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Abstract

The importance of computer-aided process planning (CAPP) for assem-
bly is widely recognized, as it holds the promise of efficient and automated
construction of solutions for a complex, geometrically, technologically, and
economically constrained planning problem. This complexity led to the in-
troduction of decomposition approaches, separating the macro-level planning
problem that oversees the complete assembly process from the various micro-
level problems that look into the details of individual assembly operations.
The paper introduces a constraint model for solving the macro-level assem-
bly planning problem based on a generic feature-based representation of the
product and the assembly operations involved. Special attention is given
to capturing the feedback from micro-level planners expressed in the form of
feasibility cuts, and hence, to the integration of the approach into a complete
CAPP workflow. Results on three case studies from different industries are
also presented to illustrate the practical applicability of the approach.

Keywords: assembly planning, optimization, assembly features, constraint
programming

1. Introduction

Assembly is the ultimate step from the idea of products conceived by de-
sign to their form, structure and functions realized by production. Planning
all the details of this transition requires the efficient use of information and
knowledge from a number of different sources related to product design, parts
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manufactured, assembly technologies and processes as well as resources such
as tools, fixtures, grasping and handling devices, human and robotic opera-
tors. The generated assembly plans should meet a rich set of requirements
and comply with criteria like minimal cycle time, resource and energy effi-
ciency, ergonomics to name only the most important ones. Primarily, the
constraints are of geometric nature, as parts and subassemblies have to be
moved and fit, fixtures and tools have to be applied as the assembly process
advances in a more and more densely populated space.

No wonder assembly planning poses a number of intriguing questions for
production engineering, from the very inception of the field: How to interpret
a product model with the backdrop of the actually available assembly tech-
nology and resources? How to identify tasks which are potentially executable
and how to define their appropriate ordering and resource assignment? How
can one maintain, in the course of the assembly process, geometrical feasi-
bility among any objects involved, let they be parts, subassemblies, tools,
fixtures or any other elements of the production environment? In general,
how to solve a problem when there is no monopoly of assembly planning
knowledge and requirements may easily be proven irreconcilable?

The importance of automated computer-aided process planning (CAPP)–
also in assembly–was recognized early [1]. It became also clear and confirmed
time and again since, that CAPP in general can be solved only by the appli-
cation of well-proven decomposition principles [2]. While exploiting locality
led to various feature-based models, hierarchical decomposition resulted in
macro-level planning, which concentrates on combinatorial decisions as for
ordering and resources of tasks, and micro-level planning activities, which are
responsible for path planning, fine-tuning of technological process parame-
ters, generation of work instructions or robot codes.

The goal of this paper is to present a constraint-based model for macro-
level assembly planning that provides a resolution to the above issues. As
constraint models in general, it has a strong representation power to capture
all important aspects of assembly planning. The model directly supports
making decisions over the statement of the actual planning problem includ-
ing assembly features and tasks, subassemblies, the ordering and resource
assignment of tasks in a least-commitment manner. It is open to incorporate
new constraints on the fly, as demanded by the micro-level analysis of par-
tial solutions. Specifically, by means of generalized precedence constraints
the model facilitates making new statements over the ordering relations of
tasks and the resources assigned to them. With the progress of the assembly
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planning process a product model containing basically geometric informa-
tion of parts and their relations is interpreted and enriched step by step with
pieces of technological knowledge. The model assists a cautious approach
to planning: if it gets over-constrained, the actual problem has indeed no
solution, whereas one can be sure that a final plan, if it passes all micro-level
evaluations, completely complies with the relevant domain knowledge and
is optimal according to the given criterion. We focus here on the aspect of
modelling and leave the solution of assembly planning problems to powerful
constraint programming engines.

In what follows, Section 2 discusses the related literature, then Section 3
presents the generic planning workflow. Section 4 focuses on the statement
of the constraint-based assembly planning problem, while the formal model
of macro-level planning is presented in Section 5. According to the workflow,
this model is extended with new constraints generated by micro-level eval-
uation as explained in Section 6. The results of computational experiments
are summarized in Section 7, while Section 8 concludes the paper.

2. Related work

Traditionally, three main subproblems of assembly planning are distin-
guished in the literature, namely: Assembly Line Balancing (ALB), Assembly
Path Planning (APP) and Assembly Sequence Planning (ASP). In addition
to their different objectives, the different subproblems are usually separated
by the applied representation of the problem as well [3]. There are a number
of papers which focus on delivering solutions to one of the subfields, however,
only a few integrated approaches exist [3, 4, 5].

In the environment of a single workcell, ALB can be assumed to be out
of the scope and thus ASP and APP are subjects of solution efforts. ASP
is typically formulated as a combinatorial optimization problem, while for
APP solutions are usually produced by reasoning on a detailed geometrical
model [6]. ASP is generally considered to be an NP-hard problem and there-
fore numerous heuristics and soft computing methods have been suggested
to solving it, but classic optimization tools are also often applied [5, 7, 8, 9].
Minimizing the changeovers, the number of assembly directions or the re-
quired time for the assembly are very common objective functions of ASP
[5, 10].

There are works on ASP which also consider the geometric feasibility of
the resulting sequence. A general approach for combining ASP with geomet-
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ric reasoning is to construct a search space which is assumed to contain all
the relevant geometrical and technological constraints. A key aspect here is
the definition of the search space. A seminal paper tackles this problem [11],
aimed at generating all feasible assembly sequences for a product. In [12] and
[13] the concept of directional and non-directional blocking graphs were used
in order to represent the geometrical constraints. In [14] the stereographical
projections of parts are used to include the collision space into the assembly
sequencing. The work presented in [15] generates assembly sequences directly
from the CAD models, which can be later used in optimization. In [16], part
interaction clusters are defined to generate the precedence constraints from
geometrical data. The sequencing and planning is carried out in this search
space. In [17], the geometric models of assemblies are translated into an
attributed part layout graph in order to identify functional subassemblies,
which provides the basis for an ASP model using particle swarm optimiza-
tion. Another approach that uses subassembly identification from 3D models
is presented in [18], which proposes the concept of disassembly interference
graph and uses this information to generate feasible assembly sequences. The
work introduced in [19] discusses generating part precedence diagrams auto-
matically for assembly planning considering tool assignment and changeovers.
By extracting contact relations between parts, [20] proposes an approach to
find feasible disassembly paths for parts, thus obtaining a feasible assem-
bly sequence. In [21], by identifying and removing the standard elements, a
simplified assembly model is analysed by collision detection to generate all
feasible assembly sequences.

Features are, also in assembly, the most traditional and broadly used
concepts for matching means and ends of production [8]. Assembly features
offer a representation which can contain the information required for defining
and solving the macro-level optimization problem of ASP, but at the same
time they can also represent the geometric data required for building up a
detailed micro-level world necessary for APP [22, 23]. Domain knowledge
required for the correct realization of assembly features can be captured in
terms of function blocks [24], and this approach can be extended to the
adaptive and distributed control of assembly operations, too [25].

A hierarchical approach is presented in [26] for finding the optimal as-
sembly sequence in 2D, which maximizes the assembly angles during the as-
sembly. The set of feasible solutions is determined by analysing geometrical
accessibility. In [27] a genetic algorithm is applied to minimize the number
of assembly direction changes and the total stress for flexible parts. An ASP
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solution is presented in [28], which first extracts precedence constraints from
the geometrical models and then a search loop is executed.

In [10] it is stated that a combination of a feature based model extended
with expert rules can deliver more comprehensive results for CAPP. In [7],
based on the lessons of a literature review, a general optimization scheme for
ASP is recommended as an integral loop in any assembly planning process.
Having a loop without external feedback, however, assumes that every in-
formation is available for conducting a successful search and leaves no room
for injecting constraints back from a more detailed evaluation, which due to
its complexity can not be part of the original search. In [29] a constraint
programming based approach is introduced for solving CAPP in sheet metal
bending, where the solver communicates with external experts through rule-
based feedbacks, thus reducing the domain of decision variables in each it-
erative solution cycle. The approach of using external experts also appears
in [30], where a hierarchical decomposition for task and motion planning is
applied in order to reduce and postpone the execution of costly calculations.
A similar approach also appears in [31], where a “logical layer” is applied for
ASP and a “physical layer” is used for APP.

In [8, 32] the authors already presented a feature-based hierarchical work-
flow for solving the assembly planning problem by the integration of sequenc-
ing, resource assignment and geometric validation, by applying a Benders de-
composition scheme [33]. The macro-level solution was built around a mixed
integer programming (MIP) solver for which disjunctive rules provided the
feedback in each solution loop. A strong assumption of these works was that
all assembly features to be realized were given in the input, and they had to
form a tree-structured liaison graph. In the approach presented below, this
assumption is lifted.

3. Feature-based assembly planning workflow

The assembly planner presented in the paper operates in an iterative,
hierarchical, mixed-initiative CAPP workflow, which starts from the models
of the assembled product and the applicable resources, and ends with the
generation and post-processing of work instructions (Fig. 1). Here, the pa-
per’s main focus is set on the macro-level planning model. Still, in order to
better position the approach and to highlight its relationship to other plan-
ning steps, the complete workflow and its key concepts are introduced briefly
below.
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The workflow starts from the geometric models of the parts composing
the assembly, which are rigid, tolerance-free 3D objects characterized by their
geometrical model. They are either individual parts, or composites merged
from multiple related parts that must be assembled at the same time, using
identical resources (e.g., multiple identical, parallel-axis screws joining the
same parts). The application of composites helps reducing the size of the
planning problem.

With parts positioned in their assembled state, connectivity analysis be-
tween them can be executed. The physical connections between the parts
define the connectivity graph, whose nodes are the parts and an edge be-
tween two nodes denotes a contact between the two geometries [32]. How-
ever, physical connectivity alone does not characterize fully the assembly
operations, hence the feature-based assembly planning model is completed
by technology-specific feature parameters, such as torque, lead or threaded
depth for screwing features [34].

The connectivity graph provides input for feature identification. A fea-
ture describes how two parts can be assembled together, by defining the
relative movement between the parts and the applicable resources (e.g., fix-
tures, tools). Hence, a feature corresponds to an edge in the connectivity
graph with meaningful technological content. However, not every edge of
the connectivity graph belongs to an assembly feature: e.g., two geometries
touching at their edges cannot be joined by a feature. Consequently, feature
identification assigns assembly features to some of the connectivity edges.
This defines the so-called liaison graph, over the same nodes as the connec-
tivity graph, with a subset of the edges.

Accordingly, each feature realizes exactly one edge in the connectivity
graph directly. Nevertheless, the same feature may realize further edges in-
directly : if the involved parts take place in previously constructed subassem-
blies, then the feature realizes all the connectivity edges between the parts
of the two sub-assemblies.

The assembly process is complete when every edge in the connectivity
graph is realized, directly or indirectly. In particular, the assembly of K
parts can be completed with directly realizing K−1 edges of the connectivity
graph that form a spanning tree of the liaison graph.

Having a feature-based problem instance defined, the workflow follows
with the solution loop, where first a macro-level combinatorial optimization
problem is solved. This involves the selection of the features to be real-
ized directly, their sequencing, as well as the assignment of resources. Its
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Figure 1: The proposed CAPP workflow. The focus of the paper is on macro-level plan-
ning.

result is evaluated by detailed micro-level validation. Micro-level valida-
tion either fails and adds new constraints to the feature-based model (and
thus to the macro-level), which ensure that the same failure cannot occur in
subsequent iterations, or it succeeds and then the workflow is finished with
post-processing.

This feature-based planning workflow is an improved version of that in
[32]. A key new idea is reducing the necessary expert input to a pairwise part-
to-part analysis during feature identification, which is more comprehensible
for human experts. This is made possible by allowing an arbitrary structure
for the liaison graph, instead of the previous tree structure. The benefit
of this generalization is illustrated on the sample assembly in Fig. 2a. The
liaison graph has exactly the same edges as the connectivity graph (Fig. 2b).
However, an ill-defined spanning tree of this liaison graph can render the
planning problem infeasible, as it is shown on the upper version of the liaison
graph: features A-B and A-C mutually block each other, end hence, there
is no feasible sequencing for them. Yet, a different spanning tree of the
liaison graph, shown in the lower part of Fig. 2b, leads to a feasible planning
problem. In the previous approach, human decision was required to construct
the liaison graph as a spanning tree of the connectivity graph, thus making
room for such errors. These errors are now automatically avoided by the
letting the solver select the features to realize.

4. Problem statement

The approach proposed in the paper minimizes the total assembly time of
the feature-based assembly planning (sequencing and resource assignment)
problem and thus providing a solution to the macro-level planning problem
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Figure 2: A simple assembly with four parts (2a) illustrates how an ill-defined spanning
tree (2b) can result in an unsatisfiable problem: realizing A-C feature blocks A-B and vice
versa.

of the iterative, hierarchical CAPP workflow. The elements of the resulting
assembly sequence are represented as tasks where each task is composed of:

• the corresponding assembly feature,

• an assigned tool,

• an assigned fixture.

Taking two-handed assembly processes an assembly feature is F (ω, p, q, θ, tc, fc)
where ω is the feature type (placing, insertion, and screwing are handled in
the current implementation), p and q are the two parts joined by the feature,
while θ defines the motion required to join parts p and q. The set of candidate
tools and candidate fixtures are denoted by tc and fc, respectively.

The input of assembly planning is a feature-based problem instance (see
Fig. 1) and in the macro-level the following assumptions are made:

1. The assembly features represent two-handed operations.

2. The assembly process is monotonous.

3. There is a set of applicable tools and fixtures specified as candidate
resources for each feature.

4. Each fixture can grasp a specific part. When that part takes place in
a subassembly, the fixture can hold that subassembly up to a given
weight limit.

5. The duration of realizing an assembly feature is independent from its
position in the plan and the assigned resources.
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6. The changeover times of fixtures and tools are given and fixed.

In addition, the micro-level geometrical validation applied in the paper
assumes that parts are rigid, tolerance-free 3D objects, which allows using
collision detection for the validation of the plan. Removing assumption 1
would require a slight generalization of the macro-level planning model, since
features would correspond to hyper-edges (rather than classical edges) in the
liaison-graph. Assumption 2 is necessary to maintain an upper bound on the
length of the assembly plan. Assumptions 3 and 4 capture resource capac-
ities in a realistic way. Replacing assumptions 5 and 6 with sophisticated
functions for determining the durations of tasks and changeovers from the
actual subassemblies is a relevant direction for future research.

Taking the above assumptions, minimizing the total assembly time means
minimizing the time required for realizing the assembly sequence. The time
has two components here: the time required for completing each of the se-
lected features and the changeover time required for using the assigned tools
and fixtures. For warranting the feasibility of the solution, the following
constraints have to be satisfied:

• Every physical connection between the parts have to be realized. Ac-
cordingly, the features selected for direct realization have to form a
spanning tree over the liaison graph of the assembly.

• The technological constraints (fixture weight limit, feature-tool and
feature-fixture compatibilities) have to be fulfilled.

• The solution must be feasible on the micro level as well, which must
be ensured by satisfying all feasibility cuts generated by micro-level
validation.

4.1. Working example

In order to illustrate the proposed solution approach, a ball valve is used
as a working example throughout the paper. The geometric model of this
working example is shown in Fig. 3a: it consists of 13 parts and 16 features.
The connectivity graph of the assembly is shown in Fig. 3b. The connec-
tivity graph shows every physical connection between the parts as an edge,
however, this does not necessarily result in a meaningful connection: e.g.,
between oring2 and the two inlets the connection would not imply a techno-
logically meaningful assembly operation. This means that the liaison graph
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Figure 3: Exploded view of the working example: a ball valve (3a). Connectivity graph
of the ball valve (3b), where dashed lines mean connection without feature, solid lines
indicate features. The grouped node containing screws 1-4 represents a composite.

is a subgraph of the connectivity graph, with dashed edges left out from the
former. The screws holding the top in its place (screw1..4) are identical with
the same feature parameters, and therefore they are bound together to form
a composite part.

The working example includes three fixtures, where one is the human
hand, without a geometry, and others are fixtures grasping the house and
the top. The usage of the human hand is restricted by a strict weight limit
which does not allow holding the whole assembly.

The working example uses the same geometric models as in [32]. However,
due to the lifted earlier assumption that the liaison graph of the assembly is
a tree, this version includes more features. As a consequence, the required
input is more generic and easier to create for experts, but the problem is
combinatorially more challenging.
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Table 1: Notation applied in the macro-level problem

Parameters
pl, ql Two parts joined by feature l
rl The duration of feature l
yk Weight of part k
ttm Changeover time for tool m
ftn Changeover time for fixture n
gn The part grasped by fixture n
wn Weight limit of fixture n
tcl,m Indicates if tool m is a candidate tool for feature l
fcl,n Indicates if fixture n is a candidate fixture for feature l

Decision variables
πl Position of feature l in the assembly sequence
φi Feature at position i in the assembly sequence
τi Tool at position i in the assembly sequence
χi Fixture at position i in the assembly sequence
ρi,p,q Indicates if part p and q are connected at position i

5. Description of the CAPP model

The product must be assembled from K parts {pk : k = 1, .., K}, which
can be either individual parts or composites during preprocessing. Each
part has a weight attribute {yk : k = 1, .., K}. The parts are joined by L
features {fl : l = 1, ..., L}. Each feature joins two parts {pl, ql : l = 1, ..., L}
{pl, ql : l = 0, ..., L}.

For realizing the features there are M available tools {tm : m = 0, ...,M}
and N available fixtures {fn : n = 0, ..., N}, including a dummy tool t0 and
a dummy fixture f0. Each tool and fixture has a changeover time indicating
the time required to switch to the specific tool or fixture {ttm : m = 0, ...,M}
and {ftn : n = 0, ..., N}, respectively. For each fixture there is a weight limit
on the sum of the weight of the grasped part and the parts attached to it
{wn : n = 0, ..., N} where w0 = 0. Each fixture is able to grasp a specific
part {gn ∈ {0, ..., K} : n = 0, ..., N}, and g0 = 0.

For each feature the candidate sets of tools and the candidate sets of
fixtures specify what are the allowed tools and fixtures for realizing that
feature: {tcl,m ∈ {0, 1} : l = 1, ..., L,m = 0, ...,M} and {fcl,n ∈ {0, 1} : l =
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1, ..., L, n = 0, ..., N}.
For solving the two-handed, monotonous CAPP problem with K unique

parts, the number of required features (i.e., positions in the plan) is K − 1.
The goal of the CAPP model is to find an optimal task sequence and resource
assignment, which is given by finding the values of the following decision
variables:

• position of a given feature: {πl ∈ {0, ..., K − 1} : l = 1, ..., L}, where
πl = 0 means that fl is not realized directly.

• feature at a given position: {φi ∈ {1, ..., L} : i = 1, ..., K − 1}

• tool at a given position: {τi ∈ {0, ...,M} : i = 0, ..., K − 1}

• fixture at a given position: {χi ∈ {0, ..., N} : i = 0, ..., K − 1}

• connectivity that indicates if two parts (p and q) are connected after ex-
ecuting a feature at the ith position of the plan: {ρi,p,q ∈ {True, False} :
p = 1, ..., K, q = 1, ..., K, i = 0, ..., K − 1}

5.1. Model objective and constraints

The objective is minimizing the total time of completion, which means
minimizing the sum of feature durations and changeover times: Σ(rτi + (τi 6=
τi−1) · ttτi + (χi 6= χi−1) · ftχi).

The solution has to satisfy the following constraints. First of all, the
integrity of the solution is ensured by:

• alldifferent except 0 constraint is applied to πl to enforce that each
valid (i.e., non-zero) position is only assigned to one feature.

• alldifferent constraint is applied to φi to enforce that every feature is
realized at most once.

• channelling between πl and φi enforces that (πl = i) ↔ (φi = fl),∀i, l
if πl 6= 0

In order to model the changeover needed for the first tool and fixture at
zero position the dummy tool and fixture are assigned: τ0 = 0 and χ0 = 0,
moreover τj 6= 0,∀j 6= 0 and χj 6= 0, ∀j 6= 0.
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ρi,p2,p3 = True
g1 = 3
g2 = 2
g3 = 1
pφi = 2
qφi = 1
gχi = pφi if χi = 2
ρi−1,pφi ,gχi

= True if χi = 1

gχi = qφi if χi = 3

Figure 4: An illustration of how grasping constraints take effect if different fixtures are
applied: fixtures f1, f2, f3 grasp parts p3, p2, p1, respectively. In each case a different term
of (2) yields true.

As a redundant constraint, it is specified explicitly that part-to-part
connections are symmetric: ρi,p,q = ρi,q,p,∀i, p, qρi,p,q = ρi,p,q,∀i, p, q. Af-
ter the completion of the last task, each pair of parts must be connected:
ρK−1,p,q = 1,∀p, q. Before the first task, each part is connected only to itself:
ρ0,p,q ↔ (p = q),∀p, q. A direct connection between two parts at a position
means that the feature at that position joins those two parts. In general, two
parts are connected at a given position in the plan if, directly or indirectly,
they had been connected earlier by some feature:

ρi,p,q ↔
(
ρi−1,p,q ∨ (ρi−1,pφi ,p

∧ ρi−1,qφi ,p
) ∨ (ρi−1,qφi ,q

∧ ρi−1,pφi ,p
)
)
∀i, p, q

(1)
Here, the first term on the r.h.s. of the logical biconditional means that

parts p and q have already been connected in the previous position of the
plan. The second and third terms encode that the two parts have already
been connected to the parts assembled directly by the feature in position i
of the plan.

At every position in the plan, the part grasped by the assigned fixture
must be connected to one of the parts directly involved in the realized fea-
ture (which includes the case that the involved part itself is grasped). For
selecting an applicable fixture, the following conjunction must hold (which
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are illustrated in Fig. 4):

(ρi−1,pφi ,gχi
) ∨ (ρi−1,qφi ,gχi

) ∀i (2)

The assigned fixture must be among the candidate fixtures: fcφi,χi = 1,∀i
and the same for candidate tools: tcφi,τi = 1,∀i.

Finally, it has to be warranted that the total weight of the grasped part
and the parts connected is below the weight limit of the assigned fixture:∑

k ρi,gχi ,pk · yk ≤ wχi ,∀i
∑

k ρi,gχi ,pk · yk <= wχi , ∀i.

5.2. Feasibility cuts

Feedback from micro-level validation takes the form of a set of feasibility
cuts, each cut expressing a generalized precedence constraint. This constraint
takes the form {αd, {βd,1, . . . , βd,e}, γd, δd}, for each cut d ∈ D, where:

• αd is the preceding feature;

• {βd,e ∈ 1, ..., L : e = 1, .., Ed} is the set of Ed succeeding features;

• γd ∈ 0, ..., N is a fixture; and

• δd ∈ 0, ...,M is a tool in the generalized precedence constraint.

This generalized precedence constraint requires that either preceding task
αd precedes at least one of the succeeding tasks βd,e in the plan (3), or the
preceding task αd is left out of the plan (4), or one of the succeeding tasks
βd,e is not present (5), or a different fixture (6) or a different tool (7) is used.
As a special case, the dummy fixture γd = f0 (respectively, the dummy tool
δd = t0) can be used to encode that modifying the fixture (tool) is not an
option to satisfy the constraint:

(4) ∨ (5) ∨ (3) ∨ (6) ∨ (7), ∀d,where

∑
e

(παd < πβd,e) > 0 (3)

παd = 0 (4)

∑
e

(πβd,e = 0) > 0 (5)

14



(χπαd 6= γd) ∧ (γd 6= 0) (6)

(τπαd 6= δd) ∧ (δd 6= 0) (7)

6. Micro-level evaluation

Micro-level evaluation provides the feedback for closing the CAPP solu-
tion loop. Its purpose is to verify the geometric feasibility of each movement
defined by the macro-level plan, and in case of any failure, to generate con-
straints that preclude the repeated occurrence of the same failure. The se-
quence calculated on the macro level is used for building up the Task-specific
Liaison Graph (TLG) for each task in the plan. It contains the parts that
are already assembled, the applied fixture and the tool as nodes. The edges
between the parts are the features directly realized in the previous and in the
current assembly steps. Fixturing determines which part (and those already
assembled to it) are grasped by the fixture and thus will be the base com-
ponents, while the other part (and those attached to it) will be the moved
components. In the TLG, the fixture node is connected to the grasped part
and the tool is connected to the feature’s moved part. Since the TLG only
contains the directly realized features, it is a tree, and there exists only one
path between any two nodes.

The geometric feasibility check of each feature in the macro-level plan is
performed in two separate phases (see details in [32, 35]):

1. For the local motion defined by the feature, which takes the moved
component from its near position to the final relative position w.r.t. the
base component.

2. For the approach motion, which brings the moved component from its
remote location to the near position.

Since the local motion is perfectly defined by the feature, the colliding
pairs of objects (parts, fixture, tool) can be unambiguously identified. More-
over, each colliding pair of objects determines an invalid path in the TLG
that connects the nodes corresponding to two objects involved. Then, the
generated cut encodes that this invalid path must not reoccur in any macro-
level solution. Namely, in the format specified in 5.2, the preceding feature
α is the current feature, the set of succeeding features {β1, . . . , βe} is the set
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Figure 5: Examples of cuts generated on the sample assembly of Fig. 2a during the
verification of feature 3. A collision between parts C and D during the local motion
results in cut I, stating that feature 3 must precede feature 2, or one of them must be
skipped. A collision between part B and tool T1 leads to cut II, with more preceding
features and a tool in the cut. The failure of the approach motion results in cut III, which
contains all previous features and all the assigned resources.

of features in the invalid path (with the exception of α), whereas the tool γ
and the fixture δ are the resources assigned to the current task (only if they
take part in the collision).

A similar approach is taken for the verification of the approach motion,
with the substantial difference that the existence or the lack of a collision-free
approach motion can only be verified by solving a path planning problem.
Moreover, the infeasibility of the path planning problem does not lead to a
specific collision, and hence, the returned feasibility cut is a generic expression
which states that the current task cannot be executed with the same (or
larger) set of base and moved components and the same resources. In the
generic format of 5.2, α is the current feature, the set {β1, . . . , βe} is the set
of all features in the TLG (except for α), whereas γ and δ are the assigned
resources. Since this cut contains more terms than the cut generated for local
motions, it means a substantially weaker constraint on the macro-level plan.
The details of the geometric evaluation are discussed in [32, 35]. Examples
of cuts generated from various micro-level conflicts are shown in Fig. 5.

The micro-level evaluation generates all possible cuts based on the verifi-
cation of the local motion of all features in the plan, since they can be com-
puted efficiently. In contrast, time consuming path planning is performed for
the approach motions only if all local motions in the plan are collision-free,
up to the first failure.
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7. Case study and experiments

For evaluating the presented approach, two additional case studies were
selected further to that of the working example: an automotive supercharger
assembly and a pneumatic cylinder assembly. Fig. 6 shows these assemblies,
while problem sizes are summarized in Table 2. The raw number of features
and parts reflects the original CAD input, whereas the processed values char-
acterize the model size after merging corresponding parts into composites. It
can be noticed that besides the obvious geometric dissimilarities, the three
cases differ also in their complexity. The supercharger assembly contains
the highest number of parts and edges in the connectivity graph. However,
during the analysis and instance definition, most of the connections can be
discarded as they do not represent a meaningful feature. Moreover, several
features can be grouped together as composites and therefore the resulting
number of features from the macro-level perspective is only 17 for 18 parts.
This means that every feature has to be assigned in the resulting sequence.
In contrast, the ball valve and the cylinder examples have less parts and con-
nections, but the number of features is higher in both cases, meaning that
there are alternative ways to realize the assemblies and in the solution not
every feature will be assigned to a position in the plan. A part of the fixtures
and tools are characterized by geometries as well; collision detection on the
micro level is performed only for these resources. Other, special resources,
such as a human hand, do not have a solid geometry assigned, and they are
disregarded on the micro level.

The CAPP solution loop was implemented using the Python program-
ming language (v3.6) for building up a frame, which calls the macro-level
solver developed using the MiniZinc (v2.2.3) constraint modelling language
[36] with the Google’s OR-Tools [37] open source optimization solver (v7.0,
CP-SAT core, with three threads). The experiments were executed in a
containerized environment [38] with three CPU cores and 2 GB of memory
allocated from a regular computer (2015 Intel i7 processor with 4 cores).
The experiments showed that finding an optimal solution is usually quick,
however, proving its optimality can take an order of magnitude longer time.
In order to control the computational load a time limit of 120 seconds was
applied for finding an optimal macro solution per iteration. Since in the
solution loop the macro solutions have to be validated on the micro level,
it is reasonable to apply this time limit that also reduces the time spent on
proving the optimality of solutions, later possibly dropped on the micro level.

17



(a) (b)

Figure 6: Real-life case studies: automotive supercharger (6a) and a pneumatic cylinder
(6b).
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Case study Supercharger Ball valve Cylinder

Problem description

Parts (raw) 29 13 18
Parts (processed) 18 10 16
Connections 55 27 30
Features (raw) 28 19 26
Features (processed) 17 16 24
Init. constraints 5 2 2
Fixtures (w/ geom) 5 (0) 3 (2) 2 (0)
Tools (w/ geom) 3 (1) 2 (0) 2 (0)
Triangles 1300k 100k 70k

Computational results

Iterations 5 12 16
Macro-level planning

total [s] 257.36 132.85 2120.44
per iteration [s] 51.47 11.07 132.53

Micro-level validation
total [s] 9.21 5.15 29.67

per iteration [s] 1.84 0.43 1.85
Constraints

total 40 58 121
per iteration 8 4.83 7.56

Table 2: Problem size and computational results for each case study.
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It is noted that macro-level planning times displayed in Table2 also include
the compilation of the MiniZinc model, and hence, may slightly exceed the
specified time limit.

The results of all three case studies are shown in Table 2. Even though
the supercharger case study has the highest number of components, this
problem instance can be solved relatively quickly, with the lowest number of
iterations. The average time to get an optimal macro-level solution here is
higher than for the ball valve. In turn, as there are no alternatives for any
of the features, the number of iterations (5) and the number of constraints
(40) fed back from the micro level is lower. From this aspect the pneumatic
cylinder poses the greatest challenge to the solver as there are numerous
alternatives for realizing the assembly, which results in the highest number
of iterations (16) and constraints (121). The redundancy among features
causes a significant increase in the complexity of the macro-level problem,
and hence, the planner hits the time limit in each iteration. The experiments
also showed that the best solution found by the solver within the time limit
has the optimal value, but proving their optimality requires longer search.

With the lowest number of components and features, the ball valve case
requires the least time for an optimal macro-level solution. However, due to
the alternative features, the number of iterations and constraints generated
is higher. Hence, alternative features increase complexity in two different
ways: (1) by extending the search space in the macro-level planing problem
and (2) by decreasing the efficiency of the feasibility cuts generated in the
micro level. The solution to the ball valve assembly is shown as an assembly
tree in Fig. 7. The figure tells that the first two steps are completed in the
same fixture, which is followed by a fixture changeover (due to weight limit
of fixture F1), but from that point onward the fixture remains unchanged
(fixture F2). This also suggests that the first two features cannot be done
in fixture F2, due to micro-level constraints. The applied tools (T1–“human
hand” and T2–“screwdriver”) are also shown in the figure, and it can be
seen that screwing features are put to the end of the plan in order to avoid
unnecessary changeovers.

8. Conclusions

The paper introduced a constraint model for macro-level assembly plan-
ning for two-handed mechanical assembly processes with rigid parts. As a
key step in a feature-based iterative assembly planning workflow, macro-level
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"Put Ball into Fixture 1"

"Take Tool 1"

1. "Assemble Ball and Inlet 2",
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"Put House into Fixture 2",
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Figure 7: The result of macro planning represented as a tree. The circular nodes are the
parts, with colors matching to Fig 3. The applied fixtures (F) and tools (T) are displayed
below each assembly task node. The plan contains two fixture and two tool changeovers,
highlighted with red font color.
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planning performs the selection of assembly tasks, their sequencing, as well
as allocating appropriate resources to them, while minimizing the total as-
sembly time.

Beyond enforcing classical macro-level constraints on the assembly plan,
the proposed model takes feedback from micro-level validation in the form
of feasibility cuts, which provides a means for ensuring, e.g., the geometrical
or technological feasibility of the assembly plan on a detailed model of the
assembly motions. A new method was proposed to generate cuts based on
the results of collision checking, using a novel TLG model, to prevent the
reoccurrence of the same collision in subsequent planning iterations.

The input of macro-level planning is a feature-based assembly model,
partly based on the previous works of the authors. Nevertheless, the current
contribution generalizes earlier models in several ways. In particular, it al-
lows an arbitrary liaison graph among the parts, which may involve cycles
corresponding to alternative features. Hence, assembly planning also involves
the selection the features to be realized directly by the assembly tasks. This,
on the one hand, demands less effort during problem definition and, on the
other hand, helps avoiding the definition of infeasible problems. On the long
term, along with the transition from assembly lines to islands the constraint-
based model can be extended towards generating routing alternatives [39],
and the planning workflow can accommodate physics-based modelling [40] as
well.

The proposed approach was demonstrated on three industrial use cases
from different sectors of the industry: a ball valve, an automotive super-
charger, and a pneumatic cylinder. The results confirm the generality and
practical applicability of the proposed constraint model. The strong expres-
sive power of the CP representation and the efficiency of the solver allows
finding exact optimum for real-life examples within acceptable computation
time.as well as the efficiency of the constraint-based solution approach.
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