). The
same problem in the context of nibbling on an NC turret punch press has been investigated by
Veeramani and Kumar (1998), who proposed a heuristic that alternates between solving the two
sub-problems related to sequencing and to pierce point determination. A similar TSPN model is
proposed in (Alatartsev et al. 2013) for sequencing a set of robotic tasks whose start/end points
can be chosen arbitrarily along open or closed contours. Task sequencing for a combined punching
and laser cutting machine is addressed in (Wang and Xie 2005) using ant colony optimisation and
in (Xie, Gan, and Wang 2009) using genetic algorithms. A multi-objective constraint optimisation
model is proposed in (Kolakowska, Smith, and Kristiansen 2014) for task sequencing in spray
painting, for minimising cycle time and maximising paint quality.

A recent survey on task sequencing in robotics has been presented in (Alatartsev, Stellmacher,
and Ortmeier 2015). The integration of task planning and motion planning has received significant
attention in the robotics community recently, with special attention to applications in navigation
and manipulation. Various approaches combine symbolic planners as high-level solvers and motion
planners as subproblem solvers, see, e.g., (Kaelbling and Lozano-Perez 2011; Srivastava et al. 2014).

2. Problem Definition

Briefly, the investigated process planning problem consists in sequencing the individual welding
stitches and computing a corresponding SCP path, in such a way that the cycle time of the
complete welding operation is minimised.

Formally, let there be given a set of n welding tasks, denoted by {s1, s2, ..., sn}, to be executed by
a single RLW robot in one operation. Each task corresponds to welding a single linear or circular
stitch. Accordingly, with a slight abuse of the notation, the stitch corresponding to task si will
also be denoted by si. Each task is characterised by its associated welding time, ti, and its access
volume, AVi, the set of SCP positions in the 3D Cartesian space from where si can be welded.

The technological constraints on the maximum inclination angle and the focus range imply that
AVi is a truncated cone above stitch si, with its axis corresponding to the surface normal at the
stitch, as shown in Figure 3. Strictly speaking, this definition would require spherical outer and
inner bases for the truncated cone. However, to benefit from convex AVs, we approximate this
shape by using a planar inner base, while leaving a spherical outer base. Since the length of a stitch
is significantly smaller than other characteristic dimensions in the welding process, it is reasonable
to assume that all points of a stitch can be processed from the AV belonging to the mid-point of
the stitch.

The maximum robot speed (speed of the SCP) is denoted by v. The objective is minimising
the cycle time, i.e., the time required for the robot to travel the computed path while welding the
stitches. The following assumptions are made:

• The stitches must be welded by a single welding robot that is able to position the laser beam
at a single stitch at a time.
• Each stitch must be welded without interruption.
• The robot has a sufficiently large working area that includes the complete AV of all stitches.
• The maximum SCP speed, v, is independent of the position in the working area.
• The robot has low inertia, and therefore, acceleration limits can be disregarded.
• The scanner can position the laser beam in zero time.
• Any stitch sequence is feasible.
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Figure 3. Access Volume (AV) of a welding stitch. The robot trajectory, denoted by a red broken line in this figure, must

spend sufficient time in the AV of each stitch to weld that stitch.

• Potential collisions are disregarded at this phase of the planning hierarchy.

It should be observed that in areas where the time required for welding dominates the time
required for travelling the path, a path with minimal cycle time may include unnecessary zigzags.
Such a path may increase the energy consumed by the robot due to the greater path lengths and
unnecessary curves, and ultimately, may be unacceptable for human experts. To avoid such paths,
we add both the SCP path length and the TCP path length to the objective, with appropriately
chosen low multipliers.

3. A TSP Model with Neighbourhoods and Durative Visits

3.1 Model Definition

In order to give a formal model for the integrated task sequencing and path planing problem,
we define an extension of TSP called the Travelling Salesman Problem with neighbourhood and
Durative visits (TSP-ND) as follows:

Definition 3.1 (TSP-ND). In an instance of TSP-ND, there are given n potentially overlapping,
compact regions in the (2D or 3D) Euclidean space. A minimum-duration trajectory is sought
that visits all regions in an arbitrary order, and spends ti time visiting region i. Visits are non-
interruptible and exclusive (i.e., two visits cannot overlap in time), but a trajectory may spend
additional time inside regions, e.g., for traversing the region or for visiting other, overlapping
regions. The maximum travel speed along the trajectory is a given constant v.

Additionally, the location where the trajectory starts (ends) visiting region i is called the start
point (end point) of visit i. These points will be denoted by ai and bi, respectively. It is assumed
that ai and bi is located along the trajectory in such a way that the visit between them takes
exactly ti time. Accordingly, due to the potential additional time spent in the region, ai and bi may
not coincide with the points where the trajectory first enters or at last leaves the region. With a
given ordering of the visits, [i] will be used to denote the index of the ith visit according to the
given sequence.

Now it is easy to see that there exists a mapping from the integrated task sequencing and path
planning problem for RLW to TSP-ND in the 3D space with convex regions as follows. Region i
in TSP-ND corresponds to the AV of stitch i. The trajectory must spend ti time visiting region i,
and the maximum travel speed is v.
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3.2 Structure of the Optimal Solution

In this section, we limit our attention to TSP-ND with convex regions. For such instances, the
optimal trajectories can be characterised by the following two lemmas. Below, ab denotes a straight
linear path between two points a and b, ãb is an arbitrary curve between the same points, and | · |
is the Euclidean distance norm.

Lemma 3.2. Any TSP-ND instance with convex regions admits an optimal solution where, for
each visit, the start and end points a[i] and b[i] are connected by a straight line segment a[i]b[i] (1).
Moreover, in every optimal solution, the end point of a visit b[i] and the start point of the subsequent

visit a[i+1] are connected by a straight line segment b[i]a[i+1] (2).

Proof. Let there be given an optimal TSP-ND solution. Now, replacing for each region [i] the

curve ã[i]b[i] by a straight line segment a[i]b[i] maintains the feasibility of the solution, since the
regions are convex. Moreover, this modification does not increase the solution cost, from which
(1) follows. Assume that in this solution, the end point of one visit b[i] and the start point of the

subsequent visit a[i+1] are connected by a curve ˜b[i]a[i+1] that differs from the straight line segment

b[i]a[i+1]. Then, replacing ˜b[i]a[i+1] by b[i]a[i+1] in the solution strictly decreases the solution cost,
which contradicts the optimality of the original solution, and hence proves statement (2). �

Consequently, the optimal trajectory for a TSP-ND with convex regions is a broken line path
with 2n (potentially coinciding) breakpoints ai and bi.

Lemma 3.3. In every optimal solution of a TSP-ND with convex regions, for each i, the start
point a[i] is the nearest point to the end point b[i−1] in the intersection of region [i] and the sphere
around b[i] with radius vt[i]. The symmetric statement holds for the location of end points b[i].

Proof. By the definition of TSP-ND, a[i] must be located in region [i], at most vt[i] far from point
b[i]. Among this set of feasible points, the location that minimises the solution cost is the point

that minimises the distance |b[i−1]a[i]|. �

3.3 Performance of the Decomposition Approach

The classical approach in manufacturing is solving the task sequencing and the path planning prob-
lems sequentially, one after the other. This decomposition approach involves solving the sequencing
problem as a TSP over a graph with one vertex corresponding to an appropriately selected point
in the 3D space for each stitch. The critical issue then is selecting the appropriate 3D points in the
AVs, and in the lack of good heuristics, the straightforward solution is using the mid-point of the
AV. Below we show that the performance of this approach can be arbitrarily bad.

Lemma 3.4. The performance of the decomposition approach to solving TSP-ND using the mid-
points of the neighbourhoods can be arbitrarily bad.

Proof. We prove this lemma by giving an appropriate construction scheme, for the ease of un-
derstanding, in 2D. Let the TSP-ND instance contain 2n rectangular neighbourhoods, located in
two rows of n embedded rectangles as shown in Figure 4. The height of each rectangle is 1 unit,
the widths are 6, 12, 18, ... units in each row, and the two rows are located 1 unit away from
each other. The mid-points of the rectangles are denoted by Pi. The vertical distance between
two neighbouring mid-points is then 2 units, whereas the horizontal distances are 3 units. The
optimal TSP solution according to the decomposition approach is (P1, Pn+1, Pn+2, P2, P3, Pn+3, ...,,
as shown by the red dotted line in the figure. With the assumption that the travel speed is 1 unit
and visits take ε time, this results in a TSP-ND solution where the path crosses between the two
columns of rectangles n times, which takes n+ 2nε time.

In contrast, the optimal TSP-ND solution is a path that visits all the rectangles in the same
column at once, crossing between the two columns only once, illustrated by a blue dashed line in

7



May 26, 2015 International Journal of Production Research ijpr2014

P
1

P
4

P
3

P
2

P
n+1

P
n+4

P
n+3

P
n+2

Figure 4. An instance where the performance of the decomposition approach can be arbitrarily bad. The red dotted line
illustrates the solution of the TSP over the neighbourhood mid-points, whereas the blue dashed line shows an optimal TSP-ND

solution.

the figure. Travelling this path takes only 1 + 2nε time. Hence, with n → ∞, the performance of
the decomposition approach is indeed arbitrarily bad. �

It is emphasised that the above construction scheme can be easily adapted to 3D instances for
RLW as well, with coplanar AV midpoints located exactly as above, and the axes of all truncated
cones corresponding to horizontal lines in that plane.

4. A GRASP Meta-heuristic Algorithm

This section proposes a meta-heuristic approach based on Greedy Randomised Adaptive Search
Procedures (GRASP) for solving the task sequencing and path planning problem in an integrated
way. GRASP is a widely applied and efficient meta-heuristic for solving hard combinatorial opti-
misation problems (Pitsoulis and Resende 2002). It successively computes heuristic solutions by a
randomised greedy algorithm, and improves them by a hill climbing local search. Upon reaching
a local optimum, i.e., a solution that cannot be improved further, a new randomised solution is
constructed. This procedure is iterated until a time limit is hit. The pseudo-code of GRASP for
a minimisation problem can be sketched as follows, with f(x) standing for the objective value of
solution x, x∗ for the best known solution, and f∗ for its objective value:

PROCEDURE Grasp
f∗ :=∞
WHILE the time limit is not hit
Compute a greedy randomised solution → x
Local search from x until local opt. → x′

IF f(x′) < f∗ THEN
x∗ := x′

f∗ := f(x∗)
RETURN x∗

In successful applications of GRASP, both the embedded randomised greedy algorithm and the
local search relies on powerful operators for the specific problem domain. Below, we propose an
algorithm that combines adaptations of classical local search operators for TSP for modifying
the task sequence and geometric computation techniques for path planning. At all times, the
algorithm maintains a stitch sequence (or partial sequence during the construction phase) and a
close-to-optimal path corresponding to that sequence as the current solution. Below we review
the algorithms associated to each step of the GRASP procedure, i.e., the construction heuristic,
the improvement heuristic, and the path planning algorithm that computes the path for each new
candidate sequence constructed by the two heuristics.

8



May 26, 2015 International Journal of Production Research ijpr2014

4.1 Greedy Solutions

Initial greedy solutions are constructed using an adapted version of the farthest insertion heuris-
tic (Rosenkrantz, Stearns, and Lewis 1977) for TSP. The algorithm starts with a partial solution
consisting of two stitches whose AV mid-points are the farthest from each other. The path corre-
sponding to these two stitches is a linear section that connects the closest points of the two AVs.
Then, in each iteration, for each stitch not yet sequenced, the algorithm looks for the best posi-
tion for inserting the given stitch into the current path, by calling the path planner algorithm for
evaluating all possible insertion positions, including at the beginning or at the end of the current
path. The stitch whose best insertion causes the greatest increase in the cycle time is selected,
and it is inserted at its best position. Randomisation is achieved by perturbing the cost of each
candidate insertion. The intuition behind farthest insertion is that the approximate shape of the
path is formed as early as possible, which renders it one of the most efficient heuristics for TSP
with Euclidean distance measures.

The pseudo-code of the algorithm is displayed below, where π is the current path, and set U
contains, at all times, the stitches not yet sequenced. Function dmid(i, j) denotes the distance
between the midpoints of AVi and AVj , whereas C(π[p, k]) stands for the cycle time computed by
the path planner for path π with stitch k inserted into it at position p. Both dmid(·) and C(·) include
a random perturbation in the form of a multiplier drawn from the uniform random distribution
over [1.0, 1.05) in the current implementation.

PROCEDURE GreedySolution
LET (i, j) := arg maxi,j∈U dmid(i, j)
LET π = [i, j]
LET U := {1, ..., n} \ {i, j}
WHILE U 6= ∅
LET (k∗, p∗) := arg maxk∈U minp C(π[p, k])
Insert k∗ into π at position p∗

U := U \ {k∗}
RETURN π

4.2 Improvement by Local Search

The adopted hill climbing search modifies the initial solution iteratively using a best improvement
strategy. In each iteration, it scans the neighbourhood of the current solution, and selects the
neighbouring solution (task sequence and corresponding path) characterised by the lowest cycle
time. If the neighbour improves on the cycle time of the current solution, the search continues
by moving to this best neighbour. Search terminates when no further improvement can be made,
which indicates that a local optimum is found.

Due to the high complexity of constructing a neighbour, the emphasis was given to relatively
small-size neighbourhoods: the 2-opt (deleting two edges and re-connecting the sequence) and
or-opt (relocating a sub-sequence of max. length k to another position, in forward or backward
orientation) neighbourhoods, with sizes O(n2) and O(kn2), respectively (Johnson and McGeoch
1997). In the actual implementation, the value of k = 5 was applied. The two neighbourhood
functions are illustrated in Figure 5.

In order to reduce the computational burden of constructing paths for every neighbour, the cycle
time of each neighbour is heuristically estimated first, without running the path planner on the
modified sequence. Let R = {(i, j)} denote the set of edges (i, j) removed from the current sequence
by the applied neighbourhood function. The time of travelling along these edges on the current
path then equals 1

v

∑
(i,j)∈R |biaj |. Analogously, let A = {(i, j)} stand for the set of edges added

to the sequence by the neighbourhood function. A lower bound estimate of the time of travelling
these edges is given by 1

v

∑
(i,j)∈A d(AVi, AVj), where d(AVi, AVj) is the minimum distance of AVi
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Figure 5. Illustration of the 2-opt (left) and the or-opt (right) neighbourhood functions. In this example, or-opt relocates the
sub-sequence highlighted with thick line.

and AVj . Finally, let C0 denote the cycle time of the current solution. Hence, the heuristic

CH = C0 −
1

v

 ∑
(i,j)∈R

|biaj | +
∑

(i,j)∈A

d(AVi, AVj)


under-estimates with high confidence the cycle time of the neighbour. Still, CH is not a valid lower
bound, since the path segments corresponding to edges not affected by the neighbourhood function
may be modified by path planning. The neighbourhood is filtered by fathoming all neighbours that
have CH > C0 without planning a path for these sequences.

4.3 Path Planning

The path planner computes a close-to-optimal SCP path for each task sequence modified by one of
the above heuristics. This is performed by the Rubberband Algorithm (RBA), an efficient greedy
method which has been proven to converge to the optimal path for various related problems, see,
e.g., (Pan, Li, and Klette 2010). Nevertheless, it is possible to construct instances of TSP-ND where
RBA gets stuck in a local optimum.

For computing an SCP path for a neighbour, RBA departs from the path in the current solution,
and adapts it to the changes performed by the neighbourhood function. The algorithm sweeps
along the path, and adjusts a single corner point of the broken line at a time to its locally optimal
position. According to Lemma 3.3, the new position of a start point a[i] must be the position in
the intersection of AV[i] and a sphere around b[i] that minimises the distance d(b[i−1], a[i]). This
position a′[i] can be computed using closed-form geometric calculations.

The new positions of end points b[i] can be calculated in a similar way, exploiting the symmetry
that these are starting points belonging to the same stitch along a reversed path. Finally, the start
and end points of the broken line path are determined as a[1] := b[1] and b[n] := a[n]. Sweeps along
the path are iterated until the reduction of the cycle time between two subsequent iterations is
lower than a given threshold, 0.03% in the current implementation.

5. Experimental Results

The proposed models and algorithms have been evaluated on problems involving the assembly of
a car front door using RLW. Experiments have been performed on real industrial data, containing
a single door geometry with different stitch layouts and realistic technological parameters. The
experiments investigated the solution quality achieved using the proposed techniques, and they
involved computing a task sequence and a robot path using three different algorithms:
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Figure 6. Comparison of the cycle times achieved by the three different algorithms for the 24 test instances.

• TSP[stitch], the single sequencing algorithm dedicated to RLW from the literature (Reinhart,
Munzert, and Vogl 2008), which solves the sequencing problem as a TSP over the stitch
positions. Implicitly, the approach minimises the length of the TCP path, which is only
loosely related to the cycle time. A robot path is computed for the given sequence by using
the algorithm described in Section 4.3.
• TSP[AV], an algorithm that solves a TSP over the AV mid-points for computing the stitch

sequence. While from the computational aspect it is very similar to TSP[stitch], it can be
considered as the straightforward decomposition approach to solving the TSP-ND model of
the problem, see Section 3.3;
• INTEGRATED, the algorithm proposed above for integrated task sequencing and path plan-

ning, adopting the TSP-ND model.

The available industrial data contained 10 different stitch layouts for welding (instance names
W1-W10), as well as two layouts for laser dimpling operations (instances D1 and D2). The original
data set was cleaned to remove inconsistencies and to ensure that all stitches can be welded along
a collision-free robot path. The experiments were performed using a maximum inclination angle
of 15◦ and 30◦ as well (instance names postfixed with -15 and -30), which resulted in 20 different
welding instances and 4 dimpling instances altogether. The number of stitches in an instance varied
between 28 and 71.

The detailed comparison of the performance of the three algorithms is presented in Table 1.
Each row stands for a separate problem instance. Column n contains the number of stitches. For
each algorithm, columns time and len contain the cycle time and the path length belonging to the
stitch sequence computed by the given algorithm. The best values encountered over the different
algorithms are highlighted by bold font for each instance. The cycle time achieved by the different
algorithms are also visualised in Figure 6.

The experiments were run on a 2.40 GHz Intel Core i5 computer with 4GB RAM. TSP[stitch]
and TSP[AV] used ILOG CP as a TSP solver. It is noted that ILOG CP terminated in local optima
typically in less then 1 second, whereas INTEGRATED was run for 600 seconds on each instance.
This time limit allowed typically 100-200 iterations in the GRASP meta-heuristic, involving a total
of 5000-8000 iterations during the hill climbing searches and evaluating 4-6·106 sequences by path
planning.

The results unambiguously indicate the dominance of proposed TSP-ND model (algorithms
INTEGRATED and TSP[AV]) over the classical minimisation of the TCP path (algorithm
TSP[stitch]), see Figure 7. For workpieces with complex geometry, TSP[stitch] is completely inad-
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Table 1. Comparison of the TSP[stitch], TSP[AV], and INTE-

GRATED algorithms.

TSP[stitch] TSP[AV] INTEGRATED
n time len time len time len

W1-15 28 29.61 14.24 13.60 5.35 13.62 5.26
W2-15 34 34.66 15.97 15.54 5.72 15.41 6.07
W3-15 62 75.87 35.33 26.13 7.11 25.91 7.33
W4-15 44 55.54 25.98 19.02 6.19 18.34 6.59
W5-15 64 74.66 34.51 25.42 7.07 25.21 6.95
W6-15 63 74.29 34.49 25.08 7.14 24.91 6.67
W7-15 63 74.29 34.49 25.08 7.14 24.91 6.67
W8-15 71 77.47 33.90 29.70 6.98 29.35 7.30
W9-15 67 66.27 28.74 27.67 7.01 27.63 6.67
W10-15 71 86.60 39.40 30.53 7.61 29.96 7.12

D1-15 59 20.11 11.80 9.10 5.40 8.54 5.06
D2-15 62 36.63 21.51 11.84 7.02 10.79 6.36

W1-30 28 24.14 11.54 12.31 4.69 10.72 4.40
W2-30 34 28.53 12.81 14.30 5.11 13.11 4.38
W3-30 62 68.17 30.81 24.96 6.65 22.65 5.43
W4-30 44 50.46 22.82 18.24 5.88 16.15 4.55
W5-30 64 66.05 29.84 23.64 6.68 21.87 5.38
W6-30 63 65.36 29.64 23.30 6.55 21.78 5.32
W7-30 63 65.36 29.64 23.30 6.55 21.78 5.32
W8-30 71 71.61 30.68 28.79 6.71 26.67 5.66
W9-30 67 61.85 26.35 26.44 6.54 24.60 5.71
W10-30 71 80.72 36.10 29.70 7.30 26.98 6.01

D1-30 71 45.72 26.65 9.81 5.80 7.88 4.64
D2-30 71 63.83 37.34 12.02 7.15 9.58 5.53

Avg. 58 58.24 27.27 21.06 6.47 19.93 5.85

equate, since it moves the scanner head in a zigzag above stitches that have nearby positions but
different surface normals. In case of a car door, this phenomenon is the most spectacular around
the window frame, where the stitches on the inner and the outer sides are close to each other, but
must be welded from opposite directions. Consequently, in our experiments, TSP[stitch] resulted
in 2-6 times higher cycle times and path lengths than INTEGRATED and TSP[AV].

Regarding the performance of the algorithms working on the TSP-ND model, INTEGRATED
computed on average 5.7% lower cycle times and 10.7% shorter paths than TSP[AV]. INTE-
GRATED also found the lowest cycle time for 23 instances, and the shortest robot paths for 20
out of the total 24 problem instances. The difference was particularly significant on the instances
with 30◦ inclination angle, where INTEGRATED could efficiently exploit the large access volumes
to weld and move the robot in parallel, resulting in an average gain of 12% in cycle time and 21.2%
in path length. The most significant difference (24.5-25.5% in cycle time and 25.0-29.2% in path
length) was encountered on the dimpling instances D1-30 and D2-30, in which the duration of the
effective tasks is dominated by the duration of robot motion, and hence, nearly all tasks could be
executed while the robot was moving. The reduction of the cycle time and the path length also
decreases the energy consumption of the RLW workstation and the RLW robot itself.

Obviously, various other approaches might be successful in solving TSP-ND, including iterative
methods or algorithms based on the discretisation of the 3D space. Additional experiments have
been carried out on the latter approach, by encoding a subset of the above TSP-ND instances
into GTSPs and solving them using GLKH (Helsgaun 2015) as a black-box solver. Asymmetric
GTSP instances have been generated by sampling the AVs along a rectangular grid and creating two
clusters of nodes for each stitch, corresponding to the candidate start (resp. end) points for the given
stitch. Non-Euclidean edge weights had to be specified in full matrix format, which imposed a strict
limit on the applicable grid resolution. Accordingly, GTSPs with 6800–7200 nodes, corresponding
to file sizes of 210–240MB, were considered. The stitch sequence was extracted from the GTSP
solution, and the path planning algorithm presented in Section 4.3 was run on this sequence. The
GTSP approach achieved 1.6-10.7% (on average 5.2%) worse results than INTEGRATED; and at
most 1.2% worse, at most 2.0% (on average 0.4%) better results than TSP[AV].

12



May 26, 2015 International Journal of Production Research ijpr2014

Table 2. Cycle times obtained with different algorithms, in various

phases of the OLP workflow.

TSP[stitch] TSP[AV] INTEGRATED

Rough-cut path 89.07 41.35 39.99
Collision-free path 93.80 43.90 43.65
Robot motion plan 93.87 57.69 56.43

6. Discussion on the Application of the Results in an OLP System

The path computed by the proposed approach undergoes various transformations in an OLP system
before it is actually executed on a physical robot (see a potential workflow in Figure 2). The two
steps of the OLP workflow that may result in considerable changes in the SCP path or in its cycle
time are collision avoidance and the inverse kinematic transformation that converts the SCP path
from a Cartesian coordinate system to the robot joint configuration space. Below we overview the
effects of these transformations, using as illustration a case study involving a car door that has
between physically welded using a robot program automatically generated by the OLP system
proposed in (Erdős et al. 2015). This OLP system includes an implementation of the investigated
TSP[stitch], TSP[AV], and INTEGRATED algorithms for task sequencing and path planning.
The case study is based on the same car door design as in the computational experiments above,
however, laser power (and hence, the welding speed) had to be reduced due to technological reasons.
For this reason, the cycle times in the case study (see Table 2) are higher than above, yet, the
absolute difference between the cycle times obtained with different algorithms is comparable.

While the algorithms proposed in this paper ignore potential collisions along the path, in indus-
trial practice the robot path must be free of any collisions. We have proposed a collision-free path
planning algorithm for RLW in (Kovács 2014) based on the common fixture design guideline in
RLW that the access volumes of the stitches must be kept clear. Respecting this guideline guaran-
tees that the above computed path is free of collisions. On the other hand, our experience suggests
that the guideline is sometimes overridden by other design objectives, possibly resulting in collisions
between the robot and the workpiece or the fixture, or between the laser beam and the workpiece
or the fixture. In such cases, the proposed collision-free path planning algorithm detects all colli-
sions along the above computed rough-cut path, and fixes them by recalculating the colliding path
segments and their neighbouring segments, while leaving the task sequence and the path segments
far from collisions unchanged. The difference of the initial path and the subsequent collision-free
path for a real industrial workpiece is illustrated in Figure 8. The experimental results presented
in (Kovács 2014) confirm that the above algorithms lead to high-quality collision-free paths, and the
proposed INTEGRATED approach outperforms other investigated algorithms regarding the cycle
time of the collision-free path as well. Collision avoidance resulted in an average 5.6%, and in at
most 14.4% increase in cycle times, with strong correlation to the accessibility of the stitches in the
given instance. It must be noted that for a few instances characterised by stitches with extremely

Figure 7. Comparison of the paths computed by the TSP[stitch] (above) and the proposed INTEGRATED (below) methods.

TSP[stitch] focuses merely on the TCP path, while INTEGRATED is able to consider the path of the SCP as well.
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Figure 8. Comparison of the rough-cut path (red) and the collision-free path (blue-yellow).

poor accessibility, TSP[AV] resulted in more efficient paths than INTEGRATED. This suggests
that the assumption made by TSP[AV] during sequencing, i.e., that stitches must be welded from
the center of their access volume, is closer to reality than the assumption of INTEGRATED that
the whole access volume can be used. Therefore, the refinement of the proposed algorithms for
problems with extremely poor accessibility is an interesting topic for future research. The difficulty
of considering potential collisions already during task sequencing resides in the free form geometry
of the collision-free access volumes, although the explicit consideration of this geometry can be
avoided, e.g., by sampling the access volumes and solving a GTSP over the sample points.

The inverse kinematic transformation was solved by a slightly improved version of the algorithm
presented in (Erdős et al. 2015). This transformation is of particular interest because of the redun-
dancy of the kinematic chain of a typical RLW robot (i.e., a path can be mapped to different robot
joint motion plans with different cycle times) and because the transformation cannot be solved in
a closed form. In the case study, the robot motion plan had significantly larger cycle time than
predicted by the earlier planning phases. The increase originated from two sources. First, the time
of repositioning the laser beam by moving the mirrors and lenses in the scanner was assumed to
be zero in the proposed model; in reality, it was 3.76 seconds for the 72 stitches on the sample
door for the INTEGRATED path. Second, due to the finite acceleration of the robot’s mechani-
cal joints, robot motion often took longer than predicted by the path planner based on the fixed
velocity v specified in the robot’s manual. This affected mostly the shorter movements, resulting
in an increase of 9.02 seconds for INTEGRATED. Long idle movements were not affected, since
sometimes the robot could reach higher speeds than v, which led to negligible increase of cycle time
for the TSP[stitch] path. Nevertheless, the performance order of the three investigated algorithms
coincides on the rough-cut path and on the robot motion plan.

7. Conclusions

This paper proposed a new model and an efficient algorithm for solving the problem of integrated
task sequencing and path planning for RLW. The proposed approach encompasses two key novel-
ties. First, a formal model has been introduced that, using a new extension of the well-known TSP,
effectively captures the relevant aspects of this technological planning problem, including the cou-
pled movement of the quick tool (laser beam) and the relatively slow robot, and allows exploiting
the high degree of freedom in choosing the robot path when welding a well-defined stitch position.
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Then, an efficient local search algorithm has been proposed for solving the sequencing and the path
planning subproblems together, in a tightly integrated way. The model and the algorithm apply
a continuous space representation, and hence, circumvent the losses stemming from sampling that
characterises many other approaches working on a discretised space representation.

The efficiency of the proposed approach has been demonstrated in computational experiments
on real industrial data, where it reduced significantly the cycle time of the welding operation.
Compared to the classical approach in industry, which focuses on the minimisation of the TCP
path length, the cycle time decreased by a factor of 2-6, showing clearly the inadequacy of the
techniques originally developed for other technologies, requiring physical contact. Furthermore,
the proposed algorithm resulted in an up to 25.5%, on average 5.7% reduction of the cycle time
compared to the more straightforward decomposition approach. It has also been shown that the
decomposition approach may perform arbitrarily poor on artificially constructed instances. The
reduction of the cycle time not only increases the throughput of the RLW workstation, but also
decreases the energy consumed by the welding robot and the workstation.

The approach may find applications in process planning for other technologies as well, where
relatively slow robot motion is coupled with quick positioning of the tool, including monitoring,
inspection, or spray painting. The techniques have already been applied to planning the dimpling
operations in an RLW workstation.

The presented algorithms are components of a recently developed OLP toolkit for RLW in
the automotive industry. This toolbox is expected to help production engineers generate efficient
robot programs from the description of the workpiece and the available resources in a reproducible
way, much quicker and more efficiently than it is done manually today. In addition, automating
this level of planning supports the verification of decisions made on higher levels of the planning
hierarchy, e.g., workpiece and fixture design, or the configuration of the welding cell. The OLP
system, including the proposed sequencing and path planning algorithms, has been validated and
evaluated in simulation scenarios and in physical experiments involving the assembly of a real car
door.
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