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Abstract This paper introduces a bilevel programming

approach to electricity tariff optimization for the pur-

pose of demand response management in smart grids. In

the multi-follower Stackelberg game model, the leader is

the profit-maximizing electricity retailer, who must set

a time-of-use variable energy tariff in the grid. Followers

correspond to groups of prosumers (simultaneous pro-

ducers and consumers of electricity), who, in response

to the observed tariff, schedule their controllable loads

and determine the charging/discharging policy of their

batteries to minimize their cost of electricity and to

maximize their utility at the same time. A bilevel pro-

gramming formulation of the problem is defined, and its

fundamental properties are proven. The main contribu-

tion of the paper is the novel solution approach: primal-

dual reformulation is proposed for converting the bilevel

optimization problem into a single-level quadratically

constrained quadratic program (QCQP), and a succes-

sive linear programming (SLP) algorithm is applied to

solving it. It is demonstrated in computational exper-

iments that the proposed approach outperforms typi-

cal earlier methods based on the KKT reformulation

regarding both solution quality and computational ef-

ficiency on practically relevant problem sizes, while it

also offers more flexible modeling capabilities.
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1 Introduction

A key to the stable operation of the future electricity

grid is realizing efficient demand response management

(DRM). With the increasing share of renewables in the

energy mix, production is becoming less and less con-

trollable. At the same time, electricity consumption is

getting more controllable due to novel types of loads

and storage (e.g., electric vehicles, home-level or small

business energy management solutions) and various in-

telligent appliances at end consumers. As a result, a

gradual shift from the traditional supply follows de-

mand paradigm to a new, demand follows supply ap-

proach can already be observed. The critical success

factor for efficient DRM is an appropriate electricity

tariff that motivates consumers to schedule their loads

and manage their batteries in such a way that it con-

tributes to the stability of the grid.

This paper studies the problem of optimizing the

electricity tariff offered by an electricity retailer to its

customers in a game theoretical setting. A bilevel pro-

gramming solution approach is introduced, where the

retailer is the leader and the groups of end consumers

act as multiple independent followers. The customers

are modelled as prosumers, i.e., simultaneous produc-

ers and consumers of electricity, who look for the best

tradeoff between maximizing their utility and minimiz-

ing their cost of electricity. An effective, and at the

same time, computationally efficient solution method is

proposed: the bilevel program is first transformed into

an equivalent single-level optimization problem using

a primal-dual reformulation, and then solved using a

successive linear programming (SLP) algorithm.

The paper is organized as follows. After reviewing

the related literature (Section 2), a formal definition of

the tariff optimization problem is given (Section 3). The

proposed solution approach is presented in detail in Sec-

tion 4. The approach is illustrated on a small-scale ex-
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ample and evaluated in thorough computational exper-

iments in Section 5. Finally, conclusions are drawn and

possible directions for future research are suggested.

2 Literature review

2.1 Game-theoretic models for DRM

Game-theoretic models for DRM have received signif-

icant attention recently [14]. A fundamental classifi-

cation of these models differentiates between real-time

vs. day-ahead approaches. Real-time pricing (RTP) mod-

els often, though not necessarily, focus on the present

time instant only, and ignore the interdependence be-

tween the present energy tariff and past or future con-

sumption. Accordingly, these models concentrate on load

curtailment, but fail to capture deferrable loads appro-

priately. This limitation can be lifted by applying multi-

period models. Still, most of the earlier contributions

focus on the RTP scenario with a single time instant: a

multi-leader, multi-follower Stackelberg game is defined

for DRM among independent electricity providers and

consumers in [23]; a closed-form analytical solution is

derived, which can be obtained by a distributed algo-

rithm. The management of consumer-to-grid systems

is modelled as a Stackelberg game in [33], with a cen-

tral power station acting as the leader, and consumers

as multiple followers. Embedded into the Stackelberg

game, the consumers play a generalized Nash game to

establish their equilibrium strategies, and hence, to de-

termine their response to the energy prices offered by

the power station. A similar approach is applied to

electric vehicle charging in [32]. Yu et al. [37] inves-

tigate DRM on three levels of hierarchy (the grid op-

erator, multiple service providers, and the consumers)

with real-time pricing, and propose a two-loop Stack-

elberg game model. The existence of a unique Stack-

elberg equilibrium is proven by exploiting the strictly

convex sub-problems of the individual players, and an

iterative distributed algorithm is proposed for reaching

it. A Stackelberg approach is investigated for DRM un-

der load uncertainty in [6]; again, an analytical solution

could be derived.

Zugno et al. [39] study a Stackelberg game for RTP

over multiple time periods with a profit-maximizing re-

tailer and a single end consumer who looks for the best

tradeoff between electricity cost and comfort in the heat

management of a building. The problem is formulated

as a bilevel program, and then converted to and solved

as a single-level mixed-integer linear program (MILP)

using the Karush-Kuhn-Tucker (KKT) conditions. The

same paper shows that while real-time pricing is vastly

efficient for load shifting, it can cause excessive and im-

ponderable payments for small consumers. Therefore,

more predictable day-ahead pricing schemes are an at-

tractive approach for households.

Despite this, the literature of day-ahead tariff opti-

mization models is significantly scarcer. In [35], a Stack-

elberg model is proposed for energy pricing and dis-

patch in a multi-period day-ahead setting in two cou-

pled stages. The first stage addresses price setting sub-

ject to demand response from consumers who mini-

mize their energy cost and maximize their utility by

scheduling their controllable loads. In the second stage,

the retailer establishes the operating strategy for its

storage unit and its energy contracts by solving a ro-

bust optimization problem considering uncertain mar-

ket prices. The authors transform this problem into a

single-level MILP by exploiting the KKT conditions

and duality theory. In [36], a Stackelberg game is formu-

lated and solved using an iterative heuristic approach.

Two different games related to demand side manage-

ment are studied in [31]; a Nash game between con-

sumers equipped with batteries and a Stackelberg game

between the utility provider and the consumers. A bilevel

programming approach to the operation scheduling of

a distribution network, with a cost-minimizing network

operator as the leader and multiple profit-maximizing

micro-grids as followers, is considered in [17]; again,

KKT reformulation is applied to arrive at a single-

level problem. A sophisticated Stackelberg game model

is presented in [3] to capture the interplay of a re-

tailer (leader) and various types of distributed energy

resources, including generators and consumers with dif-

ferent types of controllable load as well (followers); again,

the problem is converted to a single-level MILP using

the KKT reformulation. A similar problem, with power

flow constraints and a retailer who also oversees the op-

eration of distributed generators and batteries, is stud-

ied in [24].

2.2 Related problems in energy management and

DRM

The consumers’ (followers’) problem in the above Stack-

elberg games corresponds to an energy management

problem for minimizing the cost and maximizing util-

ity. Linear programming (LP) models limited to active

power flow equations are commonly used in the litera-

ture for solving this problem [16]. More sophisticated,

non-linear models allow capturing reactive power and

voltage magnitudes as well [7, 29], or describe the be-

havior of the energy system components (battery, or

heating, ventilation, and air conditioning in buildings)

in a more realistic way [30].
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Obviously, Stackelberg games and bilevel program-

ming are not the only possible approaches to DRM

problems. Alternative methods are often based on sta-

tistical models of the grid-level load response to the

variation of energy prices, see, e.g. [9]. An iterative

solution procedure that alternates between the opti-

mization problems of the consumers (minimizing cost)

and the grid (maximizing the load factor) is presented

in [28] for smart building-to-grid systems, using a so-

phisticated thermal model of the buildings. In [22], the

problem of dynamic pricing for DRM is formulated as a

Markov decision process, and reinforcement learning is

used to solving it. In [15], demand response is modeled

by directly quantifying the delay-tolerant demand and

its dependence on price by linear, potential, exponential

and logarithmic load functions.

Game-theoretic approaches to different, but related

problems in energy management include [1], where a

Stackelberg approach is proposed for achieving a fair

curtailment of renewable energy generation. A Stack-

elberg game model is investigated in [2] with a central

production unit (leader) who sets the electricity price to

maximize its profit subject to the response from an elec-

tricity service provider (follower) that will accept load

curtailment and distributed generation bids from vari-

ous micro-grids in view of the central producer’s price.

A supply-demand game is investigated in a smart grid

setting in [38], with generators and loads acting as mul-

tiple followers, and a data center server as the virtual

leader; a deep transfer Q-learning algorithm is applied

for finding the equilibrium. The optimal operation of

multi-carrier energy systems is modeled as bilevel op-

timization problem in [25]. The upper level problem of

minimizing the total energy cost and the lower level

problem of minimizing the operating and dissatisfac-

tion costs are solved through an iterative procedure.

2.3 Mathematical methodology

An introduction to bilevel programming, including ba-

sic modelling and solution techniques, is given in [8, 11].

Approaches to transforming bilevel optimization prob-

lems into equivalent single-level models, including the

optimal value or the KKT reformulation, are studied

in [12]. A recent survey on bilevel programming for price

setting problems is given in [21].

SLP has been applied in the smart grid commu-

nity, e.g., to the planning of generators’ investments

and transmission network extensions [26], or to tack-

ling non-linear phenomena in variants of the optimal

power flow problem [5]. At the same time, to the best

of our knowledge, this paper is the first to apply SLP

to tariff optimization for demand response.

2.4 Positioning of the current contribution

This section surveyed the literature on game theoret-

ical models to electricity tariff optimization for DRM

and related problems. The algorithmic techniques ap-

plied to Stackelberg tariff optimization problems are

summarized in a tabular format in Table 1. The survey

shows that although some simpler formulations, all fo-

cusing on a single time period, adopt a solution that can

be computed analytically in closed form, multi-period

problems are computationally more challenging. This

observation is also supported by a formal proof in [19],

which states that multi-period models for DRM with

controllable loads at the consumers are NP-hard. Ac-

cordingly, the vast majority of earlier contributions ap-

ply the KKT reformulation to arrive at a single-level

MILP that can be solved using commercial solvers, how-

ever, at the price of considerable computational effort,

and a number of papers mention that the solution ap-

proach is applicable mostly to small-scale problems [24].

Other approaches use customized heuristics for solving

the problem.

With respect to the above state-of-the-art, the con-

tribution of this paper is twofold. On the one hand, it

defines a generic game-theoretic model for DRM that

slightly extends the above discussed models (e.g., it

captures both distributed battery storage and control-

lable loads characterized by a given utility function at

the consumers), and whose key properties (e.g., neces-

sary conditions for feasibility, computational complex-

ity) can be formally proven. On the other hand, it

proposes an efficient solution approach based on well-

established mathematical programming techniques that

first exploits duality for the followers’ model to convert

it into a single-level quadratically constrained quadratic

program (QCQP), and subsequently, applies an SLP

approach to solving it. It is shown in computational ex-

periments that the proposed approach outperforms ear-

lier KKT-based methods regarding both solution qual-

ity and computational effort for practically relevant prob-

lem sizes.

This paper is a substantially extended version of the

earlier conference paper [18]. In addition to a refined

model that captures the profit-maximizing behavior of

the retailer, the extensions are related to the core con-

tributions of the present paper, i.e., the formal proofs

of the fundamental characteristics of the model and the

thorough computational experimentation for assessing

solution quality and computational efficiency.
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Table 1 Algorithmic techniques applied to for solving Stackelberg tariff optimization models in the literature.

Paper Game model Time representation Solution approach
[23] Stackelberg game Single period Closed-form analytical solution∗

[33, 32] Generalized Nash embedded Single period Iterative distributed algorithm using
in Stackelberg KKT & convex optimization

[37] 3-level Stackelberg game Single period Iterative distributed algorithm
[6] Stackelberg game, stochastic Independent periods∗∗ Closed-form analytical solution
[39] Stackelberg game Multi-period KKT for conversion to single level, MILP
[35] Stackelberg game∗∗∗ Multi-period KKT for conversion to single level, MILP
[36] Stackelberg game Multi-period Iterative algorithm
[31] Stackelberg game∗∗∗∗ Multi-period Iterative algorithm
[17] Stackelberg game Multi-period KKT for conversion to single level, MILP
[2] Stackelberg game Multi-period KKT for conversion to single level, MILP
[24] Stackelberg game Multi-period KKT for conversion to single level, MILP
∗ A distributed algorithm for achieving the equilibrium is also presented.
∗∗ The multi-period problem can be reduced to multiple single-period problems.
∗∗∗ In a 2nd-stage problem, robust optimization is applied to implement the equilibrium under uncertainty.
∗∗∗∗ A Nash game among consumers is also described in the paper.
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Fig. 1 System architecture with a retailer and multiple PGs.

3 Problem Definition

3.1 System Architecture

This paper investigates DRM as an interaction among

an electricity retailer and various prosumers, i.e., clients

who can both produce and consume electricity, in a

smart grid setting. In order to ensure the tractability

of the problem over a large population, prosumers are

classified into prosumer groups (PGs), where each PG

consists of prosumers with similar electricity consump-

tion and production profiles, as well as storage capabil-

ities. The system architecture is displayed in Figure 1.

PGs are characterized by their uncontrollable pro-

duction and consumption, controllable load requirements,

as well as their storage capabilities. The uncontrollable

production C+
i,t and consumption C−

i,t of PGi is fixed

and given in the input for each time period t = 1, ..., T .

In addition to that, PGi needs to schedule a (poten-

tially zero) controllable load of Mi over the time hori-

zon, where a maximum of L̄i,t can be scheduled in each

period t. It is noted that time windows can be defined

for the controllable load by setting L̄i,t = 0 for the

appropriate periods t. The preferences of PGi on the

timing of the controllable load are encoded in utility

values Ui,t, where Ui,t captures (the monetary equiva-

lent of) the utility of scheduling a unit of controllable

load in time period t. Hence, if PGi decides for a con-

trollable load of Li,t over time, then this incurs a utility

of
∑T
t=1 Ui,tLi,t for the PG. Similar models for control-

lable load are used frequently in the literature, see, e.g.,

[35].

PGs can further optimize their energy management

by the appropriate charging and discharging of their

battery storage. The battery is characterized by its ca-

pacity Bi, the maximum charge and discharge rates R+
i

and R−
i , the initial battery state-of-charge (SoC) bi,0,

and its cycle efficiency ηi. In order to safeguard from

unexpected power outages, the prosumer wishes to re-

tain a given, time-varying minimum state-of-charge Bi,t
in the battery.

Each individual PG schedules its controllable load

Li,t and determines its battery state-of-charge bi,t over

time to optimize its own objective, composed of maxi-

mizing the utility and minimizing the electricity cost

w.r.t. the energy tariff set by the retailer. This PG

model is generic enough to capture the behavior of di-

verse types of prosumers, ranging from households or of-

fices with uncontrollable consumption only (and there-

fore, unresponsive to the energy tariff), via prosumers

equipped with renewable energy generation and/or stor-

age devices, owners of electric vehicles, to complex micro-

grid systems.1

The retailer employs the same time-of-use electric-

ity tariff for all prosumers. The tariff is specified in

1 It should be noted that various alternative approaches
to modeling prosumer behavior have been subject to exten-
sive research recently. Questions of special interest include ad-
dressing individual prosumers or organizing them into PGs, as
well as using deterministic or probabilistic models. A richer,
probabilistic approach to characterizing the responsiveness of
prosumers to the variation of the electricity tariff is presented,
e.g., in [34], together with a review of the recent literature on
the benefits and drawbacks of different approaches.
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the form of day-ahead electricity purchase prices Q+
t

and feed-in prices Q−
t for periods t = 1, ..., T . It is as-

sumed that the tariff is regulated by an a priori agree-

ment between the retailer and the prosumers, which

defines minimum, maximum, and max. average electric-

ity prices in the form of 0 < Q ≤ Q−
t ≤ Q+

t ≤ Q and
1
T

∑T
t=1Q

+
t ≤ Q̃. Such an agreement is necessary to

prevent the profit maximizing retailer from increasing

purchase prices without any limit, see, e.g., [39].

The focus of this paper is on the problem faced by

the retailer, who has to cover the (potentially negative)

net consumption of the ensemble of all prosumers from

electricity purchased (or sold) on the wholesale market.

This paper assumes a time-variant dual pricing scheme

on the wholesale market, given in the form of purchase

prices P+
t and feed-in prices P−

t . It is noted that the

same model can be naturally applied to markets with

uniform pricing (purchase prices equal to selling prices)

by letting P+
t = P−

t . It is assumed that the retailer

appears as a price-taker on the market, without any

ability to influence the market prices.

Table 2 Notation used in the paper.

Dimensions
T Number of time periods
N Number of prosumer groups (PGs)
Parameters for PGi

C+
i,t Uncontrollable production [kWh]

C−
i,t Uncontrollable consumption [kWh]

Mi Total controllable load during the horizon [kWh]
L̄i,t Maximum controllable load scheduled [kWh]
Ui,t Utility of controllable load scheduled [$/kWh]

R+
i Maximum battery charge rate [kWh/period]

R−
i Maximum battery discharge rate [kWh/period]

ηi Cycle efficiency of the battery [%]

Bi Battery capacity [kWh]
Bi,t Minimum battery SoC [kWh]

bi,0 Initial battery SoC [kWh]
Parameters for the retailer

Q̃ Max. average electricity price for prosumers [$/kWh]

Q Maximum electricity price for prosumers [$/kWh]
Q Minimum electricity price for prosumers [$/kWh]

P+
t Purchase price of electricity on wholesale market [$/kWh]

P−
t Selling price of electricity on wholesale market [$/kWh]

Decision variables for PGi

x+
i,t Electricity purchased [kWh]

x−
i,t Electricity fed into the grid [kWh]

Li,t Controllable load [kWh]

r+i,t Electricity charged into battery [kWh]

r−i,t Electricity discharged from battery [kWh]

bi,t Battery SoC at the end of period t [kWh]

ϕk
i,t Dual variables (see definition at primal constraints)

Decision variables for the retailer

Q+
t Electricity purchase price offered to PGs [$/kWh]

Q−
t Electricity feed-in price offered to PGs [$/kWh]

y+t Electricity purchased on the wholesale market [kWh]

y−t Electricity sold on the wholesale market [kWh]
Objective values
f Objective value of the retailer [$]
gi Objective value of PG i [$]

The retailer, by offering an appropriate electricity

tariff to its prosumers, can initiate a demand response

program that motivates the prosumers to purchase elec-

tricity in valley periods, when an ample amount of cheap

energy is available on the market, and sell their surplus

energy in peak periods. In this way, the retailer can

contribute to the stability of the grid and maximize its

profit at the same time. In this paper, the maximiza-

tion of the retailer’s profit is addressed. The applied

notation is summarized in Table 2.

3.2 Stackelberg Game Model and Basic Characteristics

The following communication protocol is implemented

among the various stakeholders: the retailer first an-

nounces the day-ahead electricity tariff to all prosumers.

The prosumers observe this tariff and optimize their

consumption profile, i.e., the amount of electricity pur-

chased from or fed into the grid over time. Then, the

parties implement their actions as planned. It is as-

sumed that the retailer is aware of the decision model

and the parameters of the PGs. This leads to a Stackel-

berg game with the retailer as the leader and the PGs as

multiple followers. The so-called optimistic assumption

is adopted, i.e., if a follower has more than one optimal

solutions according to its own objective, then it chooses

its optimal solution that is the most favorable for the

leader. The following additional assumptions are made,

which guarantee the feasibility of the problem:

T∑
t=1

L̄i,t ≥Mi ∀ i (1)

Bi,t ≤ Bi ∀ i, t (2)

bi,0 ≤ Bi ∀ i (3)

bi,0 + tR+
i ≤ Bi,t ∀ i, t (4)

These assumptions require that bounds on the con-

trollable load allow scheduling the required power over

the horizon (1), the bounds on the battery state-of-

charge are consistent (2), the initial battery charge sat-

isfies these bounds (3), and finally, that the charging

rate of the battery allows satisfying the lower bounds

on the state-of-charge (4).

Lemma 1 (Existence of a solution) If assumptions

(1)-(4) hold, then the followers’ problem is feasible for

any electricity tariff Q+
t and Q−

t set by the leader.

Proof: Setting the battery state-of-charge to the re-

quired minimum, i.e., bi,t = max
(
bi,t−1, Bi,t

)
, and schedul-

ing the controllable as early as the bounds allow, i.e.,
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Li,t = min
(
L̄i,t,Mi −

∑u=t−1
u=1 Li,u

)
results in a feasi-

ble solution for each follower i. 2

Lemma 2 (Independence of followers’ problems)

The optimal demand response of an individual PG to

a given energy tariff is independent of the response of

other PGs.

Proof: The objectives of the individual PG, i.e., its en-

ergy cost and utility, depend solely on the energy tariff

and the consumption profile of the given PG. More-

over, the feasibility of a consumption profile is also in-

dependent of other PGs’ response, since the amount of

electricity that can be purchased or sold on the market

by the retailer to maintain the grid-level balance is un-

bounded. 2

It is emphasized that different PG’s problems are

still interconnected trough the retailer’s problem, but

for any fixed decision of the retailer on the tariff, the

PGs can optimize their behavior without considering

the problems faced by fellow PGs. Hence, the problem

can be modeled as a Stackelberg game with a single

leader (the retailer) and multiple independent followers

(the PGs). It is noted that when the optimal response

of a follower is not unique, then the response induced by

the optimistic assumption (from the set of all optimal

responses) can be dependent on other PGs’ response.

Lemma 3 (Computational complexity) The above

defined bilevel energy tariff optimization problem is NP-

hard.

Proof: The Simple Multi-period Energy Tariff Opti-

mization Problem (SMETOP) has been introduced as a

minimal bilevel optimization model of energy tariff op-

timization for DRM, and it has been proven to be NP-

hard in [19]. The problem investigated in this paper

generalizes SMETOP in the sense that, in addition to

all features captured by SMETOP, it also handles bat-

teries and uncontrollable energy production and con-

sumption at the PGs, as well as bi-directional grid con-

nections. This implies that the currently investigated,

generalized problem is NP-hard, too. 2

4 Solution Approach

4.1 Overview

This section presents a bilevel programming formula-

tion of the above Stackelberg game model, and pro-

poses an efficient solution approach for that formula-

tion. First, the models of an individual follower and the

leader are formally defined. Then, the bilevel program-

ming model received as a combination of the two par-

ties’ problems is reformulated into a single-level QCQP,

which is, in turn, solved using an SLP algorithm.

4.2 Prosumer Groups’ (Followers’) Problem

The decision problem faced by an individual PGi (fol-

lower) is a parametric optimization problem, whose pa-

rameters encode the electricity tariff determined by the

retailer (decision variables Q+
t and Q−

t controlled by

the leader). The problem can be captured by the fol-

lowing linear program (LP), where symbols (ϕki,t) on

the r.h.s. of the constraints denote the dual variables

associated with the given constraint:

Minimize

gi(Q
+, Q−) =

T∑
t=1

(
Q+
t x

+
i,t −Q

−
t x

−
i,t − Ui,tLi,t

)
(5)

subject to

C+
i,t − C

−
i,t + x+

i,t − x
−
i,t − Li,t = r+

i,t − r
−
i,t ∀ t [ϕ6

i,t]

(6)

ηi r
+
i,t − r

−
i,t = bi,t − bi,t−1 ∀ t [ϕ7

i,t]

(7)

T∑
t=1

Li,t = Mi [ϕ8
i ]

(8)

Li,t ≤ L̄i,t ∀ t [ϕ9
i,t]

(9)

Bi,t ≤ bi,t ∀ t [ϕ10
i,t]

(10)

bi,t ≤ Bi ∀ t [ϕ11
i,t]

(11)

r+
i,t ≤ R

+
i ∀ t [ϕ12

i,t]

(12)

r−i,t ≤ R
−
i ∀ t [ϕ13

i,t]

(13)

0 ≤ x+
i,t, x

−
i,t, r

+
i,t, r

−
i,t, Li,t ∀ t (14)

The follower’s objective (5) is comprised of the total

cost of energy, i.e., the cost of energy purchased minus

the income from feeding energy into the grid, and the

PG’s utility achieved by the timing of the controllable

load. Constraint (6) encodes that the energy balance at

the PG is maintained. Equation (7) computes the bat-

tery state-of-charge based on the charge and discharge
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rates. Constraints (8) and (9) ensure that the amount

and the timing of the controllable load satisfies the re-

quirements. Finally, inequalities (10)-(14) define the al-

lowed range of the battery state-of-charge, the charge

and discharge rates, as well as the electricity purchase

and feed-in rates at the PG.

It is noted that all constraints in the followers’ model

are linear, whereas the objective contains the leader’s

variables as multipliers, making it a bilinear (quadratic)

expression. The models of different followers are linked

only via the leader’s decision problem.

4.3 Retailer’s (Leader’s) Problem

The optimization problem faced by the retailer can

be formulated as a bilevel program that contains the

PGs’ problem as a nested sub-problem. This nested

sub-problem, encoded as a constraint in the model, ex-

presses that a part of the variables (namely, decision

variables x+
i,t and x−i,t, corresponding to the amount of

electricity purchased from and fed into the grid) are

controlled by the followers, according to their known

decision model:

Maximize

f =

T∑
t=1

(
N∑
i=1

(
Q+
t x

+
i,t −Q

−
t x

−
i,t

)
− P+

t y
+
t + P−

t y
−
t

)
(15)

subject to

y+
t − y−t =

N∑
i=1

(x+
i,t − x

−
i,t) ∀ t (16)

Q ≤ Q−
t ≤ Q+

t ≤ Q ∀ t (17)

1

T

T∑
t=1

Q+
t ≤ Q̃ (18)(

x+
i,t

x−i,t

)
∈ arg min

{
gi(Q

+, Q−) | (6)− (14)
}

∀ i (19)

The leader’s objective (15) is maximizing its profit,

calculated as its revenue from the prosumers, minus the

cost of electricity purchased on the market, plus the in-

come from the electricity sold on the market. Equation

(16) encodes the grid-level energy balance. Inequalities

(17) and (18) define the valid range of the energy tariff

variables. Finally, constraint (19) states that the pro-

sumers’ electricity purchase and feed-in values are de-

termined by them using the above optimization model.

4.4 Single-level QCQP Reformulation

When the complexity of a bilevel optimization problem

does not allow developing an analytical solution, which

is apparently the case above, the two candidate solu-

tion approaches are the application of (meta-)heuritics

directly to the bilevel problem, or reformulation to a

single-level problem. The considerable benefit of the lat-

ter technique is that it allows the application of theoret-

ically well-founded, potentially even exact, mathemat-

ical programming approaches to solving the problem.

For this reason, this paper adopts the reformulation

approach and looks for a transformation of the bilevel

problem (15)-(19) into a single-level mathematical pro-

gram. The key to achieving this is modeling the follow-

ers’ optimality condition (19). By exploiting duality for

the followers’ LP model2, a primal-dual reformulation

of the followers’ problem can be applied: the optimality

condition (19) is translated into the conjunction of the

followers’ primal constraints (6)-(14), dual constraints,

and an equality constraint between the primal and the

dual objectives. By duality, the ensemble of these con-

straints is satisfied if and only if the given instantiation

of the variables is an optimal solution for the follower.

The complete single-level reformulated problem is

shown below. It consist of the leader’s objective (15),

the leader’s constraints (16)-(18), the followers’ primal

constraints (6)-(14), an equality relation between the

followers’ primal and dual objectives (20), as well as the

followers’ dual constraint corresponding to the primal

variables for the battery charge rate r+
i,t (21), discharge

rate r−i,t (22), state of charge bi,t for t < T (23) and bi,T
(24), electricity purchase x+

i,t (25), electricity feed-in x−i,t
(26), and controllable load Li,t (27).

Maximize (15)

subject to

(6)− (14), (16)− (18)

T∑
t=1

(
Q−
t x

−
i,t −Q

+
t x

+
i,t + Ui,tLi,t

)
=

T∑
t=1

((
C−
i,t − C

+
i,t

)
ϕ6
i,t + L̄i,t ϕ

9
i,t +R+

i ϕ
12
i,t

+R−
i ϕ

12
i,t −Bi,t ϕ10

i,t +Bi ϕ
11
i,t

)
∀ i

(20)

2 It is noted that the followers’ LP model (5)-(14) con-

tains the bilinear term Q+
t x+

i,t − Q−
t x−

i,t in the expression

of gi(Q+, Q−), i.e., a multiplication of the leader’s and the
followers’ variables. With this, the model is still linear in the
followers’ variables, and hence, LP duality can be exploited
for reformulating it.
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− ϕ6
i,t + ηiϕ

7
i,t + ϕ12

i,t ≥ 0 ∀ i, t (21)

ϕ6
i,t − ϕ7

i,t + ϕ13
i,t ≥ 0 ∀ i, t (22)

− ϕ7
i,t + ϕ7

i,t+1 − ϕ10
i,t + ϕ11

i,t ≥ 0 ∀ i, t < T (23)

− ϕ7
i,T − ϕ10

i,T + ϕ11
i,T ≥ 0 ∀ i (24)

ϕ6
i,t ≥ −Q+

t ∀ i, t (25)

− ϕ6
i,t ≥ Q−

t ∀ i, t (26)

− ϕ6
i,t + ϕ8

i + ϕ9
i,t ≥ Ui,t ∀ i, t (27)

ϕ9
i,t, ϕ

10
i,t, ϕ

11
i,t, ϕ

12
i,t, ϕ

13
i,t ≥ 0 ∀ i, t (28)

The primal-dual reformulation particularly suits the

problem in scope, since the only occurrence of the leader’s

variables, Q+
t and Q−

t , in the followers’ problem is in

their primal objective, and consequently, on the right

hand side of the dual constraints. As a result, the only

non-linear term in the single-level reformulation is the

payment from the PGs to the retailer, contained both

in the leader’s objective (15) and in the followers’ op-

timality constraint (20), which is a bilinear expression

containing the multiplication of the followers’ and the

leader’s variables. All other constraints are linear.

4.5 SLP Solution Method

Since the above QCQP is non-convex, no efficient ex-

act algorithm can be expected for solving it, and ac-

cordingly, (meta-)heuristic approaches are of interest.

Therefore, we propose an SLP heuristic solution ap-

proach, which is known to show good convergence prop-

erties especially on problems where most of the con-

straints are linear, which is the case above. SLP solves

non-linear problems by iteratively constructing local LP

approximations of the original problem, and solving

each approximation using standard LP techniques [4,

27]. The algorithm departs from an initial solution X0,

and in each iteration k, it builds a local linearization

of the original problem around Xk, denoted as LPk.

Then, the optimal solution of LPk is sought subject to

a given step bound, −s ≤ X −Xk ≤ s. If the optimal

LP solution is feasible with a given tolerance, then it is

accepted as the next solution Xk+1 (and possibly s is

increased); otherwise Xk+1 = Xk and s is decreased.

The above SLP algorithm converges to a locally op-

timal solution of the QCQP, which is potentially differ-

ent from the global optimum. In order to reduce the risk

of getting stuck in a local optimum, the SLP algorithm

is embedded into a randomized restart procedure. It

executes multiple SLP runs, using a random perturba-

tion of the previous best solution as an initial solution

in each run (or Q−
t = Q+

t = Q in the first run). The

implementation reported in this paper is based on the

SLP package of Fico Xpress 7.8, using its default SLP

algorithm, with the number of SLP runs set to 10 in all

computational experiments.

4.6 Discussion on Possible Extensions

While the above presented bilevel model captures the

most important generic features of prosumers (produc-

tion and consumption, controllable load, battery stor-

age), it can be extended and refined in many differ-

ent ways. The most relevant directions include the ex-

tension of the prosumer model with features for spe-

cific types of equipment that induce elastic load (e.g.,

HVAC in buildings, or refined battery storage mod-

els capturing state-dependent charging properties and

losses [30]), as well as the extension of the retailer model

with generation or energy storage. The proposed so-

lution method is directly applicable to the extended

models as long as the prosumer model remains linear.

The proposed reformulation still applies with binary

variables in the retailer model (e.g., due to switchable

generators), and commercial solvers offer algorithms for

tackling the resulting mixed-integer QCQP, though the

computational efficiency of the approach needs to be

verified for the given application.

Below, we review two minor refinements of the base-

line bilevel model (15)-(19) that fix specific issues that

might be undesirable in some application scenarios. First,

the baseline model may trigger inappropriate end-of-

horizon effects, namely, followers selling all the energy

stored in the batteries to maximize their revenue. This

can be avoided by subtracting a term that valuates the

energy stored in the batteries at the end of the planning

horizon from the followers objective (5) as follows:

Q+
T +Q−

T

2
bi,T (29)

Another example of a possible requirement that is

not captured readily by the above model is that, among

the different optimal solutions that maximize the re-

tailer’s profit, a solution with a smooth electricity pur-

chase and/or sale over time is preferred. Unwanted os-

cillation of the energy purchased or sold on the whole-

sale market can be smoothed out by adding the follow-

ing term to the retailer’s objective:

−ε
T∑
t=1

(y+
t − y−t )2 (30)

This quadratic term measures the squared deviation

of the energy traded over time (with a constant bias).

Accordingly, adding it to the retailer’s objective with

a small multiplier ε smooths unnecessary oscillations

without affecting the payoffs of the players.
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4.7 Discussion on the KKT Reformulation

As an alternative to the proposed solution approach,

KKT reformulation and linearization can applied to

convert the proposed bilevel model (15)-(19) into a single-

level MILP. This approach is often considered to be the

default choice for transforming bilevel problems into

single-level ones. Moreover, the resulting MILP, in the-

ory, can be solved to exact optimality by commercial

solvers.

Converting the bilevel model into a single-level MILP

requires linearizing the KKT complementary slackness

conditions using big-M constraints over additional bi-

nary variables, as well as linearizing the quadratic term

in the objective by expressing and substituting it from

(20). However, as it will be shown in the computa-

tional experiments, this approach is extremely challeng-

ing computationally due to the high number of binary

variables and big-M constraints. In particular, lineariz-

ing the complementary slackness conditions requires in-

troducing ca. 22 ·NT auxiliary binary variables into the

model (one for each primal and dual variable, resulting

in over 20 000 additional binary variables for N = 20

and T = 48). Moreover, the corresponding big-M con-

straints are typically difficult to solve due to their weak

LP relaxations. For further details on the KKT refor-

mulation, the interested reader is referred to [8, 12].

Finally, even minor modifications in the bilevel model

can hinder the linearization of the KKT reformulation,

as is the case with the terms for the valuation of the

remaining charge (29) or for smoothing (30).

In this paper, we use the KKT reformulation and

the exact MILP solution approach in computational ex-

periments to assess the quality of the solutions found

by the proposed SLP solution approach on small-size

problems.

5 Experimental Evaluation

5.1 Illustrative Example

In this section, the proposed approach to DRM is demon-

strated on a small-scale illustrative example, with three

PGs and a one-day horizon (from 08:00 AM, using hourly

time units). The PGs correspond to different types of

consumers as follows:

– PG1 represents an intelligent energy-positive street

lighting micro-grid system called E+grid [10, 20].

Since the lighting system is controlled according to

local traffic and environmental conditions, as cap-

tured by motion sensors and a local weather sta-

tion, its consumption varies dynamically over time.

The grid-connected system is also equipped with PV

power generation and battery storage, which enables

it to perform active energy management using an

optimization approach that corresponds to the PG

model adopted in this paper. Real-life data origi-

nates from a physical prototype with 191 luminaries

and 151.2 m2 of active PV surface area, and reflects

the operation of the system on a sunny day in Oc-

tober. The E+grid PG is a net producer (up to 15

kW) during the day, and a net consumer (up to 3.5

kW) during the night.

– PG2 comprises owners of plug-in electric vehicles.

Data used in the example corresponds to three Nis-

san Leaf EVs, with a 24kWh battery pack in each

vehicle, which has to be charged from a 50% state

to 100% during the night. Individual vehicles are

connected to the grid between 17:00–20:00 and dis-

connected between 6:00-8:00 in the morning. With

the vehicle-to-grid (V2G) option ignored, this can

be modeled as a controllable load of 36kWh. It is

assumed that the owners have a slight preference

for charging the EVs as early as possible, which is

captured by utility values U2,t linearly decreasing

over time.

– Finally, PG3 contains households with uncontrol-

lable consumption only. This case study uses the

data of 15 average Hungarian homes, with a peak

consumption of 5.7 kW during the day, and a mini-

mum consumption of 3.8 kW during the night. Since

this PG has no controllable load or battery storage,

it cannot participate actively in DRM, and its con-

sumption appears only as a time-varying bias in the

grid-level consumption.

The retailer aims to maximize its profit by offering

an appropriate time-of-use electricity tariff to the PGs,

respecting the a priori contract that sets Q = 1 c/kWh,

Q = 100 c/kWh, and Q̃ = 10 c/kWh. For the sake of

simplicity, the wholesale market prices are assumed to

vary in two steps: 12 c/kWh during the day (between

8:00 and 21:00) and 6 c/kWh during the night. The

feed-in price on the wholesale market is a constant 3

c/kWh.

The system-level optimum for this example is deter-

mined by the following characteristics: the overall grid

is a net producer until 17:00 due to PV generation in

the E+grid micro-grid, whereas it is a net consumer af-

terwards. In order to avoid losses stemming from dual

pricing on the wholesale market, the retailer should mo-

tivate the PGs to anticipate load and charge batteries

before 17:00. On the contrary, in the period after 17:00,

it should encourage PGs to defer their load from the

peak period lasting until 21:00 to the valley period af-

terwards.
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mulated load of the electronic vehicle PG over time.

This sample instance was solved using the proposed

approach, applying formula (30) to eliminate the oscil-

lations of the energy flow that are visually disturbing,

but otherwise does not affect the payoffs of the players.

The results displayed in Figures 2-5 show that the pro-

posed approach could indeed reach the above described

system-level optimum. The diagrams compare the op-

timized consumption profile (red curve) to the baseline

consumption (yellow curve) for the overall grid and for

the individual PGs, where the baseline consumption is

computed by scheduling the controllable loads to max-

imize utility (ignoring the electricity tariff) and not us-

ing the batteries. The characteristic time periods are

separated by dashed lines at 17:00 and 21:00. Finally,

the optimized purchase tariff is also shown in the dia-

gram of the overall grid: constant low prices (1 c/kWh)
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Fig. 5 Solution with optimized tariff: consumption of the
households PG over time.

are applied while the system is a net producer, until

17:00, whereas high, slightly decreasing prices are used

afterwards (15.74 c/kWh at 18:00, decreasing by 0.05

c/kWh per hour).

On the level of individual PGs, the applied tariff

motivated the E+grid PG to charge its battery while it

is a net producer, to reach a fully charged state during

14-17:00, and to gradually discharge the battery in the

rest of the peak period between 17:00 and 21:00. The

controllable load of the EV PG was fully deferred to

the valley period after 21:00. In that period, the slight

decrease of the purchase prices over time compensates

the PG for its linearly decreasing utility function, and

therefore, an arbitrary scheduling of the controllable

load became optimal for this PG. There were no con-

trollable variables for the households PG. This tariff

and consumption profile is globally optimal for the re-

tailer, since no further load can be moved outside the

peak period between 17:00 and 21:00.

The implementation of the proposed solution ap-

proach in Fico Xpress 7.8, with 10 SLP runs within
the randomized restart heuristic, could solve the above

problem instance in 9.8 seconds on a computer with

Intel i7 2.70Ghz CPU and 16GB RAM.

5.2 Computational Experiments

The evaluation of the proposed approach in computa-

tional experiments focused on two questions: (1) the

computational effort required by the proposed SLP so-

lution approach, and (2) the quality of the solutions

found. Large problem instances were generated by the

multiplication and random perturbation of the data

used in the above illustrative example. Table 3 dis-

plays the average computation time in seconds over 10

instances for different combinations of N (number of

PGs) and T (number of time periods), achieved with

the proposed model (15)-(19) and algorithm using 10

SLP runs. The results show that computation time in-

creases moderately with problem size, and practically
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Table 3 Average computation time in seconds by problem
size for the proposed SLP solution approach.

T = 12 T = 24 T = 36 T = 48
N = 5 0.55 1.46 2.22 16.04
N = 10 1.10 73.38 57.97 228.37
N = 15 1.67 155.74 51.59 283.56
N = 20 3.63 257.31 98.82 345.06

Table 4 Comparison of the exact KKT and the proposed
SLP solution approaches. Negative gaps arise where SLP out-
performs KKT within the 600 s time limit.

KKT SLP
Size Opt Time (s) Gap Time (s)
N · T min. avg. max.
3 · 12 100% 0.51 0.00% 0.00% 0.00% 0.43
3 · 24 100% 4.43 0.00% 0.09% 0.98% 1.11
3 · 36 100% 55.00 0.00% 0.01% 0.06% 1.29
3 · 48 90% 240.64 -19.16% -1.93% 0.05% 2.24
5 · 12 60% 304.01 -0.04% 0.00% 0.02% 0.55
5 · 24 0% 600.00 -6.99% -2.11% 0.83% 1.46
5 · 36 0% 600.00 -40.92% -8.30% 0.48% 2.22
5 · 48 0% 600.00 -28.13% -5.93% 1.51% 16.04

relevant problem sizes, e.g., with N = 20 and T = 48,

were tractable in a reasonable amount of time. In ap-

plications where a different tradeoff between solution

quality and computation time is looked for, the algo-

rithm can be tuned, e.g., by modifying the number of

SLP runs.

In order to evaluate the quality of the solutions

found by the proposed approach, they were compared

to the exact optimal solutions of the MILP model re-

ceived by applying KKT reformulation and lineariza-

tion as discussed in Section 4.7. The results of the com-

parison are displayed in Table 4, which displays aggre-

gated results over 10 instances for each problem size.
Column KKT/Opt contains the ratio of instances that

could be solved to proven optimality using KKT, and

KKT/Time shows the average computation time re-

quired for this. The branch and bound search was aborted

when the time limit of 600 s was hit, and the best inte-

ger solution found was recorded. Columns SLP/Min. gap,

SLP/Avg. gap, and SLP/Max. gap display the mini-

mum, the average, and the maximum gap between the

SLP and the KKT solutions for the given problem size.

Finally, column SLP/Time contains the average com-

putation time for the SLP solution approach. The re-

sults show that the smallest instances, with N = 3,

could be solved to proven optimality using KKT (with

a single exception). Although SLP is not an exact solu-

tion approach, in practice it also builds close-to-optimal

solutions with an average gap of only 0.01-0.1%. For

somewhat larger instances, N = 5, where KKT failed

to find the optimal solution, SLP often constructed sig-

nificantly better solutions, as indicated by negative gap

values. Namely, SLP found up to 40% better solutions

than KKT with one or two orders of magnitude lower

computation times.

Hence, it can be concluded that although KKT is

an exact solution approach in theory, in practice its

applicability is limited to small problems, e.g., with

N = 3. In contrast, the proposed primal-dual reformu-

lation coupled with SLP scales much more favorably,

and it computes high-quality solutions efficiently even

for practically relevant problem sizes.

6 Conclusions

This paper introduced a bilevel programming approach

to energy tariff optimization for DRM in smart grids.

In the Stackelberg game model, the leader is a profit

maximizing retailer, who sets the energy tariff offered

to its prosumers and purchases electricity for them from

the wholesale market. The prosumers, who act as mul-

tiple independent followers, optimize their controllable

load and their battery charging schedule to maximize

their utility and minimize their cost of energy. A novel

solution approach was introduced, which exploits the

primal-dual reformulation of the followers’ problem to

arrive at a single-level QCQP equivalent of the bilevel

problem. It has been shown that the resulting QCQP

can be solved efficiently using an SLP algorithm. In par-

ticular, it was illustrated in computational experiments

that the proposed approach outperforms the technique

based on the KKT reformulation, which is the domi-

nant approach for solving similar problems in the liter-

ature. Hence, the main contributions of the paper are a

bilevel programming formulation of the tariff optimiza-

tion problem, formal proofs of some basic properties,

and the application of novel and efficient mathematical

programming techniques to solve this problem.

The proposed model can be trivially extended to

some more complex problems, e.g., with various types

of controllable loads and storage devices for each PG,

or switchable generators and energy storage at the re-

tailer. A more important and challenging direction for

future research is the investigation of richer, non-linear

prosumer models that can capture more realistically,

e.g., thermal processes of HVAC in buildings or charg-

ing properties of batteries. The extension to a stochastic

variant, accounting for uncertainties in consumption,

production, and spot market prices is also of interest.

Finally, it must be observed that while Stackelberg

game models are becoming ubiquitous in the literature

of DRM, a critical pre-condition of their practical appli-

cability is that the leader should be able to identify the

decision models and parameters the followers. This is a

challenging problem in application scenarios character-

ized by information asymmetry. A promising solution
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approach can be the application of inverse optimization,

analogously to a case in inventory control [13]; given

historical pairs of a follower’s input (i.e., energy tariff)

and response (consumption), the inverse optimization

approach looks for parameters that ensure that each

response is optimal for the corresponding input.
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[19] A. Kovács. On the computational complexity of

tariff optimization for demand response manage-

ment. IEEE Trans. Power Systems, 33(3):3204–

3206, 2018.
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