
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Hungarian Academy of Sciences
Computer and Automation Research Institute

Novel Models and Algorithms for Integrated

Production Planning and Scheduling

Ph.D. Thesis

András Kovács

Supervisors:

József Váncza, Ph.D.
Computer and Automation Research Institute

Hungarian Academy of Sciences

Tadeusz P. Dobrowiecki, Ph.D.
Department of Measurement and Information Systems

Budapest University of Technology and Economics

Budapest, 2005.

ii

iii

Nyilatkozat

Aluĺırott Kovács András kijelentem, hogy ezt a doktori értekezést magam késźıtettem,
és abban csak a megadott forrásokat használtam fel. Minden olyan részt, ame-
lyet szó szerint, vagy azonos tartalomban, de átfogalmazva más forrásból átvettem,
egyértelműen, a forrás megadásával megjelöltem.

Budapest, 2005. június 6.

........................
Kovács András

A dolgozat szövege stilisztikai megfontolásból nagyrészt első szám harmadik személy-
ben ı́ródott. A szerző saját eredményei a mellékelt tézisfüzet seǵıtségével egyértelműen
azonośıthatók.

A dolgozat b́ırálatai és a védésről készült jegyzőkönyv a későbbiekben a Budapesti
Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Karának
Dékáni Hivatalában elérhetők.

iv

Kivonat

Ebben a disszertációban a termeléstervezés és -ütemezés feladatával foglalkozunk a
megrendelésre történő gyártás területén. Hatékony modellezési és megoldási tech-
nikákat keresünk, amelyek előseǵıtik egy vállalat termelékenységének és kiszolgálási
szintjének növelését, a gyártási költségek csökkentését. Ehhez olyan módszerekre van
szükség, amelyek képesek megfelelő döntéstámogatást nyújatni a menedzsmentnek a
tervezési hierarchia e két szintjén.

A disszertációban az aggregált termeléstervezési feladat egy új modelljét defi-
niáljuk, azzal a céllal, hogy olyan termelési terveket tudjunk előálĺıtani, amelyeket
megvalóśıtható részletes ütemtervvé lehet kifejteni. Ezt egy automatikus aggregációs
eljárás seǵıtségével érjük el, amely részletes termelési adatokból éṕıti fel az aggregált
reprezentációt, polinom idejű fapart́ıcionálási algoritmusok seǵıtségével.

Áttekintjük a részletes termelésütemezési feladatok megoldási lehetőségeit korlá-
tozás-alapú ütemezés alkalmazásával. Kimutatjuk, hogy bár a korlátozás programo-
zás a modellezési eszközök gazdag tárházát nyújtja az ütemezési feladatok léırásához,
a feladatok optimális megoldásának megtalálása gyakran meghaladja a ma ismert al-
goritmusok képességeit. Ezért kutatási célként ezen algoritmusok hatékonyságának
növelését tűztük ki, az iparban felmerülő ütemezési feladatok néhány tipikus struk-
turális tulajdonságának kihasználásával. E célból új, úgynevezett konzisztencia meg-
őrző transzformációkat definiálunk.

Mindkét szinten hangsúlyt helyeztünk arra, hogy valós, gyakorlati relevanciával
b́ıró feladatokat oldjunk meg. Kifejlesztettünk egy ḱısérleti integrált termeléstervező
és ütemező rendszert, amelynek seǵıtségével algoritmusainkat valós, ipari partnerünk-
től származó tervezési és ütemezési feladatokon tesztelhettük.

v

Abstract

This thesis is concerned with production planning and scheduling in make-to-order
manufacturing system. We seek effective modelling and efficient solution techniques
that can help increase the productivity and the service level of an enterprise, together
with reducing production costs, by supporting the management to make smarter
decisions on these two levels of the planning hierarchy.

In the thesis, we define a novel formulation of the aggregate production planning
problem, with the objective of finding production plans that can be refined into feasi-
ble detailed schedules. We achieve this by constructing the aggregate representation
from detailed production data in an automated way, by an aggregation procedure
based on fast, polynomial-time tree partitioning algorithms.

We review the possibilities of solving detailed production scheduling problems by
using constraint-based techniques. We point out that although constraint program-
ming provides a rich collection of modelling tools for the description of scheduling
problems, the solution of such problems often challenges the currently known algo-
rithms. Hence, we aim at boosting the efficiency of these algorithms by the exploita-
tion of structural properties commonly present in industrial problem instances. For
this purpose, we define new, so-called consistency preserving transformations.

On both levels, we laid emphasis on solving real problems that arise in the indus-
try. We developed a pilot integrated production planner and scheduler software, and
used this system to test our algorithms on real-life planning and scheduling problems,
originating from an industrial partner.

vi

Contents

1 Introduction 1
1.1 The Planning Hierarchy in Make-to-order Systems 1
1.2 Problem Statement . 3
1.3 Outline of the Thesis . 4

2 Aggregate Modelling of Production Planning Problems 7
2.1 Introduction to Aggregate Production Planning 8
2.2 Formal Models of Production . 12

2.2.1 Production Scheduling: the RCPSP Model 13
2.2.2 Production Planning: RCPSP with Variable-intensity Activities 14

2.3 An Aggregate Formulation of the Production Planning Problem 15
2.3.1 The Aggregation/Disaggregation Procedure 16
2.3.2 The Aggregate Model of Projects 18
2.3.3 Feasibility and Optimality of the Aggregation 21

2.4 Tree Partitioning Algorithms for the Creation of Aggregate Project
Models . 23
2.4.1 Notations and Terminology . 23
2.4.2 The Bottom-up Framework . 25
2.4.3 Minimizing the Height of the Partitioning 27
2.4.4 Minimizing the Cardinality of the Partitioning 29
2.4.5 Pareto-criteria of Minimal Height and Minimal Cardinality . . 31

2.5 Discussion . 36
2.5.1 Estimating Activity Throughput Times 36
2.5.2 Hand-tailoring the Production Plan 37
2.5.3 Extensions and Future Research 38

2.6 Experiments . 40
2.7 Conclusions . 42

3 Consistency Preserving Transformations in Constraint-based Schedul-
ing 45
3.1 Introduction to Constraint-based Scheduling 46

3.1.1 Representation of the Scheduling Problem 46
3.1.2 Transformations of Constraint Programs 49
3.1.3 Search Techniques . 53
3.1.4 Application Problems of Constraint-based Scheduling 56

vii

viii CONTENTS

3.2 Consistency Preserving Transformations for the Exploitation of Prob-
lem Structure . 57
3.2.1 Related Work . 58
3.2.2 Progressive Solutions of Scheduling Problems 61
3.2.3 Freely Completable Partial Solutions 64
3.2.4 Application of FCPSs in Constraint-based Scheduling 65
3.2.5 Experiments . 70

3.3 Conclusions . 76

4 A Pilot Production Planner and Scheduler System 77
4.1 Production Environment at the Target Enterprise 78
4.2 Problem Statement . 80
4.3 System Overview . 82
4.4 The Production Planner Sub-system 82
4.5 The Production Scheduler Sub-system 88
4.6 Verification of the Results by Simulation 92

5 Conclusions 95

Acknowledgements 97

List of Abbreviations 98

Notations 99

Index 103

Bibliography 107

Chapter 1

Introduction

Advanced representation and solution techniques in production planning and schedul-

ing received significant attention during the past decades, both from the part of re-

search communities and the industry. This interest comes quite natural, regarding

that these methods hold out a promise of increased productivity, better service level,

higher flexibility, together with lower production costs. It is presumed that the above

objectives can be reached by supporting the management to make smarter decisions

on various levels of the planning hierarchy.

Despite the attractive prospects, only a few of the recent research results has mi-

grated into everyday practice. Although advances in operations research and artificial

intelligence led to the development of novel modelling and solution techniques, in-

dustrial applications often require more: on the part of the researchers, richer models

and more efficient algorithms. This thesis is concerned with such issues.

1.1 The Planning Hierarchy in Make-to-order Systems

The planning functions in make-to-order manufacturing environments are generally

described by the three-level hierarchy presented in Fig. 1.1. The levels of decision

making are called strategic (or long-term), tactical (medium-term), and operational

(short-term). Every member of the hierarchy is responsible for realizing the objectives

that characterize the given level, and the decisions made at a certain stage become

constraints for the lower levels [25, 33, 96].

Accordingly, planning on the strategic level concerns long-term decisions that

determine the market competitiveness policy. Departing from the choice of plant lo-

cations and capacities, these decisions include make-or-buy choices, supply network

planning, and capacity/facility planning. Based on demand forecasts and other mar-

1

2 1.1 The Planning Hierarchy in Make-to-order Systems

Figure 1.1: Levels of the planning hierarchy.

ket information, the required capacities of the machine resources, workforce, trans-

portation means, etc. in the factory are also determined on this level. The decisions

are brought by the senior management, over a planning horizon covering several years.

In contrast, the planning tasks of the tactical level are already directly related to

customer orders, let them be contractual or only forecasted. The master planning

module is responsible for the acceptance (or possibly, the rejection) of the orders, as

well as for setting their due dates. Then, production planning assigns the production

activities to time on an aggregate timescale. This assignment serves as the basis of

the medium-term material plan that defines what and when raw materials should

be purchased from the suppliers, and the capacity plan that determines the required

amount of capacities per resources and aggregate time units. The capacity plan is of

interest because the production capacities set on the strategic level can be temporarily

increased by overtime, hired workforce, or subcontracting, or they can be decreased

by granting leave to the workers. Depending on the industrial sector, the horizon of

tactical planning ranges from 1 month to 1 year.

Finally, production scheduling on the operational level unfolds the first segments

of the production plan into detailed resource assignments and operation sequences.

Scheduling is performed on a detailed problem representation, for individual opera-

tions, with respect to fixed capacities. Under the production scheduling module, the

presence of real-time execution control is often required. This can take place in the

Introduction 3

form of a Production Activity Controller, or a Manufacturing Execution System that

provides feedback about shop-floor status.

In this thesis, we focus on production planning and scheduling in make-to-order

manufacturing systems. We assume that the exact description of the planning prob-

lem – the order set, resource capacities, raw material availability, and the detailed

technological plans of the products – is known for the medium-term horizon. Note

that this assumption excludes engineer-to-order companies from our scope, since

they often prepare technological plans after order acceptance and production plan-

ning. We also assert that the presence of uncertainties is restricted enough to apply

deterministic approaches. These assumptions will allow us to model the planning

and scheduling problems as combinatorial optimization problems [78].

1.2 Problem Statement

Today, most factories apply material requirements/manufacturing resources planning

(MRP) systems [96] for medium-term production planning. These systems focus on

the material flow aspect of production, and assume that products can be manufac-

tured with fixed lead times. Hence, they completely disregard the actual load on

production capacities. No wonder that in an age characterized by market fluctua-

tions, the plans generated this way can be barely unfolded to executable detailed

schedules. Recently, several approaches have been suggested to couple the capacity

and material flow oriented aspects of production planning [46, 56, 69]. A common

characteristic of these models is that they apply a high-level description of the pro-

duction activities and their complex interdependencies, which – in practice – has to

be encoded manually, by a human expert. The high-level formalism does not always

reflect the context of the underlying processes, and it cannot guarantee the feasibility

of the production plans. Furthermore, the results depend largely on the proficiency

and the mindfulness of the human modeler.

Our objective was to find a novel, aggregate formulation of the production plan-

ning problem which ensures that the generated plans can be refined into feasible

detailed schedules. The representation of the planning problem should be generated

automatically, from data readily available in de facto standard production databases.

The current industrial practice in production scheduling is also dominated by

heuristic approaches, such as priority rule-based schedulers [57, 77]. In spite of this,

well-known formal methods are available to describe what makes a schedule feasible,

4 1.3 Outline of the Thesis

and also to optimize the schedule according to various criteria. The most promising

branch of these methods, constraint-based scheduling emerged in the early eighties [10,

37]. It offers a rich and straightforward representation to model even the finest details

of the scheduling problem. However, the solution of the vast instances of the NP-

complete combinatorial optimization problems that often arise in practice challenges

currently known algorithms [97].

For short-term detailed scheduling, we decided for the application of the constraint-

based approach. The objective of our research was to improve the efficiency of the

currently known solution techniques, by the exploitation of typical structural proper-

ties of industrial problem instances. For this purpose, we applied so-called consistency

preserving transformations.

During this research, we laid emphasis on solving real problems that arise in

the industry. We developed a pilot integrated production planner and scheduler, and

used this system to test our algorithms on real-life planning and scheduling problems,

originating from an industrial partner.

1.3 Outline of the Thesis

The contents of this thesis are organized into four further chapters. In Chapter 2,

we address modelling medium-term production planning problems in make-to-order

project-oriented manufacturing systems. We introduce a novel, aggregate formulation

of the production planning problem. Some preferable properties of the proposed

representation are proven in the formal way, but a detailed analysis of its performance

is presented through experiments on real-life production data.

Chapter 3 introduces constraint-based scheduling techniques for the solution of

detailed production scheduling problems. We propose two novel methods – so-called

consistency preserving transformations – to boost search on structured, practical

problems. The efficiency of these transformations is illustrated by experimental re-

sults on industrial problem instances.

Chapter 4 is devoted to the demonstration of the industrial applicability of the

proposed novel modelling and solution techniques. It presents a pilot production plan-

ner and scheduler system, named Proterv-II. The system is composed of a medium-

term production planner and a short-term scheduler that apply the models and algo-

rithms described in the first two chapters. The resistance of the schedules prepared by

Introduction 5

deterministic techniques against various types of uncertainty was verified by discrete-

event simulation.

A summary of the new results is presented and some further implications are

pointed out in Chapter 5.

Finally, we highlight a naming convention that will be used throughout the thesis.

While the words operation, task, and activity are often used as interchangeable in the

scheduling literature, we make a clear distinction. By operation we mean the physical

process to be performed in the factory. A task is the representative of an operation

in the theoretical model of production scheduling. In contrast, activities are used in

the medium-term production planning model, to denote a larger unit of work, usually

built of several tasks.

6 1.3 Outline of the Thesis

Chapter 2

Aggregate Modelling of
Production Planning Problems

The medium-term production planning level of the PPS hierarchy plays a fundamen-

tal role in determining both the service level and the production costs in make-to-

order manufacturing systems. These manufacturing systems may execute hundreds

of thousands of manufacturing operations under various capacity and technological

constraints within the planning horizon. Hence, finding an executable production

plan that meets project deadlines and keeps production costs low challenges any

branch of operations research or artificial intelligence.

In current industrial practice, production planning is still based on the fixed

lead time assumption of material requirements/manufacturing resources planning

(MRP/MRP II) systems [96]. This assumption entails that neither resource capaci-

ties, nor raw material availability can be directly considered, and project lead times

are set on the basis of historical data and other estimates. No wonder that in an

age characterized by market fluctuations and ever shorter product life cycles, plans

generated this way can barely be refined to executable schedules.

We believe that the key to the development of an advanced PPS system is find-

ing the appropriate representation of the planning problem that captures both the

material-flow and resource-oriented aspects of production. Clearly, planning on the

medium-term horizon requires aggregation, i.e., merging the fine details of the pro-

duction processes, in order to keep the computational complexity of the problem in a

tractable range. Aggregation can be performed with respect to time, resources, and

production activities.

However, an aggregate representation of the planning problem is legitimate only

if it facilitates finding plans that can be unfolded into feasible detailed schedules.

7

8 2.1 Introduction to Aggregate Production Planning

This motivated our research to reveal the impact of modelling decisions made during

the preparation of the aggregate representation on the quality of the final output of

the PPS hierarchy: the executed detailed schedules. Results of these considerations

led us to a novel, aggregate formulation of the production planning problem. The

conception was validated by experiments on real-life production data originating from

an industrial partner. We note that elements and precursors of the approach were

originally published in [58, 59, 61, 95].

The chapter is organized as follows. First, we give an introduction to aggregate

production planning and identify our objectives in Sect. 2.1. Then, in Sect. 2.2 we

briefly present the applied mathematical models of the production scheduling and the

production planning problems. In Sect. 2.3, we define our aggregate model of the pro-

duction planning problem, and introduce an aggregation/disaggregation procedure to

construct it from detailed production data. Polynomial-time tree partitioning algo-

rithms are proposed for the creation of such aggregate models in Sect. 2.4. We discuss

some subsidiary points and give an outlook on possible extensions in Sect. 2.5. Fi-

nally, we present the experimental results achieved on real-life problems in Sect. 2.6,

and draw the conclusions in Sect. 2.7.

2.1 Introduction to Aggregate Production Planning

Aggregation is a widely used technique for reducing the computational complexity

of combinatorial optimization problems [83]. Aggregate problem solving consists of

three major steps. First, the detailed model of the problem is aggregated, i.e., several

variables of the detailed model are replaced by one aggregate variable, and several

constraints by one aggregate constraint. Then, the resulting aggregate model is solved

by appropriate algorithms. Finally, in the disaggregation step, the results received

on the aggregate level are projected back to the detailed level, see Fig. 2.1.

While sometimes the disaggregation step is trivial, in other cases it requires the

explicit solution of the detailed problem in the presence of constraints derived from

the aggregate solution. Note that the aggregate production planning level of our

PPS architecture decomposes the medium-term problem into a sequence of disjoint

weekly detailed scheduling problems that will be solved independently of each other,

as presented in Fig. 2.2. In practice, detailed schedules will be generated for the next

few weeks only.

An aggregation/disaggregation procedure is called feasible, if it ensures that any

Aggregate Modelling of Production Planning Problems 9

Detailed problem

Aggregate problem Aggregate solution

Detailed solution

Disaggregate

Solve AGGREGATE LEVEL

DETAILED LEVEL

Aggregate

Detailed problem Detailed solution

DETAILED LEVEL

Solve

a.)

b.)

Figure 2.1: Solving a problem without (a.) and with (b.) aggregation.

feasible solution of the aggregate model can be disaggregated into a feasible solution

of the original model. Furthermore, the procedure is called optimal , if the optimal

solution of the aggregate model can be disaggregated into an optimal solution of

the original model. Generally, aggregation involves a certain relaxation of the orig-

inal problem, but often additional constraints are introduced, too. Consequently,

feasibility and optimality of the aggregation/disaggregation procedure can rarely be

guaranteed, and the quality of the approximation it provides constitutes a crucial

issue.

Aggregation methodology has been extensively studied in the field of linear pro-

gramming (LP), see [83] for a comprehensive overview. Well defined methods are

available for the selection of the variables to merge – typically those that are in some

respect similar –, as well as bounds on the loss of accuracy due to aggregation. Still,

much less is known about aggregation in more expressive mathematical formulations,

such as mixed-integer linear programs (MILP), see, for example, [44].

Specifically, in production planning, the idea of aggregation was introduced fifty

years ago by Holt et al. [49], just with the motivation to respond to fluctuations in

product orders by means of a clear-cut mathematical model using a common measure

of work required by the individual orders. The classical approach for aggregate pro-

10 2.1 Introduction to Aggregate Production Planning

Detailed problem

Aggregate
problem

Aggregate
solution

Disaggregate

Solve AGGREGATE LEVEL

DETAILED LEVEL

Aggregate

Solve

 Decomposed

detailed problems

Detailed
solutions

Figure 2.2: Our aggregate planning framework decomposes the detailed scheduling

problem to weekly sub-problems.

duction planning in batch-type production systems was defined by Bitran et al. [16].

On the aggregate level of this hierarchical approach, production plans were prepared

for families of similar products, instead of a large number of individual products.

However, the linear programming formulation of the aggregate problem disregarded

any temporal relationships between the various production activities, and the families

were defined a priori.

The necessary and sufficient conditions of feasible aggregation in the latter model

have been studied by Axsäter [3] and Erschler et al. [30]. However, these conditions re-

veal that feasibility (perfect aggregation, in the authors’ terms) and optimality could

be reached only under very specific circumstances. Toczy lowski and Pieńkosz [87] pro-

posed a feasible aggregation procedure for the same production planning model. They

achieved feasibility by assigning higher production cost, inventory holding cost, and

resource requirements to product families than the appropriate cost of any product

contained by the family. However, this approach could lead to serious sub-optimality

in the case of significant variance within product families. A more recent paper by

Leisten [71] reviews these aggregation/disaggregation procedures from the viewpoint

of LP-aggregation. The author also investigates how feasibility and optimality can

be approached by iteratively adjusting or refining the aggregate model.

For the case of project-oriented systems, a different approach that merges tasks

requiring the same set of resources into one aggregate activity was suggested by Hack-

man and Leachman [43]. This simple way of aggregation can be easily understood by

human experts, which makes it an ideal representation in, e.g., engineering-to-order

manufacturing systems, where production planning has to be performed before the

Aggregate Modelling of Production Planning Problems 11

preparation of the detailed technological plans, based on engineers’ estimates.

20 8

5 6
8

12
10 2

Figure 2.3: How to express the temporal interdependencies between these activities?

However, if parts loop over the same resources several times, this approach may

result in very complex temporal interdependencies between the activities. Consider

the example in Fig. 2.3, where vertices of the same color represent tasks that em-

ploy identical resources (blue vertices stand for components manufacturing, orange

for assembly, and yellow for inspection). Durations of the tasks are indicated on the

vertices, and the edges of the graph denote precedence constraints between the tasks.

Even in this small example, we should be able to express that either assembly or

inspection can start when 50% of components manufacturing is ready, but not both

of them. The balanced progression of assembly and inspection is also a requirement.

In [70], an extensive collection of constraints is suggested for the description of such

temporal relationships. They use variable duration activities with prescribed inten-

sity curves, overlap relationships, as well as balance-type relationships between the

dependent activities. However, even this complex formulation cannot guarantee the

feasibility of the aggregation/disaggregation procedure. Furthermore, this approach

faces serious difficulties in obtaining the required input data that is seldom avail-

able in existing technological databases. Consequently, this modelling policy requires

the involvement of human experts, even if their work can be supported by software

systems exploiting the similarities between past and current projects [91].

In contrast to the above approaches, our goal was to define an aggregation/disagg-

regation framework for production planning in make-to-order project-oriented sys-

tems that fulfills the following requirements.

• Both aggregate planning and detailed scheduling must respect the main tem-

poral constraints (e.g., project due dates and precedences) and the capacity

constraints of the factory.

12 2.2 Formal Models of Production

• Aggregation should reduce the complexity of the planning problem so that its

close-to-optimal solution becomes possible in a reasonable amount of time.

• At the same time, the aggregation/diaggregation procedure should approach

feasibility and optimality.

• The aggregate model of production planning must be generated from the same

product and production related data that is used during detailed scheduling.

Aggregation and disaggregation must be performed automatically, without the

involvement of human experts.

2.2 Formal Models of Production

We address make-to-order manufacturing systems where the detailed production

scheduling problem can be captured by the classical resource-constraint project schedul-

ing problem (RCPSP) model [20]. In this representation, one fixed-duration task

stands for each operation. The tasks compete for finite capacity resources, and it is

assumed that the technological constraints among the operations of a project can be

described solely by precedence relations between tasks. This model, to be presented

hereinafter constitutes our detailed problem. Departing from this representation, ag-

gregation is expected to generate a compact, aggregate production planning model.

In the medium-term planning problem, we consider project time windows strict,

but we allow flexible capacities. Our optimization criteria are minimal extra capac-

ity usage and minimal work-in-process (WIP). During the disaggregation step, the

optimal solution of the aggregate problem is translated into a sequence of detailed

scheduling problems, where the horizon of each problem corresponds to one aggregate

time unit. In practice, only the schedules of the first few aggregate time units are of

interest.

When solving the short-term scheduling problems, our objective is to achieve

the goals set by the planner. Hence, we regard the resource capacities as fixed,

and minimize makespan. Observe that the aggregation/disaggregation procedure is

feasible for a given planning problem instance if and only if there exists a detailed

solution for each induced short-term problem with a makespan not greater than the

length of the aggregate time unit.

Aggregate Modelling of Production Planning Problems 13

2.2.1 Production Scheduling: the RCPSP Model

In the detailed production scheduling problem, there is a set of projects P to be

executed within the scheduling horizon. Each project P ∈ P is characterized by an

earliest start time estP and a latest finish time lftP . The project P comprises a

set of non-preemptive tasks TP . The overall set of tasks is denoted by T , and each

task t ∈ T has a fixed duration dt. Each task t requires one unit of the renewable

cumulative resource r(t) ∈ R during the whole length of its execution. The capacity

of the resource r is denoted by q(r), which means that r is able to process at most

q(r) tasks at a time. Furthermore, tasks that belong to the same project can be

connected by end-to-start precedence constraints. The precedence constraint (t1 →
t2) states that task t1 must end before the start of task t2, i.e., endt1 ≤ startt2 .

Throughout this chapter we assume that the precedence constraints between the tasks

of a project determine an in-tree together, which fits the needs of typical components

manufacturing industries.

Then, the solution of an RCPSP instance consists of determining valid start times

startt for the tasks such that all temporal, precedence, and resource constraints are

satisfied and some objective function is minimized. Typical optimization criteria are

minimizing the makespan, maximum tardiness, weighted tardiness, etc. The RCPSP

problem with any of the previous optimization criteria is NP-complete in the strong

sense. For an overview of the possible solution approaches, readers should refer

to [17, 20].

When planning on the medium-term horizon, we consider strict project time

windows and flexible capacities. The latter means that the normal capacity q(r) of

resource r can be extended by extra capacities – such as overtime or subcontracting –,

at a cost proportional to the quantity and the duration of the usage. In our current

settings, we minimize the cost of extra resource usage first, and WIP in the second

run, with the previous bound on extra resource usage. Since in our specific application

it was a basic assumption that all the raw materials of a project had to be on stock

by the start time of the project, we applied the following formula to calculate WIP.

In the formula, startP = mint∈TP
startt stands for the start time of project P , and

wP is a project-specific weight factor:

∑
P∈P

wP · (lftP − startP).

14 2.2 Formal Models of Production

In the short-term scheduling problems we regard resource capacities as fixed and

non-extendible. Capacities q(r) are set to the values determined by the medium-

term planner. We minimize the makespan, i.e., the maximum of the end times of the

tasks. Finally, note that all parameters of this detailed scheduling model are directly

available from de facto standard production databases.

2.2.2 Production Planning: RCPSP with Variable-intensity Activi-
ties

The proposed aggregate representation of the production planning problem is based

on an extension of the resource-constrained project scheduling problem, suggested re-

cently by Kis [56] and Márkus et al. [74], named resource-constrained project schedul-

ing problem with variable-intensity activities (RCPSVP). It works with variable-

intensity, fixed-volume activities and continuously divisible resources, which fits the

needs of production planning better than the classical RCPSP, intended for detailed,

job-shop level scheduling. We note that similar variable-intensity scheduling models

have been discussed earlier by Hans [46] and Leachman et al. [69].

An instance of the RCPSVP problem is given by a finite set P of projects, a set

A of activities that build up the projects, a set R of continuously divisible renew-

able resources, and a directed acyclic graph G = (A; E) representing end-to-start

precedence constraints between the activities. Each activity A ∈ A must be entirely

processed between its earliest start time estA and latest finish time lftA. The time

horizon is divided into discrete time units. In each time unit τ of the horizon, a

portion xA
τ of activity A is executed. We call xA

τ the intensity of A in τ . Clearly,∑
τ xA

τ = 1 must hold. Furthermore, there is a maximal intensity jA defined for each

activity A.

Each activity may require the simultaneous use of some resources, proportionally

to its intensity. Hence, if the entire processing of activity A requires a total work of %A
r

on resource r, then it occupies %A
r ·xA

τ units of this resource at time τ . Each resource

r ∈ R has a normal capacity of qr
τ units that is available free of charge, and it has

an additional extra capacity of q̂r
τ units at the expense of cr

τ for each extra unit used.

The solution of the RCPSVP problem consists of determining an intensity xA
τ for

each activity A and time unit τ , such that the temporal and precedence constraints

are fulfilled, the resource demand does not exceed the resource availability (normal

+ extra) in any time unit, and the total cost of extra capacity usage is minimized.

The RCPSVP problem is NP-complete in the strong sense, as it was proven by

Aggregate Modelling of Production Planning Problems 15

Kis in [56]. The same paper proposes a mixed integer-linear program formulation and

a branch-and-cut solution approach, using customized cutting planes. The algorithm

is capable of solving the RCPSVP problem for optimization criteria which can be

expressed as a linear function of the xA
τ , or established with a dichotomic search.

Beyond minimizing extra capacity usage, these criteria include minimizing makespan,

maximum tardiness, weighted tardiness or work-in-process. As stated above, our

primary optimization criterion is the minimal cost of extra capacity usage, while the

secondary criterion is minimizing WIP.

In the following sections, we investigate how the parameters of this aggregate

model can be computed from the detailed representation so that our aim, i.e., a

feasible and nearly optimal aggregation is realized.

2.3 An Aggregate Formulation of the Production Plan-
ning Problem

Below we present our novel aggregation/disaggregation procedure for production

planning for make-to-order project oriented manufacturing systems. We perform

aggregation in the dimensions of activities and time. We assume that the time unit

of aggregate planning, denoted by Θ is given a priori, while the aggregate model

of production activities is to be computed. The objective, as stated earlier, is to

approach the feasibility and optimality of aggregation as good as possible, together

with keeping the computational complexity of the aggregate problem in a tractable

range. We do not aggregate resources, because the computational complexity does

not depend tightly on the number of resources. This determines only the number

of constraints, but not of the variables in the MILP formulation. At the same time,

the extension of the approach to resource aggregation is rather straightforward, this

being the requirement in an application.

For the sake of simplicity, we assume that the detailed scheduling problem fits

into the basic RCPSP model described in Sect. 2.2.1. We will propose refinements

of the aggregation procedure covering various extensions of the detailed scheduling

model later, in Sect. 2.5.3.

In our approach, aggregation is performed once, before solving the production

planning problem. At this time, no exact temporal assignment of the production

activities is known, except for the time windows of projects. Although we can suspect

that subsequent tasks of a project follow each other without major time lags, we do

16 2.3 An Aggregate Formulation of the Production Planning Problem

not know which tasks of other projects will be processed concurrently in the factory.

For this reason, we aggregate production activities for each project separately.

2.3.1 The Aggregation/Disaggregation Procedure

In our detailed scheduling model, the precedence constraints between tasks belonging

to the same project form an in-tree. Consequently, each project can be described by a

rooted tree, the so-called project tree. The vertices of the project tree represent tasks

of the project, while edges correspond to precedence relations between the tasks.

Vertices with several sons stand for assembly operations, while those with a single

son denote either machining operations or joining a purchased part to the workpiece.

The execution of the project over time advances from the leaves towards the root

that stands for the finishing operation of the end product. Fig. 2.4 shows a sample

part whose project tree, together with the related technological data is presented

in Fig. 2.5. We note that project trees in practice are often much larger. In our

particular application they contained up to 500 vertices.

Figure 2.4: A sample part, adapted from [76, p. 179]

The aggregation procedure is based on partitioning the project trees into con-

nected sub-trees, and merging the tasks that belong to the same sub-tree into one

aggregate activity. Throughout the next pages we will give detailed considerations

to the question of selecting the best suited partitioning. Nevertheless, once the par-

Aggregate Modelling of Production Planning Problems 17

1 3

6

8 9 11

2 5 4

7

10 12 13

Asse
mble

 br
ac

ket

to
bo

dy Asse
mble

 sw
itc

h

to
bo

dy Elec
tri

ca
l

co
nn

ect
ion

s

Ins
tal

l c
ord

Ins
tal

l h
ea

ter

ele
men

t

Tes
t Asse

mble
 en

d

pla
tes

 to
 bo

dy

Asse
mble

 en
d

ca
ps

to
bo

dy

Ins
tal

l sc
ree

n

Fina
l in

spe
cti

on

Bracket (2)
Insulator (3) Body (1) Switch (4) Internal

wiring (5)
Cord (6)

Resistor wire (7)
Porcelain rod (8) Copper end

caps (9)

End plates (10) Plastic end
caps (11)

Screen (12)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

dt 2.0 1.5 1.0 3.0 1.0 3.5 5.0 1.5 2.0 1.5 0.8 1.0 2.0

r(t) r1 r1 r1 r1 r1 r2 r2 r3 r1 r1 r1 r1 r3

Figure 2.5: Project tree of the sample part.

titioning of the project tree is determined for all the projects, the parameters of the

aggregate problem can easily be computed as follows.

• For each precedence constraint t1 → t2 in the detailed model, if tasks t1 and t2

are inserted into two different activities A1 and A2, then a precedence constraint

A1 → A2 is posted between the activities. Otherwise, the precedence constraint

is omitted from the aggregate model. Observe that the graph of precedences

among the activities will also form a tree.

• Let us denote the minimum throughput time of activity A by d(A), and let µA

be an activity security factor , to be discussed in detail in Sect. 2.3.2. Then, the

maximal intensity of this activity is calculated as jA = min(1, µAΘ
d(A)).

• The earliest start times estA and latest finish times lftA of the activities are set

to the earliest start and latest finish times of the corresponding projects. We

assume that these are integer multiples of the aggregate time unit length Θ.

During the solution of the planning problem, the solver is able to deduce tighter

time windows for the activities which are connected to others by precedence

constraints.

• The aggregate model uses the same set of resources as the detailed represen-

tation. Aggregate resource capacities qr
τ are computed as the integral of the

18 2.3 An Aggregate Formulation of the Production Planning Problem

detailed capacities over the aggregate time unit τ , reduced by a resource secu-

rity factor µR (see Sect. 2.3.2 for details). We suggest the application of infinite

extra capacities in order to avoid unsolvable problem instances.

• Finally, the resource requirements of an activity are the sums of resource re-

quirements of the contained tasks, i.e.,

%A
r =

∑
t∈A: r(t)=r

dt.

1 3

6

8 9 11

2 5 4

7

10 12 13

A1 3

2A

A d(A) jA %A
r1

%A
r2

%A
r3

A1 10.0 1.0 8.5 - 1.5

A2 8.5 1.0 - 8.5 -

A3 7.3 1.0 5.3 - 2.0

Figure 2.6: An aggregate model of the sample project.

A possible aggregate model of the sample project with an aggregate time unit

length Θ of 10 is presented in Fig. 2.6. Now, solving the aggregate production

planning problem consists of computing the intensities xA
τ of such activities over time.

For a given solution of the planning problem, the activities entirely processed within

one aggregate time unit are called complete, while the activities whose execution is

divided between several time units will be referred to as broken.

Disaggregation of the production plan involves ordering each task of the detailed

model into one aggregate time unit. For the tasks of complete activities, the selection

of time unit is unambiguous. In contrast, the tasks which belong to a broken activity

are sorted by their decreasing distance from the root in the project tree, and are

assigned to the time units designated for the activity proportionally to the intensity

of the activity. The disaggregation of the production plan is complete with solving the

detailed scheduling problems corresponding to the aggregate time units, for example

by the techniques presented in detail in Chapter 3.

2.3.2 The Aggregate Model of Projects

Clearly, different partitionings of the project tree result in different aggregate rep-

resentations of the production planning problem. In turn, different representations

Aggregate Modelling of Production Planning Problems 19

bear different promises of feasibility and optimality. In this section we aim at identi-

fying the characteristics that make an aggregate representation superior. Departing

from this analysis, we arrive at the definition of the aggregate model of projects.

In a rather simplified view, the larger activities we apply in the aggregate model

the more effectively we reduce the computational complexity of the planning problem

– at the price of loosing the more of the accuracy of the representation. The most

important respect of relaxation is disregarding the complex interactions among tasks

of different activities ordered into the same aggregate time unit, and examining their

resource requirements and activity throughput times separately.

The proposed aggregation procedure ensures that – if sufficient resources are

available – processing the tasks of an activity fits into the designated aggregate time

units. Nevertheless, the strongest formal statement that can be made about the

satisfaction of resource constraints in the detailed solution is that the total load on

each resource in each period corresponding to an aggregate time unit does not exceed

the total available capacity of the resource. This statement holds only if there are

no broken activities in the aggregate solution, since the resource requirements of

tasks contained by broken activities are partially considered in aggregate time units

other than the one in which they will be executed. For this reason, we set the upper

bound of activity throughput times to Θ, the length of the aggregate time unit,

and apply maximal intensities of jA = 1. These settings lead to aggregate plans

where only a negligible portion of the activities are broken.1 Furthermore, in our

specific application, this choice of activity size resulted in aggregate problems with

a manageable computational complexity. Tasks whose duration was larger than Θ

were ordered into a single activity.

Clearly, all the above considerations are necessary, but not sufficient conditions

of the feasibility of the aggregation procedure. To help this, we introduce activity

and resource security factors, denoted by µA and µR, respectively. Then, the upper

bound on activity throughput times is set to µA · Θ, where µA ≤ 1, while resource

capacities are scaled down by a factor of µR ≤ 1. Note that the two security factors

1The explanation of the low ratio of broken activities lies in the MILP problem formulation,
where the real variables are the intensities xA

τ , and the inequalities defined on them are xA
τ ≥ 0,∑

τ xA
τ = 1, and the resource constraint

∑
A %A

r · xA
τ ≤ qr

τ .
For these real variables, the simplex-based solver returns a basic solution [93], which, in our case

means that an activity can be broken only if it employs a fully loaded resource in at least one time
unit. In addition, the optimization criterion of minimal WIP also entails executing the competing
activities sequentially, rather than in parallel. In experiments, all these effects resulted in a ratio of
broken activities of between 2% and 7.5%, even for strongly resource-constrained problem instances.

20 2.3 An Aggregate Formulation of the Production Planning Problem

differ essentially. Roughly speaking, µA corresponds to the expected portion of gaps

in the project view of the Gantt chart representation of the detailed solution, µR is

related to the gaps in the resource view. Hence, µA equals 1 and µR is low when

unlimited resources are available for processing few tasks connected by precedence

constraints, and vice versa for the case where many tasks are to be executed on scarce

resources.

Nevertheless, the aggregate model is not a clear-cut relaxation of the detailed

representation. During the aggregation step, new constraints are introduced as well,

which leads to loosing the optimality of the aggregation. These new constraints

derive from the aggregation of time in the discrete-time representation: a precedence

constraint states that the two corresponding activities have to be executed in the

given order, in distinct time units. Therefore, the throughput time of a project using

a given partitioning is at least one greater than the height of the partitioning , i.e., the

number of edges on the longest directed path of precedences in the aggregate project

model. Consider the alternative partitionings of the sample project tree in Fig. 2.7.

While the first necessitates a time window of at least 3 time units, the second enables

us to execute the project with a throughput time of 2. Obviously, in order to respect

the time windows of the projects and to keep WIP low, we are interested in finding

aggregate project models with minimal height. In another point of view, this means

increasing the parallelism between activities. After all the above considerations, we

are ready to give the definition of the aggregate model of a project.

1 3

6

8 9 11

2 5 4

7

10 12 13

A1 3

2A

A

1 3

6

8 9 11

2 5 4

7

10 12 13
 A1

3

2A

A

 a.)

b.)

Figure 2.7: Executions of two different aggregate models of the sample project over

time. Model (a.) requires at least 3 time units, while the minimal-height aggregate

model (b.) needs 2 time units only.

Aggregate Modelling of Production Planning Problems 21

Definition 2.1 The aggregate model of a project is a partitioning of the project tree

into connected sub-trees such that

• the throughput times of the activities corresponding to the sub-trees respect the

upper bound of µA ·Θ, which helps us approach feasibility of the aggregation;

• the height of the partitioning is minimal, in order to ensure the optimality of

the aggregation w.r.t. the criterion of minimal WIP;

• with the above prerequisites, the cardinality of the partitioning is also minimal,

so that the aggregate model is kept as compact as possible.

2.3.3 Feasibility and Optimality of the Aggregation

Up to now, we have defined the aggregate model of projects, and asserted that even

these models cannot formally guarantee the feasibility or optimality of the aggregation

procedure. Below we characterize qualitatively the approximation of feasibility and

optimality that can be reached by the proposed framework. The experimental results

achieved on real-life problem instances will be presented later, in Sect. 2.6.

Throughout the section we assume that all activity and resource security factors

are fixed to 1. In practice, security factors lower than 1 facilitate finding a feasible

detailed solution, but may worsen the objective value of such a solution.

Definition 2.2 An aggregation/disaggregation procedure is time-feasible if and only

if any aggregate solution has a disaggregation in which all temporal constraints, i.e.,

precedences and project time windows are respected.

Theorem 2.1 The aggregation procedure presented in Sect. 2.3.2 is time-feasible.

Proof: Project time windows are observed by the construction of the aggregate prob-

lem. The satisfaction of precedence constraints between tasks belonging to distinct

activities is ensured by precedence constraints among the corresponding activities.

Furthermore, with resource constraints omitted, there exists a detailed schedule for

each aggregate time unit where the precedence constraints are respected, because the

throughput times of individual activities are at most Θ. 2

Definition 2.3 An aggregation/disaggregation procedure is defined resource-feasible

per aggregate time unit if any aggregate solution can be disaggregated into a detailed

22 2.3 An Aggregate Formulation of the Production Planning Problem

schedule in which the overall demand for each resource is at most the total capacity

of the resource in time intervals corresponding to aggregate time units.

Theorem 2.2 The aggregation procedure presented in Sect. 2.3.2 is resource-feasible

per aggregate time unit for solutions that do not contain broken activities.

Proof: In the aggregate-level solutions, the sum of resource requirements does not

exceed the available capacity in any aggregate time unit. If there are no broken

activities in the aggregate solution, then the resource requirement of each task is

completely considered in the aggregate time unit into which the task will be ordered

during disaggregation. Hence, resource-feasibility per aggregate time unit will hold

for the detailed solution, too. 2

After the above statements on the approximation of feasibility, we address the

optimality of the aggregation/disaggregation procedure according to the criterion of

minimal WIP, still with resource constraints omitted. For this purpose, let us denote

the optimal aggregate plan by Π∗, and the optimal detailed schedule by Γ∗. Note

that, Π∗ has a feasible disaggregation by Theorem 2.1, which will be denoted by ΓΠ∗ .

Theorem 2.3 If resource constraints are omitted, then it holds that WIP(ΓΠ∗) ≤
WIP(Γ∗) + Θ ·

∑
P∈P wP .

Proof: With resource constraints omitted, both the optimal aggregate plan Π∗ and

the optimal detailed schedule Γ∗ consist of activities/tasks shifted right towards the

latest finish time of the project, as far as this is allowed by the precedence constraints

within the project.

Observe that Γ∗ induces a partitioning of each project tree, in which a component

is the set of tasks of a project which are executed within one aggregate time unit.

All these components respect the upper bound of Θ on the throughput time of the

corresponding activity. However, the height of the partitionings induced by Γ∗ cannot

be lower than that of the minimal-height partitionings applied for the preparation of

Π∗. This implies that the actual start times of projects in Γ∗ fall into the segment

of the detailed-level horizon that corresponds to the aggregate-level start time of

the project in Π∗. Hence, in ΓΠ∗ , each project starts at most Θ earlier than in Γ∗.

Consequently, we have WIP(ΓΠ∗) ≤ WIP(Γ∗) + Θ ·
∑

P∈P wP . 2

Aggregate Modelling of Production Planning Problems 23

2.4 Tree Partitioning Algorithms for the Creation of Ag-
gregate Project Models

In the previous sections we have arrived at the conclusion that optimal aggregate

project models can be constructed by partitioning the project tree into connected

components that correspond to the activities of the project. Tree partitioning, in the

presence of various constraints and optimization criteria constitutes a widely studied

class of problems. It has numerous applications, e.g., in telecommunication networks

design, vehicle routing or database paging.

We consider tree partitioning problems where a tree has to be split into disjoint

sub-trees (components) that respect a certain weight limit. Our optimization criteria

are the minimal height and the minimal cardinality of the partitioning, as well as the

Pareto bi-criteria composed of these two. We begin by briefly reviewing the related

literature.

For the problem where the weight of a component is calculated as the sum of

the weights of the contained vertices, Kundu and Misra gave a linear time algorithm

to minimize the cardinality of the partitioning [66]. For the same weight function,

algorithms for minimizing height in linear time and determining the set of Pareto

optimal solutions according to the bi-criteria of minimal height and minimal cardi-

nality in polynomial time were suggested by Kovács and Kis [61]. Herein, we unite

these algorithms in a common bottom-up framework and generalize the results for a

larger set of component weight functions.

A related approach is the shifting algorithm of Becker and Perl [15] that partitions

trees into a fixed number of components in the face of a wide choice of optimization

criteria and component weight functions. Embedded in a dichotomic search, this

algorithm is suitable for solving the minimum cardinality problem, however, with a

significantly higher time complexity. Maravelle et al. [73] investigate several optimiza-

tion criteria involving dissimilarities within or between components. Generalizations

in which there are multiple weight or utility functions defined on the components are

analyzed and solved by Hamacher et al. [45] and Johnson and Niemi [53].

2.4.1 Notations and Terminology

In the sequel T = (V,E, r) always denotes a rooted tree with vertex-set V , edge-set E,

and root r. The sons of a vertex v ∈ V will be denoted by S(v), noting that S(v) = ∅
if and only if v is a leaf. Let T (v) be the sub-tree of T rooted at v consisting of v

24 2.4 Tree Partitioning Algorithms for the Creation of Aggregate Project Models

and all vertices down to the leaves. The following definitions apply to T and also to

all T (v). P = {ST1, . . . , STq} is a partitioning of T if and only if

• each component STi is a sub-tree of T ,

• the STi are disjoint, and

• the union of the vertex-sets V (STi) of the STi equals V .

Figure 2.8: S(v) denotes the sons of vertex v, T (v) stands for the maximal sub-tree

rooted at v.

The cardinality of a partitioning P of T is defined as q(P) = |P |. Each STi is

rooted at the vertex closest to r in T . The root component of P is the one containing

r, and will be denoted by RC(P). For any partitioning P of T , let TP denote the

rooted tree obtained from T by contracting each STi ∈ P into a vertex. The height

h(T) of a rooted tree T is the maximum number of edges of paths having one end at

the root. The height h(P) of a partitioning P is the height of TP .

There is also given a component weight function w : ST −→ R+ on the sub-trees

of T and a constant W . We say that a partitioning P = {ST1, . . . , STq} of T is

admissible if and only if w(STi) ≤ W for every STi ∈ P . We assume that w({v}) ≤
W for each v ∈ V , which implies that trees always have admissible partitionings.

Furthermore, we introduce the notation of rw(P) = w(RC(P)) for the weight of the

root component of P . Finally, we define two properties to characterize component

weight functions.

Definition 2.4 We call a component weight function w monotonous if and only if

for any two sub-trees ST1 and ST2 of T such that ST1 ⊆ ST2, w(ST1) ≤ w(ST2)

holds.

Aggregate Modelling of Production Planning Problems 25

Now, let ST1, ST2, ST ′
1 and ST ′

2 denote sub-trees of T such that ST1 and ST ′
1 are

rooted at v ∈ V , ST2 at u ∈ S(v), while ST ′
2 at u′ ∈ S(v) (u ≡ u′ is allowed).

Furthermore, suppose that ST1 ∩ ST2 = ∅ and ST ′
1 ∩ ST ′

2 = ∅, see Fig. 2.9.

v

ST1

ST2

u

v

ST1’

ST2’

u ’

Figure 2.9: Illustration of the invariant property.

Definition 2.5 A component weight function is called invariant if it is monotonous

and for any sets of sub-trees that satisfy the above conditions, it holds that

w(ST1) ≤ w(ST ′
1) ∧ w(ST2) ≤ w(ST ′

2) ⇒ w(ST1 ∪ ST2) ≤ w(ST ′
1 ∪ ST ′

2).

2.4.2 The Bottom-up Framework

Our different algorithms follow a common bottom-up framework. In the initialization

step, the algorithms assign the partitioning Pv = {{v}} to each leaf v of T , which is

the only partitioning of T (v). In the iterative step, an arbitrary unprocessed vertex

v is chosen, all of whose sons have already been processed. The (set of) optimal

partitioning(s) of T (v) are built by using optimal partitionings of the trees T (u),

u ∈ S(v). This step is repeated until r is reached, at which point the (set of) optimal

partitioning(s) of T is found.

During the iterative step, the partitioning Pv of T (v) is obtained by applying the

following comb operator to partitionings of the T (u), u ∈ S(v). Namely, let Pu be a

partitioning of T (u) and K ⊆ S(v), then

Pv := comb({Pu | u ∈ S(v)},K)

is a partitioning of T (v) that consists of all the components of all Pu except the

root components of those Pu with u ∈ K, which together with v constitute the root

component of Pv. See Fig. 2.10 for an illustration.

Observe that any partitioning Pv of T (v) can be created by the comb operator

applied on suitably selected partitionings Pu and set of sons K. Furthermore, the

26 2.4 Tree Partitioning Algorithms for the Creation of Aggregate Project Models

PP P P1 2 3

K

Figure 2.10: The comb operator applied to selected partitionings of the sons of the

root.

P (u), ∀u ∈ S(v) and K is unambiguously defined. By consecutively applying this

statement, we can deduce that ∀u ∈ T (v) there exists exactly one partitioning Pu of

T (u) from which Pv can be built up by the iterative application of the comb operator.

For a given vertex u ∈ T (v), this partitioning Pu will be named the u-generator of

Pv . The v-generator of Pv is itself. Now, the height and the cardinality of Pv can

be calculated from the heights and the cardinalities of its generators as follows.

h(Pv) = max{max
u∈K

h(Pu), max
u∈S(v)\K

h(Pu) + 1} (2.1)

q(Pv) =
∑

u∈S(v)

q(Pu)− |K|+ 1 (2.2)

In the sequel, we describe some basic properties of partitionings and the comb

operator.

Lemma 2.1 If w is monotonous, then all the generators of an admissible partitioning

are admissible.

Proof: Suppose P is admissible, and P ′ is its generator. Then, for each sub-tree

ST ′ ∈ P ′ there exists a sub-tree ST ∈ P such that ST ′ ⊆ ST . Hence, w(ST ′) ≤
w(ST) ≤ W holds, which means that P ′ is admissible, too. 2

Now, let us denote the minimal height and minimal cardinality of the admissible

partitionings of T (v) by hmin(T (v)) and qmin(T (v)), respectively.

Lemma 2.2 If w is monotonous, v ∈ V and u ∈ T (v), then hmin(T (v)) ≥ hmin(T (u))

and qmin(T (v)) ≥ qmin(T (u)).

Aggregate Modelling of Production Planning Problems 27

Proof: Let Pv be a minimal height admissible partitioning of T (v) and Pu its u-

generator. Then, Pu is admissible (see Lemma 2.1) and its height is at most h(Pv) =

hmin(T (v)), according to equation 2.1. For cardinalities, the proof is analogous. 2

Finally, suppose that Pu and P ′
u are admissible partitionings of T (u) for each u ∈

S(v), such that ∀u : rw(Pu) ≤ rw(P ′
u) holds. Let Pv := comb({Pu | u ∈ S(v)},K)

and P ′
v := comb({P ′

u | u ∈ S(v)},K), where K is an arbitrary subset of S(v).

Lemma 2.3 If w is invariant, then rw(Pv) ≤ rw(P ′
v). Moreover, if P ′

v is admissible,

then so is Pv.

Proof: Suppose that the lemma is false, and let K be a minimal subset of S(v)

(w.r.t. set inclusion) for which the required statement does not hold. Note that K

is not empty, because then rw(Pv) = rw(P ′
v) = w({v}) would hold. Now, let u∗ be

an arbitrary vertex in K, and let

P ∗
v := comb({Pu | u ∈ S(v)},K \ {u∗})

P ′∗
v := comb({P ′

u | u ∈ S(v)},K \ {u∗})

Then rw(Pu∗) ≤ rw(P ′
u∗) by definition, and rw(P ∗

v) ≤ rw(P ′∗
v) because K was

a minimal set to contradict our statement. Since RC(Pv) = RC(Pu∗) ∪ RC(Pv∗)

and RC(P ′
v) = RC(P ′

u∗) ∪ RC(P ∗
v
′), it follows from the definition of the invariant

property that rw(Pv) ≤ rw(P ′
v), which is a contradiction.

Finally, Pv is admissible because it consists of components that are present in its

admissible generators and a root component, for which rw(Pv) ≤ rw(P ′
v) ≤ W holds.

2

In the following three sections, we describe three algorithms built on this bottom-

up framework. The algorithms address three different optimization criteria. Table 2.1

gives an overview of the optimization criteria, the weight function properties that the

different algorithms exploit, as well as the time complexity of the algorithms.

2.4.3 Minimizing the Height of the Partitioning

Below we describe how the parameters of the comb operator are chosen in the iterative

step of the algorithm in order to minimize the height of the partitioning. Throughout

this section, we assume that the applied component weight function w is monotonous.

28 2.4 Tree Partitioning Algorithms for the Creation of Aggregate Project Models

Optimization criterion Comp. weight function Time complexity

Minimal height Monotonous O(n)

Minimal cardinality Invariant O(n)

Pareto min. height, min. card. Invariant O(n4)

Table 2.1: Required properties of component weight functions and complexity of the

algorithms.

We define the level lPv
(u) of a vertex u ∈ T (v) with respect to a partitioning Pv

of T (v) as the height of the u-generator of Pv. Hence, if u1 and u2 are vertices within

the same component of a partitioning Pv, then lPv
(u1) = lPv

(u2). At the same time,

if they are in distinct components, and u2 is located on the path between u1 and r,

then lPv
(u1) < lPv

(u2) holds. See Fig. 2.11 for illustration.

1

1

2

0

0 0

00

Figure 2.11: Levels of vertices w.r.t a partitioning.

Our bottom-up algorithm will assign a partitioning P ∗
v of T (v) to each vertex

v ∈ V in a way that lP ∗
v
(u) will be minimal for each u ∈ T (v) over all admissible

partitionings of T (v). In other words, all the generators of the assigned partitioning

will be minimal-height partitionings of the corresponding sub-trees T (u). Hence, the

partitioning assigned to r in the final step of the algorithm will be a minimal-height

partitioning of T .

Note that the partitionings created in the initial step of the algorithm hold the

above property. Then, in the iterative step, an unprocessed vertex v ∈ V is chosen,

for all of whose sons u ∈ S(v) a partitioning P ∗
u of T (u) with the above property is

known. Then let hmax = maxu∈S(v) h(P ∗
u) and K = {u | u ∈ S(v) ∧ h(P ∗

u) = hmax}.
Furthermore, let

P+
v = comb({P ∗

u | u ∈ S(v)},K)

P−
v = comb({P ∗

u | u ∈ S(v)}, ∅)

Aggregate Modelling of Production Planning Problems 29

Note that h(P+
v) = hmax and h(P−

v) = hmax + 1. Now, if P+
v is admissible, then

the algorithm assigns P ∗
v = P+

v to v, otherwise P ∗
v = P−

v . P−
v is always admissible,

because it consists of sub-trees that are present also in one of the admissible parti-

tionings P ∗
u , and {v}, for which w({v}) ≤ W holds. Hence, our algorithm always

assigns admissible partitionings to the vertices.

Lemma 2.4 For each u ∈ T (v) (including v), the u-generator of P ∗
v is a minimal-

height partitioning of T (u).

Proof: The proof of this statement for vertices apart from v is trivial, because the

partitionings P ∗
u for u ∈ S(v) where selected to hold this property. In order to prove

the statement for v as well, let us denote the set of v and all the vertices of components

rooted at elements of K by L:

L := {v} ∪ {y | y ∈ T (u) ∧ u ∈ K}

Now, if w(L) ≤ W then P+
v is admissible, and it is of minimal height, because no

partitioning of T (v) with smaller height exists according to Lemma 2.2. Otherwise,

i.e., if w(L) > W then the vertices of L cannot all belong to the same component.

Note that for each u ∈ L and for each admissible partitioning Pv of T (v), lPv
(u) ≥

hmax holds. Accordingly, there is a vertex u ∈ L\{v} with lPv
(u) ≥ hmax in a separate

component than the component containing v. Hence, the level of v is strictly larger

than the level of this vertex u, i.e., lPv
(v) ≥ hmax + 1 holds in all the admissible

partitionings Pv of T (v). Consequently, P ∗
v = P−

v is a minimal-height partitioning of

T (v), because its height is exactly hmax + 1. 2

Finally note that the algorithm provides an admissible – though not necessary op-

timal – partitioning even if w is non-monotonous. The running time of the algorithm

– assuming that w can be evaluated in unit time – is linear in the size of T .

2.4.4 Minimizing the Cardinality of the Partitioning

In this section we present how our bottom-up framework can be applied to minimizing

the cardinality of the partitioning when the component weight function w is invariant.

The algorithm will assign an admissible partitioning P ∗
v of T (v) to each vertex v ∈ V

whose cardinality is minimal over the admissible partitionings of T (v), and whose

root component weight rw(P ∗
v) is minimal among the minimal-cardinality admissible

partitionings. A partitioning with this property will be briefly named optimal.

30 2.4 Tree Partitioning Algorithms for the Creation of Aggregate Project Models

Suppose the optimal partitionings P ∗
u of T (u) are known for each vertex u ∈ S(v),

and the optimal partitioning P ∗
v of T (v) is to be constructed. Our algorithm sorts

the sons u of v by increasing rw(P ∗
u) and assigns indices accordingly, i.e.,

rw(P ∗
u1

) ≤ rw(P ∗
u2

) ≤ ... ≤ rw(P ∗
u|S(v)|

)

will stand. Then, it computes subsets of S(v), Ki := {uj | 1 ≤ j ≤ i} for i =

1, ..., |(S(v)|. Note that the ith subset contains i vertices u ∈ S(v) with the smallest

rw(P ∗
u). It selects the largest index i for which the root component of the partitioning

P i
v := comb({P ∗

u | u ∈ S(v)},Ki) respects the weight limit of W , and assigns this

partitioning P i
v to v, i.e., P ∗

v := P i
v.

The resulting partitioning P ∗
v is admissible, because its generators are admissible

and its root component was created to respect the weight limit of W . We prove

its optimality in two steps. First, we show that the optimal partitionings P ∗
u of the

sub-trees T (u) for u ∈ S(v) can be used as the generators of an optimal partitioning

of T (v). Next, we prove that our algorithm combines these generators in a correct

way, i.e., it selects parameter K of the comb operator appropriately.

Lemma 2.5 For any admissible partitioning Pv of T (v) there exists an admissible

partitioning P ′
v built from the optimal partitionings P ∗

u , u ∈ S(v) such that q(P ′
v) ≤

q(Pv) and rw(P ′
v) ≤ rw(Pv).

Proof: Suppose Pv = comb({Pu | u ∈ S(v)},K). Then let P ′
v := comb({P ∗

u | u ∈
S(v)},K ′), where K ′ := {u ∈ K | q(Pu) = q(P ∗

u)}. Since ∀u ∈ S(v) : q(P ∗
u) ≤ q(Pu)

and ∀u ∈ K \K ′ : q(P ∗
u) ≤ q(Pu)− 1, we have

∑
u∈S(v) q(P ∗

u) ≤
∑

u∈S(v) q(Pu)− |K \K ′|.

Now, the cardinality of P ′
v can be calculated as follows (see equation 2.2).

q(P ′
v) =

∑
u∈S(v) q(P ∗

u) −|K ′|+ 1

q(P ′
v) ≤

∑
u∈S(v) q(Pu)− |K \K ′| −|K ′|+ 1

q(P ′
v) ≤

∑
u∈S(v) q(Pu)− |K|+ 1

q(P ′
v) ≤ q(Pv)

Aggregate Modelling of Production Planning Problems 31

Furthermore, since w is invariant (and monotonous), K ′ ⊆ K and ∀u ∈ K ′ :

rw(P ∗
u) ≤ rw(Pu) implies rw(P ′

v) ≤ rw(Pv), according to Lemma 2.3. Finally, P ′
v is

admissible, because it consists of components present in the admissible partitionings

P ∗
u and a root component, for which rw(P ′

v) ≤ rw(Pv) ≤ W holds. 2

Lemma 2.6 The partitioning P ∗
v computed by our algorithm is optimal among the

partitionings of T (v) that can be combined from the optimal partitionings P ∗
u for

u ∈ S(v).

Proof: Cardinalities of the partitionings of T (v), which can be combined from the

given partitionings P ∗
u , depend only on the number of elements in the vertex set K

(c.f. equation 2.2). For a given |K|, the cardinality of the partitionings is fixed. At

the same time, the higher the |K|, the lower the cardinality of the partitioning.

It follows directly from Lemma 2.3 that for any fixed |K|, the root weight of the

resulting partitioning is the lowest when K = {u1, ..., u|K|}. Our algorithm examines

exactly this kind of vertex sets K. Furthermore, the algorithm selects the highest

|K| that is allowed by the component weight limit of W . 2

Therefore, the partitioning P ∗
v created by our algorithm is a minimal-cardinality

(and minimal root weight) admissible partitioning of T (v). The algorithm in its

above form runs in O(n log n) time, since the sons u of each vertex have to be sorted

by increasing rw(P ∗
u). However, parameter K of the comb operator can be computed

without explicitly sorting S(v), by using a method proposed in [66]. This method

is based on the successive application of a linear-time median finding algorithm [18].

This way, the time complexity of the overall algorithm reduces to O(n).

2.4.5 Pareto-criteria of Minimal Height and Minimal Cardinality

The problem of determining the set of Pareto optimal partitionings of T with respect

to the criteria of minimum height and minimum cardinality is of interest, since min-

imizing the height and the cardinality of a partitioning are conflicting objectives, as

shown by the example in Fig. 2.12. In the example, component weights are calculated

as the sum of vertex weights. The vertex weights are indicated on the vertices, and

the weight limit W is 10.

Below we present a polynomial time algorithm for determining the set of Pareto

optimal partitionings of T with respect to three criteria: minimum height, minimum

32 2.4 Tree Partitioning Algorithms for the Creation of Aggregate Project Models

3

3

3

3

3

7

7

7

7

7

73

P1 P2

Figure 2.12: A minimal-cardinality (q(P1) = 3, h(P1) = 2) and a minimal-height

(q(P2) = 4, h(P2) = 1) partitioning of the same tree, under a weight limit of 10.

cardinality and minimum root component weight. The third criterion is necessary

to make the iterative bottom-up algorithm work. Note that from such a set one can

easily derive the Pareto set with respect to height and cardinality. Throughout this

section we assume that the component weight function w is invariant.

If Pv and Qv are admissible partitionings of T (v), we say that Pv dominates Qv if

and only if q(Pv) ≤ q(Qv), h(Pv) ≤ h(Qv) and rw(Pv) ≤ rw(Qv). The set of Pareto

optimal partitionings PO(v) of a sub-tree T (v) is a minimal set (w.r.t. set inclusion)

of admissible partitionings of (T (v)) such that each admissible partitioning Qv of

T (v) is dominated by some Pv ∈ PO(v). Note that T (v) may admit several different

Pareto sets.

To facilitate the computation of PO(v), we will use POh(v) to denote a minimal

set (w.r.t. set inclusion) of admissible partitionings of T (v) such that each admissible

partitioning Qv of T (v) with h(Qv) = h is dominated by some Pv ∈ POh(v). Notice

that POh(v) consists of partitionings Pv with h(Pv) ≤ h only. Furthermore, for

each q there can be at most one Pv ∈ POh(v) with q(Pv) = q, the one whose root

component weight is minimal among the partitionings of T (v) that respect the height

limit of h and cardinality limit of q.

Clearly, for each leaf v of T , PO(v) consists of only the trivial partitioning {{v}}.
We will show that if v is not a leaf of T , then PO(v) can be constructed by combining

partitionings chosen from the sets PO(u), u ∈ S(v). A fundamental property of the

comb operator is that it preserves dominance:

Lemma 2.7 If for each u ∈ S(v), Pu and Qu are admissible partitionings of T (u)

such that Pu dominates Qu, then Pv = comb({Pu | u ∈ S(v)},K) dominates Qv =

comb({Qu | u ∈ S(v)},K), for any K ⊆ S(v). Moreover, if Qv is admissible, then

so is Pv.

Aggregate Modelling of Production Planning Problems 33

Proof: For each u ∈ S(v) we have h(Pu) ≤ h(Qu), q(Pu) ≤ q(Qu) and rw(Pu) ≤
rw(Qu). Relating this to the equations 2.1 and 2.2, and Lemma 2.3, we obtain

h(Pv) ≤ h(Qv), q(Pv) ≤ q(Qv) and rw(Pv) ≤ rw(Qv). Hence, Pv dominates Qv.

Lemma 2.3 also implies that Pv is admissible. 2

Lemma 2.8 Let Qv = comb({Qu | u ∈ S(v)},K) be an admissible partitioning of

T (v). Then there exist Pu ∈ PO(u), ∀u ∈ S(v) such that Pv := comb({Pu | u ∈
S(v)},K) dominates Qv.

Proof: By the definition of the sets PO(u), for each u ∈ S(v) there exists Pu ∈ PO(u)

such that Pu dominates Qu. Applying Lemma 2.7 to these partitionings Pu and Qu,

we can deduce that Pv = comb({Pu | u ∈ S(v)},K) is an admissible partitioning of

T (v) dominating Qv. 2

Consequently, PO(v) can be constructed by finding appropriate combinations of

partitionings chosen from the sets PO(u), u ∈ S(v). We narrow subset of PO(u), u ∈
S(v) that can participate in the construction of POh(v) further as follows.

Lemma 2.9 Let Pv = comb({Pu | u ∈ S(v)},K) be arbitrary member of POh(v),

where ∀u ∈ S(v) : Pu ∈ PO(u). Then the following conditions hold:

For each u ∈ K:

(1a) h(Pu) ≤ h

(1b) rw(Pu) = min rw(Qu)
Qu∈P O(u): h(Qu) ≤ h

q(Qu) = q(Pu)

For each u ∈ S(v) \K:

(2a) h(Pu) ≤ h− 1

(2b) q(Pu) = min q(Qu)
Qu∈P O(u): h(Qu) ≤ h−1

Proof: Part (1a): Suppose there exists a u∗ ∈ K with h(Pu∗) > h. Then, by

equation 2.1, h(Pv) ≥ h(Pu∗) > h, a contradiction.

Part (1b): Now, suppose there exists Qu∗ ∈ PO(u∗) such that h(Qu∗) ≤ h,

q(Qu∗) = q(Pu∗) and rw(Qu∗) < rw(Pu∗). Then P ′
v := comb({Pu | u ∈ S(v) \ {u∗}}∪

{Qu∗},K) strictly dominates Pv, contrary to the definition of POh(v).

34 2.4 Tree Partitioning Algorithms for the Creation of Aggregate Project Models

Parts (2a) and (2b): Similar to parts (1a) and (1b). 2

These results suggest the following method for constructing POh(v). We define

for each son u ∈ S(v) the set Φ(u) consisting of 4-tuples

[Pu, c, q, R]

corresponding to options of partitioning T (u) and combining it into the partitioning

Pv := comb({Pu | u ∈ S(v)},K) of T (v). In the 4-tuple, Pu stands for a partitioning

of T (u), while c = 1 if u ∈ K and c = 0 otherwise. q denotes the contribution of this

option to cardinality of Pv, and can be computed as q := q(Pu)− c. Finally, R ⊆ V

is the contribution of the option to the root component of Pv. Clearly, if c = 1, then

R equals RC(P), i.e., the root component of Pu, and R = ∅ otherwise. According to

Lemma 2.9, there will be two types of options in Φ(u). First,

[Pu, 1, q(Pu)− 1, RC(Pu)]

for each q, where P ∈ PO(u) satisfies h(Pu) ≤ h, q(Pu) = q and rw(P) smallest

possible (if exists). Secondly, one option

[Pu, 0, q(Pu), ∅],

where Pu ∈ PO(u) satisfies h(Pu) ≤ h − 1 and q(Pu) smallest possible (if exists).

Now, to create a partitioning of T (v), we have to choose one option ϕ(u) from Φ(u)

for each u ∈ S(v). Each selection will induce a partitioning of T (v)

Pv := comb({Pu | u ∈ S(v)},K),

where K = {u ∈ S(v) | cϕ(u) = 1}, with the following height, cardinality and root

component weight.

h(Pv) ≤ h,

q(Pv) = 1 +
∑

u∈S(v)

qφ(u),

rw(Pv) = w({v} ∪
⋃

u∈S(v)

Rφ(u)).

The partitioning Pv is admissible if and only if rw(Pv) ≤ W holds, because its

components – except for the root component – are contained by one of its admissible

generators as well.

Aggregate Modelling of Production Planning Problems 35

Now, we compute POh(v) by the following dynamic program [78]. Let us denote

n := |V (T (v))|, d := |S(v)| and index the elements of S(v) arbitrarily: S(v) =

{u1, . . . , ud}. We fill in a d× n matrix, whose element Ψk,q contains the selection of

options that result in a minimal root weight partitioning of Tk(v) = {v}∪
⋃k

i=1 T (ui)

with h(Pv) ≤ h and q(Pv) ≤ q. Hence, for each q = 1, . . . , n, Ψd,q contains a selection

corresponding to minimal root-weight partitioning Pv of Td(v) = T (v) with h(Pv) ≤ h

and q(Pv) ≤ q. The non-dominated partitionings corresponding to the selections Ψd,q

will constitute POh(v).

For k = 1, let Ψ1,q := {ϕq(u1)} if there exists a ϕq(u1) ∈ Φ(u1) with q1 = q,

and Ψ1,q := ∅ otherwise. For 2 ≤ k ≤ d, we select the option ϕq′(uk) from Φ(uk) for

which {ϕq′(uk)} ∪Ψk,q−q′ is of the lowest root component weight, and choose

Ψk,q := {ϕq′(uk)} ∪Ψk,q−q′ .

Lemma 2.10 The partitioning induced by Ψk,q is of minimal root component weight

among the admissible partitionings of Tk(v) with h(Pv) ≤ h and q(Pv) ≤ q.

Proof: For k = 1, the proof directly follows from Lemma 2.9 and the definition

of Φ(u). For 2 ≤ k ≤ d, the root component weight of the partitionings induced

by both ϕq′(uk) and Ψk,q−q′ is minimal among the admissible partitioning of the

corresponding sub-trees, with the given height and cardinality bounds. Hence, the

proof follows from the definition of the invariant property. 2

Hence, we can sum up the working of the iterative step of our algorithm as

follows. To compute PO(v) for the selected vertex v ∈ V , it first determines the sets

POh(v) for each reasonable h (see above). Then it forms PO(v) from
⋃

h POh(v)

by dropping those members which are dominated by some other member (ties are

broken arbitrarily). Since
⋃

h POh(v) dominates all admissible partitionings of T (v)

by definition, and the dominance relation is transitive, the set PO(v) constructed

this way is a Pareto optimal set of partitionings of T (v).

Concerning the running time, the dynamic program has time complexity O(dvn
2),

where n = |V | ≥ |V (T (v))| ≥ |Φ(u)|, and dv = |S(v)|. Thus PO(v) can be deter-

mined in O(dvn
3) time by varying h between 1 and |V (T (v))|. The entire algorithm

terminates in O(n4) time.

36 2.5 Discussion

2.5 Discussion

After having presented the basic principles and properties of our aggregate production

planning framework, we concern three subsidiary points that fundamentally influence

the applicability of the approach. These include how activity throughput times can

be estimated (Sect. 2.5.1), how a potential infeasibility or other sort of inadequacy

of the solution can be mended (Sect. 2.5.2), and how the framework can be extended

to cover practical needs of make-to-order industries (Sect. 2.5.3).

2.5.1 Estimating Activity Throughput Times

An essential building block of the proposed aggregation method is the ability to

measure the throughput times of the activities. Since this must be carried out during

aggregation, without knowing other activities processed concurrently in the factory,

the measurement is inevitably based on a heuristic estimate.

Although the minimum throughput time of individual activities – with concurrent

activities neglected – could be computed in theory, in practice this would put an

extraordinary computational burden on the partitioning algorithms. It would require

the solution of NP-complete scheduling problems each time the weight of a sub-tree

is measured when partitioning the project trees. We note that minimal throughput

time as a weight function is monotonous, but not invariant.

In many applications, simplistic and rapid estimators can provide a reasonable

alternative for computing the minimum throughput times. When most tasks of an

activity can be processed only sequentially, the sum of task durations in the activity

gives a sufficiently good estimate. Similarly, if the tasks on different branches can

be executed concurrently, then the sum of task durations on the longest path can

be applied. Both of these weight functions, as well as their linear combinations

are monotonous and invariant. In addition, they can be computed incrementally,

which means that the single-criteria partitioning algorithms preserve their linear time

complexity when these estimators are applied.

However, in richer scheduling models (e.g., we had to account for diverse activities

built from tasks with specific transportation and setup times) the application of the

latter methods results in too coarse estimations. In such cases, we suggest the use of

an appropriate priority rule-based scheduler. The computational complexity of such

methods is O(mn2) in general, and lower for many special cases [57]. Unfortunately,

weight functions incorporating such heuristics do not hold the desirable property

Aggregate Modelling of Production Planning Problems 37

of monotonicity, i.e., sometimes the addition of a tasks to an activity decreases the

throughput time of the activity. This phenomenon, known as the Braess paradox [38],

is illustrated in Fig 2.13.

t dt r(t)

t1 4 r1

t2 1 r3

t3 1 r1

t4 4 r2

t5 1 r1

t6 1 r1

t7 6 r3

t8 1 r2

t5

t4 t3 t2

t1

t8

t7 t6

t5

t4 t3 t2

t1 A2

A1

r3

t3 t1 t5

t4

t2

0 10

t6 t3 t1 t5

t8 t4

t2 t7

0 8

r1

r2

r3

r1

r2

Figure 2.13: Two activities illustrating the non-monotonicity of weight functions

based on priority rules. Although A1 is a subset of activity A2, its execution according

to the LFT priority rule (see page 55) takes 10 time units, while the execution of A2

needs only 8 time units.

2.5.2 Hand-tailoring the Production Plan

A production planning system, even if it uses the most sophisticated models and the

most powerful solution algorithms, is not applicable in practice if it is unable to handle

occasional requirements or preferences of production engineers. This prerequisite

calls for the application of mixed-initiative techniques and the support for the hand-

tailoring of the production plan. Below we suggest several ways of interaction between

the PPS system and the human planner.

Obviously, the plan can be edited by local modifications of the model, such as

setting the time windows, or even directly the intensities of individual activities. The

system then should check the consistency of the manual settings and complete the

draft to a complete plan. However, applying the local modifications consistently is

difficult and time consuming, especially if the changes concern many activities. In

38 2.5 Discussion

contrast, global modifications, such as the fine-tuning of the security factors, can han-

dle several typical scenarios in a semi-automated way. We suggest semi-automated

modifications based on the criticality indices of resources and activities in the specific

detailed scheduling problems [4, 50, 88]. These indices measure how much a resource

or an activity contributes to the objective value (e.g., makespan or maximum delay)

of the given scheduling problem.

Given that the feasibility of the aggregation/disaggregation procedure cannot be

guaranteed, sometimes the solutions of detailed scheduling problems do not respect

every resource capacity and temporal constraint. If the capacity constraints are

considered hard in the short-term scheduling problems, then this effect results in

delayed tasks. Since in practice the delays will concern a few tasks only, it is likely

that these tasks can be simply re-allocated to the neighboring aggregate time units.

If an application requires to treat delays already on the production planning level,

then delays can be resolved by decreasing the security factors of the projects and

resources whose criticality index is high.

A revision of the production plan can also be motivated by preferences that are

not considered in our aggregate planning model, such as levelled resource usage.

Unless project time windows are too tight, peaks of oscillating load on a specific

resource can be flattened by applying a lower, resource-specific security factor, or

by specifying a finite extra capacity constraint. If the criticality index of the given

resource is relatively low somewhere in the neighborhood of the overloaded time units,

then flattening is possible without introducing new demand for extra capacities.

Finally, although we apply aggregate project models with minimal height, even

the induced minimal project throughput times can be too high in the case of rush

orders . These throughput times can be decreased further by applying higher, project-

specific activity security factors. This can be realized without the risk of an inexe-

cutable production plan if there are only a few rush orders.

2.5.3 Extensions and Future Research

We regard the proposed aggregation/disaggregation procedure as a basis for aggregate

production planning in make-to-order project-oriented systems. However, different

practical applications may require various extensions of the presented methods. For

instance, in our industrial application we considered tasks that require several re-

sources for their execution (machines and human workforce), and have specific setup

Aggregate Modelling of Production Planning Problems 39

and transportation times. All this required the extension of the heuristic for the es-

timation of activity throughput times, and to adapt the formula for the calculation

of the resource requirements of the activities. Another straightforward extension of

the model is to allow aggregate time units of different length that represent, e.g.,

weeks containing national holidays. Such situations can be handled by time-varying

intensity bounds jA
τ = min(1, µAΘτ

d(A)) on the activities.

While we assumed that all required raw material is available by the earliest start

time of the projects, in some applications raw material arrival can be a realistic

bottleneck. In such cases, aggregate project models can be optimized by inserting

m pieces of dummy tasks with durations of Θ before each task whose raw materials

arrive in the mth aggregate time unit, see Fig. 2.14.

1 3

6

8 9 11

2 5 4

7

10 12 13
Switch

Porcelain rod

Figure 2.14: Modification of the sample project tree for the case where the switch

and the porcelain rod arrive on the 3nd and 2nd time unit of the aggregate horizon,

respectively.

A noteworthy extension of the aggregation procedure would be its adaption to

problems where the graph of precedences among the tasks constitutes a directed

acyclic graph (DAG), instead of an in-tree. Although such a generalization of the

introduced notions is trivial, this extension induces graph partitioning problems that

are NP-complete [39]. Accordingly, the construction of appropriate heuristic parti-

tioning algorithms is inevitable.

Currently, we are working on the adaptation of the framework to manufacturing

systems that carry out a combination of project- and inventory-oriented produc-

tion. Inventory-oriented activities produce common components for project-oriented

activities, which in turn, are responsible for the satisfaction of customer orders. Com-

ponents are not dedicated to projects. Instead, they are treated as non-renewable

resources – so-called reservoirs – produced or consumed by different activities.

40 2.6 Experiments

Finally, Urgo [92] called our attention to a potential application where tasks of

different projects can share setups, and the opportunity of clustering such tasks over

time must not be abandoned. On the one hand, this requires the enrichment of the

representation by novel relations between the activities. On the other hand, it may

worth considering these relations even during aggregation, possibly through iterative

adjustments.

2.6 Experiments

In order to prove the industrial applicability of the presented aggregate production

planning approach, we carried out experiments on real-life production data. We

investigated whether our algorithms are able to produce a compact, solvable repre-

sentation of the planing problem, and if this reduced model leads to plans that can

be disaggregated into feasible detailed schedules. Nevertheless, we could not mea-

sure the optimality of the aggregation procedure, since no currently known detailed

scheduling approach is capable of solving such large scheduling problems to optimal-

ity. Historic data about how the projects were executed in reality was not available

to us, either.

In contrast, we had access to all detailed technology and capacity related data

of the factory (bills of materials, routings, and resource calendars), as well as the

anticipated customer orders for a period of ca. 1 year. Departing from this data, we

could generate 12 problem instances by rolling the medium-term planning horizon of

15 weeks over the one-year-long period covered by the customer orders. Between two

consecutive problem instances, the timescale was rolled by 3 weeks.

Task durations in the detailed representation were specified with a precision of

0.1 hours, and each of the 1200 projects contained 20 to 500 tasks. With the choice

of Θ = 120 hours, which equals the number of working hours in a week, the medium-

term horizon was divided into 15 aggregate time units. The activity security factor

was set to 0.8, while the resource security factor varied over time: we used µ1
R = 0.8

for the first 5 aggregate time units, µ2
R = 0.75 for time units 6 to 10, and µ3

R = 0.7

for the last time units of the medium-term horizon, in order to allow for unforeseen

projects.

These settings led to planning problems with 600 to 900 activities, whose solution

for minimum extra capacity usage required ca. 10 seconds, while the branch-and-cut

search for the solution with minimal WIP was often stopped when reaching the time

Aggregate Modelling of Production Planning Problems 41

limit of 100 minutes. Each aggregate solution defined 15 detailed scheduling problem

instances, corresponding to the aggregate time units. The detailed problems were

solved separately, by constraint-based scheduling techniques (see Chapter 3). During

this, we considered resource capacity constraints hard, which implies that a potential

infeasibility of the aggregation procedure manifested itself by delays of some tasks

w.r.t. the end of the short-term horizon. Among the tasks we distinguished critical

tasks, i.e., those which were executed in the last aggregate time unit of their project

time window. Clearly, the delay of a critical task directly threats project deadlines,

while the delay of a non-critical task is less problematic. In fact, almost the half

of the tasks were critical, because there were relatively many short projects and the

criterion of minimal WIP led to allocating the activities near to the latest finish time

of the corresponding project. All in all, we solved each detailed scheduling problem

in two steps: first, the maximum delay of the critical tasks, and then the maximum

overall delay was minimized. The time limit of the scheduler was set to 10 minutes,

which was not always enough to find an optimal solution.

Aggregate planning Detailed scheduling

Total Critical

T
a
sk

s

A
ct

iv
it

ie
s

P
la

n
n
ed

B
ro

k
en

T
a
sk

s

D
el

ay
s

A
v
g
.

D
el

ay

M
a
x
.

D
el

ay

T
a
sk

s

D
el

ay
s

A
v
g
.

D
el

ay

M
a
x
.

D
el

ay

#1 43213 2413 621 42 9277 67 5.72 16.7 6035 19 3.85 11.7
#2 42850 2358 753 56 12127 83 6.28 25.3 7713 23 3.99 12.1
#3 42140 2247 833 49 13196 89 6.46 19.7 8554 27 5.29 17.2
#4 38255 2074 826 53 13824 75 6.11 17.6 5530 14 3.89 13.6
#5 34637 1901 801 37 13120 60 8.09 29.2 3294 5 4.50 11.5
#6 32549 1756 855 35 14536 105 8.37 45.4 4344 43 5.77 12.8

#7 30249 1584 847 32 16024 83 7.99 50.4 3930 30 3.71 14.1
#8 27892 1397 770 32 15308 140 9.00 45.4 3917 87 8.23 18.6
#9 24271 1244 769 22 15346 74 7.32 41.8 5871 16 2.95 15.6
#10 21068 1073 720 30 14490 165 7.64 35.0 6144 62 5.67 14.8
#11 16412 871 702 31 14001 151 5.33 22.5 5492 61 4.36 10.3
#12 13956 726 722 38 13804 160 5.04 20.9 7051 82 3.95 8.5

Table 2.2: Results on a set of industrial problems.

The results are presented in Table 2.2. Each row of the table corresponds to one

problem instance, i.e., one aggregate planning and the 15 induced detailed scheduling

problems. The overall number of tasks in the problem instance is indicated in the

first column, the number of activities generated from them in the second. Hence,

an activity contained ca. 20 tasks on average. However, only a part of the activities

42 2.7 Conclusions

were allocated within the medium-term horizon, as shown in column Planned. Since

a part of the resource capacity constraints was tight in every time period, ca. 5% of

the activities were broken in every aggregate solution, see column Broken.

Finally, the portion of delayed tasks in the detailed solutions was between 0.5%

and 1.1%. The average delay (over the tasks whose delay was other than 0) was

around 5.0 - 9.0 hours, which is about the 6% of Θ. However, the delays of a few

tasks was significantly larger, the greatest delay exceeded even 50 hours. As for the

critical tasks, the 0.1% - 1.0% of them were delayed, their average delay was 2.95 -

8.23 hours, while the maximal critical delay reached between 8.5 and 18.6 hours.

Despite we did not manage to achieve complete feasibility of the aggregation,

we believe that these results are competitive with the performance of any currently

known production planning methods, and our approach definitely outperforms the

widely used MRP techniques. In addition, even the above delays can be eliminated

by common sense methods, e.g., by exchanging a few tasks between neighboring ag-

gregate time units. Small delays can be simply disregarded when the latest finish

time of a project is set earlier than the customer shipment date. If these are not pos-

sible, then delays pointed out in time can be dissolved by hiring extra capacities, e.g.,

overtime. On the other hand, shop-floor disturbances can often cause significantly

more delays. Such situations were analyzed by discrete-event simulation, and will be

discussed in detail in Sect. 4.6.

2.7 Conclusions

In this chapter, we have emphasized the role of aggregation as the primarily link

between the models of production planning and scheduling. We regarded aggregation

as a representation problem, and demonstrated that its solution has a significant

impact both on the quality of the production plans and the feasibility of the detailed

schedules. Hence, proper aggregation is a major prerequisite for using advanced PPS

methods successfully.

We have presented a novel aggregation/disaggregation framework that – with

suitable extensions – can serve as a flexible and efficient basis for production planning

in make-to-order production environments. The experimental results achieved on

real-life production data support this claim. The fact that the aggregate model

of production planning can be generated automatically, from master data readily

Aggregate Modelling of Production Planning Problems 43

available in de facto standard production information systems is of vital practical

significance.

Finally, we note that the proposed linear-time single-criteria and polynomial-time

bi-criteria partitioning algorithms may find applications in many other fields as well.

44 2.7 Conclusions

Chapter 3

Consistency Preserving
Transformations in
Constraint-based Scheduling

The solution of complex practical scheduling problems requires flexible representation

and efficient solution methods. Constraint-based scheduling, that relies on the declar-

ative programming paradigm of constraint programming, is an attractive approach

in both aspects [10].

While constraint solvers offer a declarative way to represent most conceivable fea-

tures of detailed scheduling problems, the constraint-based approach is also regarded

as the most efficient exact approach for solving various classes of resource-constrained

project scheduling problems. Thanks to the above characteristics, constraint-based

scheduling is more than just an intensively studied area of theoretical research. It

has also taken pride in numerous practical applications by now. What is more, to-

day’s most wide-spread enterprise information systems incorporate constraint-based

schedulers [79, 84].

However, real-life industrial problems often require richer models and contain an

order of magnitude more tasks than typical scheduling benchmarks used by research

communities. The complexity and size of these industrial problems challenge even the

most advanced constraint-based scheduler systems, and current algorithms often fail

to solve the problem instances to an acceptable range of the optimum. Our goal was to

improve the performance of constraint-based scheduling techniques by exploring and

exploiting common structural properties of industrial scheduling problems [63, 64].

In this chapter, we first review existing representations, algorithms, and cur-

rent research directions in constraint-based scheduling (Sect. 3.1). Then, we propose

45

46 3.1 Introduction to Constraint-based Scheduling

several novel methods that belong to the class of consistency preserving transforma-

tions to improve the performance of the previously described algorithms on practical

scheduling problems (Sect. 3.2). Results of tests carried out on real-life problem in-

stances are also presented in the same section. Finally, in Sect. 3.3, we draw the

conclusions and indicate some interesting directions for future research.

3.1 Introduction to Constraint-based Scheduling

3.1.1 Representation of the Scheduling Problem

A constraint program Π is defined by a 4-tuple {X, D,C,O} as follows. X = {xi}
denotes a finite set of variables. Each variable xi can take a value from its do-

main Di. There is a set of constraints C defined on the variables. The set of

variables present in the N -ary constraint c(xi1 , . . . , xiN
) ∈ C, or briefly c, is denoted

by Xc = {xi1 , . . . , xiN
}. Then, the solution of a constraint program is a binding

S of the variables, i.e., ∀xi ∈ X : xi = vS
i ∈ Di such that all the constraints are

satisfied, ∀c ∈ C : c(vS
i1

, . . . , vS
iN

) = true. The last member of the 4-tuple, O stands

for an objective function which orders a real number to a solution S. If O ≡ 0,

i.e., an arbitrary solution of the constraint program is looked for, then we call Π a

constraint satisfaction problem, otherwise, we talk about a constraint optimization

problem. In the remainder of this chapter, we will assume that optimization means

the minimization of O.

The resource-constrained project scheduling problem, as defined in Section 2.2.1,

can be formulated within this framework as follows. The variables are the start

times startt of the tasks t ∈ T . The durations dt are assumed to be integers, and

consequently, the initial domain of every start time variable is the set of integers

from 0 to a sufficiently large number.1 These domains are later tightened by the

constraints. In order to simplify the description of the forthcoming algorithms, we

also introduce the following notions. The functions Dmin and Dmax return the

minimum and maximum of the given variable’s domain, respectively.

• The earliest start time of a task t, estt = Dmin(startt);

• The latest start time of t, lstt = Dmax(startt);

• The earliest finish time of t, eftt = Dmin(startt) + dt;
1Some scheduling models assign three variables, startt, dt, and endt to each task, addressing

problems where durations are not known in advance.

Consistency Preserving Transformations in Constraint-based Scheduling 47

• The latest finish time of t, lftt = Dmax(startt) + dt;

• If startt is bound, then the end time of t will be denoted by endt = startt + dt;

• The time window of t is the interval [estt, lftt].

 estt eftt lstt lftt

dt dt

Figure 3.1: The time window of a task.

For an illustration of the above notions, see Fig. 3.1. Now, we are looking for

such a binding of the variables startt that satisfies different temporal, precedence

and resource constraints.

• Temporal constraints state earliest start or latest finish times for tasks, e.g.,

startt ≥ τ . They are unary, i.e., concern only one variable, and can be trans-

lated into a domain reduction immediately.

• Precedence constraints are binary, and state that the tasks t1 and t2 have to be

executed in the given order. An end-to-start precedence constraint between t1

and t2 requires that endt1 ≤ startt2 , while a start-to-start precedence constraint

only prescribes startt1 ≤ startt2 . These will be denoted by (t1 → t2) and

(t1 99K t2), respectively, and determine a directed acyclic graph over the set

of the tasks together. Note that although the description of RCPSP contains

only end-to-start precedence constraints, we will infer additional start-to-start

precedences during the solution process.

• Finally, resource capacity constraints ensure that the total of the resource re-

quirements of the tasks processed concurrently never exceeds the available ca-

pacity. A resource capacity constraint is always responsible for one resource

r, and concerns all the tasks which require this resource. Unary resources,

i.e., resources with q(r) = 1, are often distinguished from cumulative resources

(q(r) > 1). Scheduler systems often provide constraints to represent reservoirs,

i.e., resources that can be consumed or produced by tasks, and so-called state

resources that are able to process a task only when they are in a given state,

such as a furnace which can be heated to different temperatures.

48 3.1 Introduction to Constraint-based Scheduling

The most common objective function is minimizing the makespan, i.e., the max-

imum of the end times endt, t ∈ T . Other maximum-type objective functions, such

as peak resource usage, or, when individual due dates are specified for the projects,

maximum tardiness can be minimized efficiently in a very similar way, too. Although

most other usual optimization criteria can also be expressed in constraint languages,

constraint-based scheduling is less efficient on those problems.

In order to illustrate constraint-based models of scheduling problems, we present

the encoding of the well-known job-shop scheduling problem in the OPL constraint

language [94] in Fig. 3.2. A problem instance is presented in Fig. 3.3, while Fig. 3.4

shows an optimal solution for the same instance through the project view of a Gantt

chart.

int nMachines = ...;

int nJobs = ...;

int nTasks = ...;

int duration[1..nJobs, 1..nTasks] = ...;

int resource[1..nJobs, 1..nTasks] = ...;

Activity task[j in 1..nJobs, t in 1..nTasks] (duration[j,t]);

UnaryResource machine[1..nMachines];

var int makespan in scheduleOrigin..scheduleHorizon;

minimize

makespan

subject to

{
//Temporal constraints: all the tasks end before the makespan

forall(j in 1..nJobs)

task[j,nTasks].end <= makespan;

//Precedence constraints between successive tasks of a job

forall(j in 1..nJobs)

forall(t in 1..nTasks-1)

task[j,t] precedes task[j,t+1];

//Resource constraints

forall(j in 1..nJobs)

forall(t in 1..nTasks)

task[j,t] requires machine[resource[j,t]];

};

Figure 3.2: Encoding of the job-shop scheduling problem model in the OPL language.

Consistency Preserving Transformations in Constraint-based Scheduling 49

nMachines = 6;

nJobs = 6;

nTasks = 6;

resource = [

[3, 1, 2, 4, 6, 5],

[2, 3, 5, 6, 1, 4],

[3, 4, 6, 1, 2, 5],

[2, 1, 3, 4, 5, 6],

[3, 2, 5, 6, 1, 4],

[2, 4, 6, 1, 5, 3]

];

duration = [

[1, 3, 6, 7, 3, 6],

[8, 5, 10, 10, 10, 4],

[5, 4, 8, 9, 1, 7],

[5, 5, 5, 3, 8, 9],

[9, 3, 5, 4, 3, 1],

[3, 3, 9, 10, 4, 1]

];

Figure 3.3: Description of the ft06 job-shop problem instance in the OPL language.

Figure 3.4: An optimal solution of the ft06 job-shop problem instance. Excerpt from

the output of Ilog OPL Studio.

3.1.2 Transformations of Constraint Programs

The solution process of a constraint program generally consists of a tree search.

Since in most applications the targeted problems are hard, or more specifically, NP-

complete, computational efficiency is a crucial issue. Constraint programming earns

this efficiency from the transformations performed on the constraint problem. These

transformations, in general, produce an easier-to-solve representation of the problem,

e.g., by tightening the variables’ domains. According to the definitions in [2], a

transformation Π ⇒ Π′ is called equivalence preserving if for every binding S of the

variables, S is a solution of Π iff it is also a solution of Π′.

However, a wider set of transformations, the so-called consistency preserving

transformations are eligible to solve problems when one has to decide only whether

50 3.1 Introduction to Constraint-based Scheduling

Π has a solution or not. A transformation Π ⇒ Π′ is defined to be consistency

preserving, if it holds that Π′ has a solution iff Π has a solution.

Indisputably, the most important transformation technique in constraint pro-

gramming is constraint propagation. A propagation algorithm is always attached

to a particular constraint c, and addresses tightening the domains of the variables

in Xc by removing the values which are provably inconsistent with c. Sometimes,

the propagator is also able to infer new, implied constraints, and adds them to the

constraint program. Clearly, the removal of a value from the domain of a variable

can render some members of other variable domains infeasible according to another

constraint. This can result in a chain effect. The propagation chain ends at a fix

point when no propagators can eliminate further inconsistent values. Propagation

is executed in each node of the search tree, performing an equivalence preserving

transformation. Below, we briefly overview the algorithms that can be applied to

propagate constraints in scheduling.

Simple temporal and precedence constraints can be propagated easily by a stan-

dard arc-B-consistency algorithm [72]. Arc-B-consistency is a type of interval consis-

tency, i.e., the propagators adjust the lower and the upper bounds of the variables’

domains, while they do not consider the inner values. For example, the simple tem-

poral constraint startt ≥ τ results in the domain reduction est′t = max{estt, τ}.
A precedence constraint t1 → t2 can tighten the time window of both t1 and t2:

lft′t1 = min{lftt1 , lftt2 − dt2} and est′t2 = max{estt2 , estt1 + dt1}, see Fig. 3.5.

 t1

 t2

 t1

 t2
1td

2td

1td
2td

2td

Figure 3.5: Propagating the t1 → t2 precedence constraint.

Propagating resource constraints is a more challenging problem, because it con-

tains a nested one-machine scheduling problem which is NP-complete. Consequently,

polynomial-time propagation algorithms cannot guarantee that they make all the

possible domain reductions. In what follows, T (r) will always denote the set of tasks

to be processed on the unary resource r, amongst which, obviously, at most one can

be processed at a time. The simplest algorithm to propagate the unary resource

Consistency Preserving Transformations in Constraint-based Scheduling 51

constraint is time-tabling . It considers tasks one by one, and if for some t ∈ T (r) it

finds that eftt < lstt, then it deduces that in the time interval [eftt, lstt] t and only

t is executed. Hence, the time windows of the tasks in T (r) \ {t} can be tightened

accordingly, see Fig. 3.6.

 t1

 t2

 t1

 t2 2td 2td

1td 1td

1td

Figure 3.6: Applying the time-tabling algorithm.

The disjunctive propagation algorithm [29] consists of maintaining arc-B-consis-

tency on the formula (t1 → t2) ∨ (t2 → t1) for each pair of tasks t1, t2 ∈ T (r).

Whenever lstt1 < eftt2 occurs, i.e., t2 → t1 proves false, the algorithm deduces

t1 → t2 and makes the corresponding domain tightenings, and vice versa.

The introduction of the so-called interval consistency tests, such as the edge-

finding algorithm [21] or the not-first, not-last test [89] was a breakthrough in const-

raint-based scheduling, both in computational efficiency and in a theoretical aspect.

They infer new time bounds and precedence constraints by the global comparison

of resource requirement and capacities in different time intervals. Below, we present

the framework suggested in [19] for the description of these tests. The general idea is

based on the observation that given two task sets U1, U2 ⊆ U , such that U ⊆ T (r), if

lftmax(U \ U2)− estmin(U \ U1) <
∑
t∈U

dt,

then a member of U1 must start first or a member of U2 must end last in U . The proof

of this statement can be easily read from Fig. 3.7 which shows the timescale divided

into three intervals. The intervals are delimited by estmin(U \U1) and lftmax(U \U2).

Then, only members of U1 can be processed at interval I, and only members of U2

in interval III. Although any tasks can be executed in interval II, the interval is too

short to process all the tasks in U , hence, either in interval I or in interval III, some

work must be done.

Since U1 and U2 can be selected from T (r) in exponentially many ways, only

special cases of the statement are investigated in practice. Table 3.1 summarizes the

commonly used interval consistency tests.

52 3.1 Introduction to Constraint-based Scheduling

max 2(\)lft U U min 1(\)est U U

I

1U only
II

any task
III

2U only

Figure 3.7: The basic idea of interval consistency tests.

Name of the test U1 U2 Conclusion

Input {t1} ∅ t1 executes first in U

Output ∅ {t1} t1 executes last in U

Input-or-output {t1} {t2} t1 is first or t2 is last in U

Input negation T \ {t1} {t1} t1 is not first in U

Output negation {t1} T \ {t1} t1 is not last in U

Table 3.1: Interval consistency tests.

The edge-finding algorithm, which performs equivalents of the input and the

output tests, is extremely efficient in solving job-shop type scheduling problems, and

it is incorporated in all current constraint-based scheduler systems. The working

of the algorithm is illustrated in Fig. 3.8 on 3 tasks. We note that there exists an

implementation of the edge-finding algorithm with O(n log n) time complexity [22],

but in practice, the O(n2) implementation described in [7] generally runs faster thanks

to the simpler data structures applied.

 t*

 t1

 t2

 2

 4

 5

 t*

 t1

 t2

 2

 4

 5

Figure 3.8: Application of the edge-finding algorithm.

Although several researchers attempted to strengthen further the propagation

on unary resources w.r.t. the above interval consistency tests, these experiments

generally achieved only a little more domain tightening at the cost of significantly

more computing time invested, see, e.g., [99]. Hence, it is widely accepted today that

Consistency Preserving Transformations in Constraint-based Scheduling 53

no significant improvement can be expected on the above propagation algorithms in

the case of unary resources.

However, the situation fundamentally differs for cumulative resources, reservoirs,

and state resources . Although the above propagation algorithms can be generalized

to cumulative resources [9], in fact, they achieve significantly weaker pruning. A

stronger propagation algorithm with time complexity O(n3), called energetic reason-

ing has been suggested in [31]. It compares, in appropriately selected time intervals,

the total amount of work required by the tasks on the given resource to the available

capacity.

Two further algorithms, the energy precedence and the balance constraint prop-

agators are described in [67]. These algorithms, unlike the above propagators that

compute domain tightenings based on the time windows of the tasks, focus on the

precedence relations between them. They are remarkably more efficient than the pre-

vious propagators for cumulative resources and reservoirs if the tasks’ time windows

are wide.

Shaving is another equivalence preserving transformation that is widely used in

scheduling applications, when constraint propagation itself is unable to achieve suf-

ficient search space reduction [90]. Shaving adds an arbitrary constraint c to the

constraint program Π, and if propagation algorithms prove Π∪{c} infeasible – which

is the lucky case here –, then it infers that ¬c must be fulfilled in all the solutions of

Π. In scheduling, c typically stands for a time bound on a task’s start/end time or a

precedence constraint.

3.1.3 Search Techniques

Besides the above transformations that reduce the search space, the way of exploring

this search space is also decisive for the efficiency of the solution process. In this

section, we focus on search issues.

Constraint optimization problems are solved through a reduction of the opti-

mization problem to a series of satisfiability problems. In successive search runs, the

feasibility of the problem is checked for different trial values of the objective function.

In the case of a branch-and-bound search, the objective value of the actually best so-

lution, i.e., an upper bound UB is stored, and the solver looks for a solution with

an objective value of at most UB − 1. If such a solution is found, UB is updated,

while infeasibility means that the previous solution was an optimal one. The ad-

vantage of the branch-and-bound search is that search does not have to be restarted

54 3.1 Introduction to Constraint-based Scheduling

from scratch, but it can be continued from the given node of the search tree with an

updated upper bound.

In contrast, during a dichotomic search, the solver keeps in mind both the actually

known best upper bound UB and lower bound LB, i.e., the lowest value for which

infeasibility has not been proven. Then, in each search run, the trial value b(UB +

LB)/2c is probed, and, depending on the outcome of the trial, either the value of

UB or LB is updated. This step is repeated until UB = LB is reached, which means

that an optimal solution has been found. Although dichotomic search restarts the

solution process in each successive run, it makes larger ”jumps” towards the optimum

in the initial phase of the solution process. Whether the branch-and-bound or the

dichotomic search is worth applying depends on the specific problem.

Within each optimization step, the search trees are generally explored in a depth-

first order. This strategy is explained by the high memory needs of constraint solvers.

In addition, constraint solvers apply an incremental description of the search nodes,

i.e., they do not store all the data connected to the given node, but only the changes

compared to the parent node. This makes switching between two distant nodes of

the tree expensive. Consequently, heuristics are rarely exploited in sophisticated

informed search methods, but rather in the smart selection of the search decisions

within the search nodes.

Limited discrepancy search, an alternative to the depth-first search was introduced

in [48]. It is based on the assumption that if a good heuristic misses a solution, then

it is due to only a small number of bad search decisions. Hence, it defines discrepancy

as the number of branchings on a search path in which a decision different from the

one suggested by the heuristic was made. Then, limited discrepancy search divides

the search tree into strips, each corresponding to the set of nodes with 0, 1, 2, etc.

discrepancies, and it explores the strips in this order.

There is also a choice of the types of decisions to make at the search nodes.

Resource ranking and task pair ordering are the most widely used branching schemes

when unary resources are scheduled. Resource ranking selects a resource r and a task

t ∈ T (r), and generates a binary branching according to the decision wether t is the

next task on r or not. Task pair ordering selects a pair of tasks t1, t2 to be processed

on the same resource and branches on t1 → t2 or t2 → t1.

In both of the above branching schemes, it is beneficial to follow the fail-first

principle [47], which states that search should focus on making the critical choices

first. In scheduling, this means that the most loaded resource has to be ranked or the

Consistency Preserving Transformations in Constraint-based Scheduling 55

most tight pair of tasks has to be ordered first. Sophisticated, so-called texture-based

heuristics are suggested in [14] to identify the critical decisions in job-shop scheduling

problems. Similar analysis methods, named profile-based metrics are suggested in

[23] that are tailored to cumulative resource models. Alternatively, a clique-based

approach is proposed by [68] to find the subsets of tasks whose resource requirements

can produce conflict.

Although the previous branching schemes can also be generalized to cumulative

resources, their cumulative counterparts can only add start-to-start precedence con-

straints to the model, because several tasks can be processed concurrently on the

same resource. These weaker precedence constraints often cannot trigger sufficient

domain tightenings. Instead, the so-called setting times branching scheme is applied.

This strategy relies on the LFT priority rule [26], and binds the start times of tasks

in the following way. It first selects the earliest time instant τ for which there exists

a non-empty set Tτ of unscheduled tasks that can be started at time τ . A task t ∈ T

belongs to Tτ iff all its end-to-start predecessors have ended and all its start-to-start

predecessors have started by τ , and there are enough free units of the resource r(t)

in the interval [τ, τ + dt]. From Tτ , the task t∗ with the smallest latest finish time

lftt∗ is selected. The setting times branching scheme then generates two sons of the

current search node, according to the decisions whether startt∗ is bound to estt∗ , or

t∗ is postponed.

However, complete tree search methods sometimes poorly scale to large-size prob-

lems. This phenomenon initiated extensive research on combining the inference power

of constraint propagation with the better scalability of local search techniques. The

price payed for the computational efficiency of these hybrid methods is loosing their

completeness. Nevertheless, current state of the art in this field rather consists of

pieces of experience gathered during individual experiments, than a well-established

methodology. A comprehensive overview of the existing approaches can be found

in [35]. Herein, we discuss only two frameworks that can guarantee the feasibility of

the solutions.

One of the efficient generic methods is to exploit constraint programming in ex-

ploring a larger neighborhood by a b ranch-and-bound search within each iteration of

the local search. This approach is called large neighborhood search [80]. An applica-

tion of this approach to solve the job-shop scheduling problem is presented in [8]. In

this case, in each iteration of the local search, each ordering decision of the previously

found schedule is kept with a given probability p, while others are relaxed. Then, a

56 3.1 Introduction to Constraint-based Scheduling

constraint-based depth-first search is run to find a solution which improves on the

best known makespan, within a limited number of backtracks. This step is iterated

with a decreasing p, until a certain terminating condition is reached.

A completely different approach that searches in the space of consistent partial

solutions, the so-called incomplete dynamic backtracking , was introduced in [81]. It

starts the solution process with an empty set of variable assignments. Then, in each

iteration, an unassigned variable is selected and bound to a value in its domain. Then,

domains of the other variables are tightened by constraint propagation. If any of the

domains becomes empty – which means that the current set of assignments cannot

be completed to a solution –, then one or more heuristically selected assignments

are undone. This step is iterated until all variables are assigned, which means that

a solution is found. [54] presents how this framework can be applied to open-shop

scheduling, a problem which is notoriously hard for exact methods.

3.1.4 Application Problems of Constraint-based Scheduling

The above described techniques made constraint programming an attractive repre-

sentation and solution method for solving complex, real-life scheduling problems.

There are quite a number of companies selling scheduling software based on con-

straint technology. Despite all this, in many applications it turns out that even the

most advanced systems are often unable to solve large problems – which may include

an order of magnitude more tasks than typical benchmarks used by researchers – to

an acceptable range of the optimum. At the same time, it has also been recognized

that practical problems can often be simple in the sense that they have a certain

internal structure. We believe that the key to success in solving real-life problems is

the conscious exploitation of these structural properties.

This requirement has been recognized in several connected fields of combinatorial

problem solving. As a result, SAT (boolean satisfiability problem) solvers released

during the last couple of years are capable of solving one order of magnitude larger

problems than their predecessors. Many of them exploit the backdoors of problems,

i.e., a set of variables such that if they are bound to the appropriate values, the

original problem simplifies to a trivial one, e.g., a 2-SAT [98]. The authors report

that they found backdoors consisting of 10 to 20 variables for problems containing

105 variables. Another typical structure in a SAT problem that can be exploited

during search is the so-called backbone of the problem. It is the set of variables which

must take the same values over all solutions [85].

Consistency Preserving Transformations in Constraint-based Scheduling 57

Although the need for focusing on more realistic problems has been a common

claim also in constraint programming research, we do not have a clear understand-

ing of what kind of problem structure can be expected and exploited in constraint

programs, or, more specifically, in constraint-based scheduling problems.

A further discrepancy between theoretical research and practice involves the idea

of optimization. Researchers most often aim at finding the exact optimum according

to some relatively easy-to-handle criteria, such as the makespan in scheduling [13].

In contrast, engineers can typically settle for a sufficiently good solution, but they

call for a wider choice of more realistic objective functions. Moreover, they often

measure the quality of a solution according to several criteria, but researchers cannot

offer sophisticated tools for multi-criteria optimization. E.g., the Pareto branch-

and-bound search suggested in [62, 75] has a clear theoretic background, but can be

applied efficiently only when the set of Pareto-optimal solutions is small enough.

In our research, we aimed at identifying structural properties of constraint-based

scheduling problems that originated from a real factory. We defined two generic

approaches – consistency preserving transformations – to exploit these features of

the problems so as to make search more efficient. These transformations will be

presented in the following sections. At the same time, we still considered makespan

as the optimization criterion. This was reasonable, because the main cost drivers

were located at the medium-term planning level of our integrated PPS system, while

short-term scheduling was responsible for realizing the objectives set by the medium-

term plan.

3.2 Consistency Preserving Transformations for the Ex-
ploitation of Problem Structure

The transformations of constraint programs presented so far all preserve equiva-

lence. In fact, the reason for current general purpose constraint solvers to perform

equivalence preserving transformations is rooted in their modular structure. They

incorporate local inference algorithms, such as propagators attached to individual

constraints. These algorithms do not have a view of the entire model, and hence,

they can remove only such values from the variable domains which cannot be part of

any solution because violate the given constraint. In contrast, transformations which

do not preserve equivalence, remove also values which can participate in some of the

solutions. Without loosing the chance of finding a solution (or proving infeasibility),

58 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

this is possible only with an overall, global view of the model.

Nevertheless, we claim that consistency preserving transformations are adequate

means to exploit problem structure in specific application domains. Furthermore,

it is possible to construct generic consistency preserving transformation frameworks

that can be easily tailored to particular problems. Specifically, we can observe that

the following structural properties are often present in real-life industrial scheduling

problems [64].

• Many factories produce families of products, members of which share sections

of their technological plans. Moreover, several orders for the same product

can be present at the factory within the scheduling horizon. All this results

in a number of similar or even identical sub-problems within the scheduling

problem.

• Members of a product family use a common set of resources, while, on the other

way around, different product families often require basically different (though

not disjoint) sets of resources. The projects visit those resources in sequences

more or less determined by the manufacturing technology applied.

• The amount of load often significantly differs over resources, and hence, there

are bottleneck and non-bottleneck resources. Similarly, there can be critical

and non-critical projects. The latter properties typically result in a scheduling

problem that consists of a loosely connected structure of easy and hard sub-

problems.

In what follows, we first present some currently applied consistency preserving

transformations (Sect. 3.2.1). Then, we suggest two novel consistency preserving

transformations. The first one exploits the presence of similar sub-problems in the

scheduling problem (Sect. 3.2.2). Then, Sections 3.2.3 and 3.2.4 present how loosely

connected sub-problems can be exploited in constraint programming and specifically

in constraint-based scheduling, respectively. Finally, experiments on real-life data

and also on widely used benchmark instances are presented in Sect. 3.2.5.

3.2.1 Related Work

Recently, several efforts have been made to explore consistency preserving transfor-

mations in constraint programming. Typical transformations which preserve consis-

Consistency Preserving Transformations in Constraint-based Scheduling 59

Figure 3.9: Symmetric solutions of the 8-queens puzzle.

tency, but do not retain equivalence, are the applications of symmetry breaking and

dominance rules.

Symmetry is a structural property of constraint satisfaction problems. It is a

bijective function f defined on the bindings of the variables of a constraint program

Π such that for each variable binding α, f(α) is a solution of Π iff α is a solution,

too. Clearly, a problem can have several, even an exponential number of symmetries

in the function of the number of variables. Classical examples of symmetry are the

rotational and reflection symmetries in the 8-queens puzzle, as illustrated in Fig. 3.9.

In this problem, eight queens have to be placed on a chessboard in such a way that

none of them attacks the others.

The presence of symmetries in a problem can give rise to redundant search on

equivalent branches of the search tree. Consequently, breaking the symmetries of

constraint programs, i.e., excluding all but one of the equivalent solutions is an exten-

sively studied research area today. The forefather of all symmetry breaking techniques

is the addition of symmetry breaking constraints to the model before search [24]. For

instance, row and column symmetries in matrix models can be eliminated by lexico-

graphical ordering constraints [34]. The flaw of this simple approach is that it hardly

scales up to break a high number of symmetries, and that it can interact adversely

with search heuristics.

More sophisticated methods, such as the Symmetry Breaking During Search [42]

(also called Symmetry Excluding Search in [6]) and the Symmetry Breaking via Dom-

inance Detection [32, 36] prune symmetric branches of the search tree during search.

60 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

All of these general frameworks require an explicit declaration of the symmetries in

the form of symmetry functions or a dominance checker. Recently, these algorithms

were improved by lessons learnt from computational group theory. These improve-

ments eliminate the requirement of specifying a huge number of symmetry functions,

and make it possible to break all the symmetries of a problem by using only the de-

scription of the generators of symmetry groups. The resulting algorithms are called

GAP-SBDS [40] and GAP-SBDD [41].

A wider class of consistency preserving transformations is constituted by the

dominance rules. They define properties of a problem that must be satisfied by

at least one of its (optimal) solutions. By now, little work has been done to explore

domain independent dominance rules. E.g., a recent paper [82] introduced the notion

of k-dominance consistency to provide means for the removal of such values from the

variable domains whose infeasibility can be proven from the dead ends met in earlier

stages of the search. However, the authors define algorithms only for restricted cases,

and the applicability of this rather complicated method can hardly be understood

yet.

At the same time, domain specific dominance rules are widely used in constraint

programming, as well as in resource-constrained project scheduling. For instance,

two similar dominance rules are suggested in [7, 27] that bind the start time of a

task to the earliest possible value if its predecessors are already processed and the

given resource is not required by any other task at that time. A dominance rule to

decompose the scheduling problem over time is described in [7]. More complex – and

more expensive – dominance rules are discussed by [28]. Several dominance rules as

well as rules for the insertion of redundant precedence constraints are proposed for

the problem of minimizing the number of late jobs on a single machine, see [11].

In what follows, we suggest two novel equivalence preserving transformations that

– according to the above classification – belong to the family of dominance rules.

However, in contrast to the dominance rules outlined above, they perform global

inference on the constraint program. The first technique partially orders the tasks

of the scheduling problem by the insertion of precedence constraints before search.

The second algorithm can be run in each node of the search tree to build partial

solutions that are provably consistent with all the solutions of the remaining part of

the problem. The precursors of these techniques were first described in [63].

Consistency Preserving Transformations in Constraint-based Scheduling 61

3.2.2 Progressive Solutions of Scheduling Problems

In the previous sections we have seen that real-life scheduling problems often contain

similar sub-problems corresponding to the production of several identical products or

members of the same product family. Here, we suggest a method for the deduction of

a part of the ordering decisions between corresponding tasks of such similar projects

before search. These inferred ordering decisions allow the insertion of precedence

constraints in the problem representation, and thus, make possible a significant re-

duction of the search space. Since these investigations are performed before search

on the initial representation of the scheduling problem, in the following definitions

we do not take into consideration the notions only used within the constraint-based

solver, such as time windows and start-to-start precedence constraints. We begin by

formally characterizing similarities between two task sets.

Definition 3.1 Two sets of tasks P and Q are defined isomorphic, and will be de-

noted by P ≡ Q, iff there exists a bijection β : P ↔ Q such that for each pair of tasks

p ∈ P and q ∈ Q

β(p, q) ⇒ dp = dq ∧ r(p) = r(q), and

β(p1, q1) ∧ β(p2, q2) ⇒ (p1 → p2) ⇔ (q1 → q2).

Definition 3.2 A set of tasks P ⊆ T is called closed iff it is a maximal connected

component in the graph of precedences of T .

Definition 3.3 Given two closed task sets P and Q, we call them a progressive pair

iff there exists a P ∗ ⊆ P and a Q∗ ⊆ Q such that P ∗ ≡ Q∗, and there are no incoming

precedences to P ∗ and no outgoing precedences from Q∗. This relation will be denoted

by P ⇒ Q (see Fig. 3.10.a).

Note that the closed task sets in a scheduling problem are defined unambiguously.

The progressive pair relations are also determined unambiguously, unless for two

closed task sets P and Q, P ≡ Q holds, which means that the direction of the

progressive pair relation between them can be chosen arbitrarily. In such cases,

we select the directions so that no directed circles of progressive pair relations are

constructed. Furthermore, if the bijection β (and, accordingly, P ∗ and Q∗) can be

chosen in several ways within a progressive pair, then we fix one of the alternatives

containing a maximal number of tasks. This way, the progressive pair relations

determine an acyclic partial ordering of the closed task sets.

62 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

q1 q2
q4
 q3

Q
q0

P
p1 p2

 p4
 p3

p5

P*

Q*
q1 q2

q4
 q3

Q
q0

P
p1 p2

 p4
 p3

p5

P*

Q*

Figure 3.10: a.) The progressive pair P ⇒ Q. b.) The progressive precedence

constraints between P and Q.

Definition 3.4 A solution of a scheduling problem is called progressive, iff for each

progressive pair P ⇒ Q, the execution of P precedes Q, in the formal sense that

for each pair of tasks p ∈ P ∗ and q ∈ Q∗ such that β(p, q), p 99K q holds. We will

refer to this type of start-to-start precedence constraints as progressive constraints

(see Fig. 3.10.b).

We note that if the resource r(p) is unary, then (p 99K q) ⇔ (p → q).

Theorem 3.1 If a scheduling problem has a solution, then it also has a progressive

solution.

We will prove this theorem by an algorithm that departs from an arbitrary solution

of the scheduling problem, and through iteratively swapping pairs of tasks, generates

a progressive solution. In each step of the algorithm, a progressive pair P ⇒ Q is

selected, such that some of the progressive constraints between P and Q are violated

in the actual schedule S. Then, the algorithm computes a modified schedule S′ by

swapping all the pairs of tasks in P and Q which violate the progressive constraints

as follows.

∀p ∈ P, q ∈ Q : β(p, q) ∧ startSp > startSq ⇒ startS
′

p = startSq , and

startS
′

q = startSp .

For all other tasks t ∈ T , startS
′

t = startSt .

Consistency Preserving Transformations in Constraint-based Scheduling 63

Lemma 3.1 S′ is feasible.

Proof: All resource capacity constraints are satisfied in S′, because only pairs of

tasks with equal durations and resource requirements were swapped. In order to

show that precedence constraints p1 → p2, where p1, p2 ∈ P ∗, cannot be violated in

S′ either, we introduce q1 and q2 to denote the two tasks in Q for which β(p1, q1) and

β(p2, q2) hold. Then,

• if neither the pair (p1, q1), nor (p2, q2) were swapped, then the start times of p1

and p2 are unchanged in S′ w.r.t. S, and S is feasible;

• If the pair (p1, q1) was swapped, but (p2, q2) not, then

endS′

p1
= endS

q1
< endS

p1
≤ startSp2

= startS
′

p2
;

• If the pair (p2, q2) was swapped, but (p1, q1) not, then

endS′

p1
= endS

p1
≤ startSq1

≤ startSq2
= startS

′

p2
;

• If both (p1, q1) and (p2, q2) were swapped, then

endS′

p1
= endS

q1
≤ startSq2

= startS
′

p2
.

Precedence constraints pointing from P ∗ to P \P ∗ and those within P \P ∗ are also

satisfied, because only tasks of P ∗ were moved forward, and tasks of Q∗ backward in

the schedule. The proof is analogous for precedence constraints in Q, and trivial for

the precedence constraints between tasks of T \ (P ∪ Q), because those tasks were

not moved. 2

The above step is iterated until there are no more progressive constraints violated.

Proof of Theorem 3.1: The algorithm halts when it has found a progressive sched-

ule. According to Lemma 3.1, this schedule is feasible, too. Furthermore, this is

reached in finitely many steps, because the algorithm performs a brick sort over the

closed task sets, according to the partial ordering defined by the progressive pair

relations. Hence, we have shown that the insertion of the progressive constraints

according to Definition 3.4 preserves the consistency of the scheduling problem. 2

In our system, the set of tasks contained by one aggregate activity constitute a

closed task set (see Chapter 2). The progressive pair relation P ⇒ Q characterizes two

activities belonging to projects that share – at least partially – their technological

plans, and P can be in a somewhat more advanced state than Q. Finding the

progressive pairs and composing the corresponding progressive precedence constraints

64 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

is straightforward. For each pair of activities, we check whether their contained task

sets constitute a progressive pair. Since the precedence graph of an activity forms an

in-tree structure, this can be performed by examining if one of the activities contain

the other activity’s root task. If it does, then the corresponding sub-trees must be

mapped to each other.

3.2.3 Freely Completable Partial Solutions

Broadly speaking, a freely completable partial solution (FCPS) is a consistent binding

of a subset of the variables, which does not constrain the domain of the remaining

variables in any way. FCPSs are traits of such constraint satisfaction problems that

have some components which are relatively easy to solve and are only loosely con-

nected to the remaining parts of the problem. Once detected, freely completable

partial solutions can be exploited well during the solution process: search decisions

in the easy-to-solve sub-problems can be eliminated, and search can be focused on

making the relevant decisions only.

In what follows, we define a general, domain independent framework to identify

freely completable partial solutions. The framework can be applied to boost search

in constraint satisfaction problems and constraint optimization problems which are

solved as a series of satisfiability problems. Hence, in the formal definitions, we will

use the notations introduced in Sect. 3.1.1. We will prove that the transformation

we suggest preserves consistency. Later, in Sect. 3.2.4, we will show how this generic

framework can be exploited to boost search efficiency in constraint-based scheduling.

A partial solution PS is a binding of a subset XPS ⊆ X of the variables, ∀xi ∈
XPS : xi = vPS

i . We define PS freely completable, iff for each constraint c ∈ C:

• If Xc ⊆ XPS , then c(vPS
i1

, . . . , vPS
iN

) = true, i.e., c is satisfied.

• If Xc * XPS ∧Xc ∩XPS 6= ∅, then let D′
ik

= {vPS
ik
} for xik

∈ XPS , and D′
ik

=

Dik
for xik

/∈ XPS . Then, ∀(ui1 , . . . , uiN
) ∈ D′

i1
× . . .×D′

iN
: c(ui1 , . . . , uiN

) =

true. Note that this means that all the possible bindings of the variables not

included in PS lead to the satisfaction of c.

• If Xc ∩XPS = ∅, then we make no restrictions.

Freely completable partial solutions are illustrated in Fig. 3.11. In the example,

PS is an FCPS if the constraint c1 is satisfied in PS, and c2 is satisfied for all the

Consistency Preserving Transformations in Constraint-based Scheduling 65

possible bindings of its variables in X \ XPS . The constraint c3, no matter how

hard-to-solve sub-problem it defines, does not have to be cared about.

XPS

X \XPS

c1 c2

c3

Figure 3.11: Example of a freely completable partial solution.

Theorem 3.2 If PS is a freely completable partial solution, then binding the vari-

ables xi ∈ XPS to the values vPS
i , respectively, is a consistency preserving transfor-

mation.

Proof: Suppose that there exists a solution S of the constraint program. Then, the

preconditions in the above definition prescribe that the binding xi ∈ XPS : xi =

vPS
i , xi /∈ XPS : xi = vS

i is also a solution, because it satisfies all the constraints. On

the other hand, it is trivial that any solution of the transformed problem is a solution

of the original problem, too. 2

Note that whether a partial solution is freely completable or not, depends on all

the constraints present in the model. In case of an optimization problem, this includes

the constraints posted on the objective value as well. Thus, this transformation can

not be applied e.g., within a branch-and-bound search, where such constraints are

added during the search process.

A freely completable partial solution PS, apart from the trivial XPS = ∅ case,

does not necessary exist for constraint satisfaction problems, or finding one can be

just as difficult as solving the original problem. Notwithstanding, we claim that in

structured, practical problems, fast and simple heuristics are often capable to generate

such a PS. In what follows, this will be demonstrated for the case of constraint-based

scheduling.

3.2.4 Application of FCPSs in Constraint-based Scheduling

A partial solution PS of a scheduling problem is a binding of the start time variables

startt of a subset of the tasks, which will be denoted by TPS ⊆ T . According to the

66 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

previous definitions, PS is called freely completable, if the following conditions hold

for each constraint of the model.

For end-to-start precedence constraints c : (t1 → t2),

• t1, t2 ∈ TPS and endt1 ≤ startt2 , i.e., c is satisfied, or

• t1 ∈ TPS , t2 /∈ TPS and endt1 ≤ estt2 , i.e., c is satisfied irrespective of the value

of startt2 , or

• t1 /∈ TPS , t2 ∈ TPS and lftt1 ≤ startt2 , i.e., c is satisfied irrespective of the

value of startt1 , or

• t1, t2 /∈ TPS , i.e., PS does not make any commitments on the start times of t1

and t2.

This definition can be extended to start-to-start precedence constraints c : (t1 99K

t2) likewise:

• t1, t2 ∈ TPS and startt1 ≤ startt2 , or

• t1 ∈ TPS , t2 /∈ TPS and startt1 ≤ estt2 , or

• t1 /∈ TPS , t2 ∈ TPS and lftt1 − dt1 ≤ startt2 , or

• t1, t2 /∈ TPS .

To check resource capacity constraints, we define M+
r,τ as the set of tasks t ∈ TPS

which are under execution at time τ on resource r, while M−
r,τ as the set of tasks

t /∈ TPS which might be under execution at the same time:

M+
r,τ = {t|t ∈ TPS ∧ r(t) = r ∧ (startt ≤ τ ≤ endt)}

M−
r,τ = {t|t /∈ TPS ∧ r(t) = r ∧ (estt ≤ τ ≤ lftt)}

Now, one of the followings must hold for every resource r ∈ R and for every time

unit τ :

• |M+
r,τ | + |M−

r,τ | ≤ q(r), i.e., the constraint is satisfied at time τ irrespective of

how PS will be complemented to a complete schedule, or

• M+
r,τ = ∅, i.e., PS does not make any commitment on r at time τ .

Consistency Preserving Transformations in Constraint-based Scheduling 67

A Heuristic Algorithm

We applied the following heuristic algorithm to construct freely completable partial

solutions of scheduling problems. The algorithm can be run once in each search node,

with actual task time windows drawn from the constraint solver.

The method is based on the LFT priority rule-based scheduling algorithm [26],

which also serves as the origin of the setting times branching strategy. It was modified

so that it generates freely completable partial schedules when it is unable to find

a consistent complete schedule. The algorithm assigns start times to tasks in a

chronological order, according to the priority rule, and adds the processed tasks to

TPS .

1 PROCEDURE FindAnyCaseConsistentPS()

2 % Let U be the set of tasks not yet scheduled.

3 U := {t|t ∈ T : startt is not bound};
4 WHILE (U 6= ∅)
5 Choose a task t ∈ U and a start time τ using the LFT rule;

6 Remove t from U;

7 IF τ + dt ≤ lftt THEN

8 startt := τ;
9 Add t to T PS;

10 ELSE

11 FailOnTask(t);

12 PROCEDURE FailOnTask(t)
13 IF t ∈ T PS THEN

14 Remove t from T PS;

15 FORALL task t′ ∈ T PS : (t′ → t) ∈ C
16 IF endt′ > estt THEN

17 FailOnTask(t′);
18 FORALL task t′ ∈ T PS : (t′ 99K t) ∈ C
19 IF startt′ > estt THEN

20 FailOnTask(t′);
21 FORALL task t′ ∈ T PS : r(t′) = r(t)
22 % Let I be the time interval in which t and t′ can be

23 % processed concurrently.

24 I := [startt′ , endt′] ∩ [estt, lftt];
25 IF ∃τ ∈ I : |M+

r(t),τ |+ |M−
r(t),τ | > q(r(t)) THEN

26 FailOnTask(t′);

Figure 3.12: The heuristic algorithm for constructing freely completable partial sched-

ules.

Whenever the heuristic happens to assign an infeasible start time to a task t, i.e.,

startt > lftt − dt, t is removed from TPS . The removal is recursively continued on

68 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

all tasks t′ which are linked to t by a precedence or a resource capacity constraint,

and whose previously determined start time startt′ can be incompatible with any

value in the domain of startt. After having processed all the tasks, the algorithm

returns with a freely completable partial schedule PS. In the best case, it produces

a complete schedule, TPS = T , while in the worst case, PS is an empty schedule,

TPS = ∅. The pseudo-code of the algorithm is presented in Fig. 3.12.

Certainly, this simple heuristic can be improved in many ways. First of all,

we applied a small random perturbation on the LFT priority rule. This leads to

slightly different runs in successive search nodes, which allows finding freely com-

pletable partial solutions which were missed in the ancestor nodes. In experiments

(see Sect. 3.2.5), the modified rule, named LFTrand, resulted in roughly 20% smaller

search trees than LFT.

The time spent for building potentially empty partial schedules can be further de-

creased by restricting the focus of the heuristic to partial schedules PS which obviate

the actual branching in the given search node. Task t∗, whose immediate scheduling

or postponement is the next search decision in the constraint-based solver, is already

known before running the heuristic. This next branching would be eliminated by PS

only if t∗ ∈ TPS . Otherwise, finding PS does not immediately contribute to decreas-

ing the size of the search tree, and it is likely that PS will only be easier to find later,

deeper in the search tree. Accordingly, when FailOnTask is called on t∗, the heuristic

algorithm can be aborted and an empty schedule returned. These improvements can

be realized by replacing one line and adding three lines to the pseudo-code of the

basic algorithm, as shown in Fig. 3.13.

1 PROCEDURE FindAnyCaseConsistentPS()

...

5 Choose a task t ∈ U and a start time τ using the LFTrand rule;

...

12 PROCEDURE FailOnTask(t)
12A IF t is the task on which the branching is anticipated THEN

12B T PS := ∅;
12C EXIT; % The next branching cannot be avoided.

...

Figure 3.13: Improvements of the heuristic algorithm.

Consistency Preserving Transformations in Constraint-based Scheduling 69

An Illustrative Example

In the following, an example is presented to demonstrate the operation of the heuristic

algorithm that constructs freely completable partial schedules. Suppose there are 3

projects, consisting of 8 tasks altogether, to be scheduled on three unary resources.

Tasks belonging to the same project are fully ordered by end-to-start precedence

constraints. The durations and resource requirements of the tasks are indicated in

Fig. 3.14, together with the time windows received by the heuristic algorithm from

the constraint-based solver in the root node of the search tree. The trial value of the

makespan is 10.

Note that in order to be able to present a compact but non-trivial example, we

switched off the edge-finding resource constraint propagator in the constraint solver

engine, and used the time-tabling propagator only.

t d(t) estt lftt r(t)

t11 1 0 2 R3

t12 4 1 10 R1

t21 2 0 3 R3

t22 2 2 5 R2

t23 5 4 10 R3

t31 2 0 3 R2

t32 4 2 7 R1

t33 3 6 10 R2

R3

t21 t23

t11

t32

t12

R1

t31

t22

t33

R2
2

Figure 3.14: Parameters of the sample problem.

The algorithm begins by assigning start times to tasks in chronological order,

according to the LFT priority rule: startt11 = 0, startt31 = 0, startt21 = 1, startt12 =

1 and startt22 = 3, see Fig. 3.15.a. All these tasks are added to TPS .

Now, it is the turn of t32. Unfortunately, its execution can start the soonest at

time 5, and consequently, it cannot be completed within its time window. Hence, the

function FailOnTask is called on t32, and recursively on all the tasks which could

cause this failure. At this example, it only concerns t12 which is removed from TPS .

Then, further tasks are scheduled according to the LFT priority rule: start times are

70 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

R3
t21 t11

t31 t22

R2

t12

R1

R3
t21 t23 t11

t31 t22 t33

R2
2

t32

t12

R1

Figure 3.15: a.) Building the partial schedule. b.) The freely completable partial

schedule.

assigned to the two remaining tasks, startt23 = 5 and startt33 = 7. The heuristic

algorithm stops at this point, and it returns the freely completable partial schedule

PS with TPS = {t11, t21, t22, t23, t31, t33}, see Fig. 3.15.b.

After having bound the start times of these tasks in the constraint-based solver,

the solver continues the search process for the remaining two tasks. In the next search

node, it infers the only remaining valid start times for t12 and t32 by propagation.

This leads to an optimal solution for this problem, as shown in Fig. 3.16.

R3
t21 t23 t11

t32 t12

R1

t31 t22 t33

R2
2

Figure 3.16: The final schedule.

3.2.5 Experiments

The purpose of our experiments was to appraise how much the exploitation of prob-

lem structure, or more specifically, the transformations and algorithms introduced

Consistency Preserving Transformations in Constraint-based Scheduling 71

previously in this chapter can speed up the solution of scheduling problems. Below

we present results achieved on real-life scheduling problem instances and widely used

benchmark problems.

Search Strategy

The suggested algorithms were implemented as extensions to a state of the art com-

mercial constraint-based scheduler system, Ilog Scheduler [52]. Since the default

branch-and-bound solution approach of this system performed poorly on the real-life

problem instances we addressed, it was replaced by a dichotomic search. The moti-

vation for this change was the observation that the optimal solution of our industrial

problems is often located near to the lower bound which can be proven by pure

propagation. Moreover, rather surprisingly, the satisfiability problems for makespans

around the optimal value – deciding whether there exists a schedule whose makespan

is at most the given value – were easier to solve than for larger values of the objective

function. Fig. 3.17 shows a qualitative picture of problem complexity, measured in

the average number of search nodes, as a function of the trial value of the makespan.

The ’double dichotomic’ search method we used first looks for the best lower

bound which can be proven by propagation only. Then, while searching for a solution,

it focuses its efforts on the area close to the lower bound. The algorithm is presented

in Fig. 3.18.

Heuristic solution Optimal solution

Inference Search + Inference --

Makespan

Avg. search nodes

Figure 3.17: Problem complexity as a function of the makespan.

Within the second phase of the double dichotomic search, a standard depth-first

search with the setting times branching strategy is performed to check if a schedule

exists with at most the given makespan. During search, the time windows of the tasks

are tightened by constraint propagators. For propagating precedence constraints,

72 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

1 PROCEDURE Schedule()

2 % Generate an initial solution.

3 S := InitialSolution();

4 UB := GetMakespan(S);
5

6 % Perform a dichotomic search to find a good lower bound

7 UB0 := UB, LB0 := 0;
8 WHILE (UB0 6= LB0)
9 IF propagation proves the makespan b(UB0 + LB0)/2c infeasible THEN

10 LB0 := b(UB0 + LB0)/2c;
11 ELSE

12 UB0 := b(UB0 + LB0)/2c;
13

14 % Solve the problem by a dichotomic search

15 LB := LB0, MS := LB + 1;
16 WHILE (UB 6= LB)
17 IF a solution with makespan at most of MS exists THEN

18 S := Solution(MS);
19 UB := MS;
20 ELSE

21 LB := MS;
22 MS := lf loor(UB + 10 ∗ LB)/11c;
23

24 RETURN(S);

Figure 3.18: The double dichotomic search method.

the ordinary arc-B-consistency algorithm, while for resource capacity constraints the

edge-finding algorithm is applied.

This solver was extended by a pre-processor that adds the progressive prece-

dence constraints to the model, and the heuristic algorithm for constructing freely

completable partial schedules, run once in each search node. Both extensions were en-

coded in C++. The experiments were executed on a 1.6 GHz Pentium IV computer,

under a Windows 2000 operating system.

Results on Industrial Problems

Our set of industrial test instances consists of weekly detailed scheduling problems.

We constructed these test instances by unfolding production plans generated by the

medium-term planner module of our integrated production planner and scheduler.

The input of the medium-term planner directly originated from our industrial partner.

The products of this enterprise can be ordered into four product families. A

project, aimed at the fabrication of one end product, usually contains 50 to 500 ma-

Consistency Preserving Transformations in Constraint-based Scheduling 73

chining, assembly and inspection operations. These operations were merged into 1 to

10 aggregate activities. The horizon of the short-term scheduling problem covered the

execution of one or more such activities of each project. In the experiments presented

below, we supposed tasks requiring one machine resource for their execution, and we

also disregarded some modelling features, such as setup and transportation times.

Finally, the problem instances contained ca. 80 unary and 10 cumulative resources.

Further characteristics of the problems and more details about the production pro-

cesses at the factory can be found in Sect. 4.1.

The industrial problems were divided into two sets. Problem set 1 consists of

30 detailed scheduling problems that our system faced on the short-term level, each

containing from 150 up to 990 tasks. Problem set 2 contains 20 larger problem

instances with up to 2021 tasks, generated by merging several problems from set 1.

Four systems participated in the tests: DD denotes the double dichotomic search

using only built-in propagators of the commercial solver. First, DD was extended

by the pre-processor to reduce the search space to progressive solutions (DD+PS),

then by the algorithm for building freely completable partial solutions (DD+FC). In

the last system, all components were switched on (DD+PS+FC). The solution time

limit was set to 120 seconds.

Although these problems were hard for the default branch-and-bound search of

the constraint-based scheduler, even the simplest algorithm, DD could find optimal

solutions for all but one member of problem set 1. Reducing the search space to

progressive solutions further improved on the results, but the systems exploiting

freely completable partial solutions were the definite winners, thanks to an extremely

low number of search nodes. In many cases, including those where the first solution

proved to be optimal, these two systems could solve the problems without any search.

The results are presented in Table 3.2, with separate rows for instances which could

be solved to optimality (+) and those which could not (–). Search time and search

Method Number of Avg. search Avg. search Avg. Error
instances nodes time (sec) (%)

DD (+) 29 282.5 2.00 -
DD (–) 1 59073.0 120.00 12.0

DD+PS (+) 30 272.1 1.67 -

DD+FC (+) 30 8.0 0.83 -

DD+PS+FC (+) 30 6.6 0.73 -

Table 3.2: Results on problem set 1.

74 3.2 Consistency Preserving Transformations for the Exploitation of Problem Structure

nodes both include finding the solutions and proving optimality. Error is measured

by the difference of the best known upper and lower bounds, in the percentage of the

lower bound.

Although problem set 2 contained significantly larger problems, 14 of them were

solvable by the standard methods of DD, as presented in Table 3.3.1. Just like on

problem set 1, identifying the freely completable partial solutions of the problems

remarkably reduced the size of the search tree. This way, the complete system could

solve 4 further problem instances that remained unsolvable for DD. We emphasize

that even among these large problems, there were some which could be solved by

pure inference, without any search.

At the same time, still poor results on unsolved instances show that while these

algorithms could extend the applicability of constraint-based scheduling techniques,

they by themselves cannot provide the desired scalability for these systems. Scala-

bility, indeed, could be achieved by more sophisticated search techniques, e.g., local

search algorithms. However, our experiments carried out with such methods, namely

two similar tabu search based RCPSP solvers proposed in [5] (without any constraint

propagation) show that the size of these problem instances can be challenging even

for local search techniques: both versions had to quit search because they ran out of

memory on every member of problem set 2.

Results on Benchmark Instances

The systems were also tested on Lawrence’s job-shop benchmark problems la01-

la10 [12]. Since progressive pairs are not present in these instances, and they basically

lack the loosely connected structure of industrial problems, too, we did not expect

the complete system to significantly improve on the performance of the commercial

constraint-based scheduler. In fact, it turned out that smaller freely completable par-

tial solutions also exist in these benchmark instances, and our algorithms managed to

decrease the size of the search tree by an order of magnitude, but this reduction did

not always return the time invested in the construction of freely completable partial

schedules. We note that for the instance la08, the number of search nodes is higher

when using the freely completable partial solutions because the two systems depart

from different initial solutions. The results are presented in Table 3.4.

1An extended set of problem instances is available online at
http://www.mit.bme.hu/~akovacs/projects/fcps/instances.html.

Consistency Preserving Transformations in Constraint-based Scheduling 75

Tasks DD DD+PS DD+FC DD+PS+FC
N

o
d
es

T
im

e
(s

ec
)

E
rr

o
r

(%
)

N
o
d
es

T
im

e
(s

ec
)

E
rr

o
r

(%
)

N
o
d
es

T
im

e
(s

ec
)

E
rr

o
r

(%
)

N
o
d
es

T
im

e
(s

ec
)

E
rr

o
r

(%
)

#1 836 836 14 - 836 11 - 0 8 - 0 0 -
#2 1027 1027 21 - 2054 22 - 0 11 - 0 1 -
#3 1138 2280 27 - 2276 27 - 13 11 - 0 10 -
#4 944 18650 120 7.1 12547 120 4.2 30 14 - 9 8 -
#5 1328 10294 120 11.0 9779 120 4.2 382 120 2.0 9 13 -

#6 639 24991 120 12.2 13785 65 - 2083 120 0.8 8 5 -
#7 1141 12334 120 8.9 2283 32 - 730 120 4.2 137 30 -
#8 994 1988 21 - 1988 22 - 0 7 - 0 8 -
#9 1932 3864 101 - 3857 110 - 0 22 - 0 24 -
#10 1876 3745 99 - 3745 106 - 18 28 - 81 55 -

#11 2021 2021 76 - 2021 82 - 0 30 - 0 33 -
#12 1637 1637 46 - 1637 50 - 0 20 - 0 23 -
#13 1771 1771 53 - 1771 59 - 0 24 - 0 24 -
#14 1337 4004 45 - 1337 27 - 794 112 - 212 32 -
#15 1592 3175 52 - 3184 55 - 525 106 - 0 16 -

#16 1098 1098 32 - 1098 40 - 0 18 - 73 29 -
#17 953 953 22 - 953 28 - 0 14 - 6 13 -
#18 819 819 17 - 811 22 - 0 11 - 0 13 -
#19 1218 12630 120 17.1 4390 120 6.4 878 120 14.4 828 120 7.0
#20 1165 7559 120 10.9 4370 120 6.4 977 120 14.4 890 120 7.0

Table 3.3: Results on problem set 2.

Size DD DD+FC

N
o
d
es

T
im

e
(s

ec
)

E
rr

o
r

(%
)

N
o
d
es

T
im

e
(s

ec
)

E
rr

o
r

(%
)

la01 10x5 92 2 - 10 0 -
la02 10x5 9489 11 - 1196 6 -
la03 10x5 149 0 - 10 0 -
la04 10x5 11390 11 - 234 1 -
la05 10x5 50 0 - 22 0 -
la06 15x5 75 0 - 2 0 -
la07 15x5 154 0 - 59 0 -
la08 15x5 144 0 - 278 2 -
la09 15x5 75 0 - 8 0 -
la10 15x5 27568 120 24.1 0 0 -

Table 3.4: Results on Lawrence’s benchmarks.

76 3.3 Conclusions

3.3 Conclusions

In this chapter we suggested general notions and specialized algorithms to boost

the performance of current solvers on constraint satisfaction problems that have an

internal structure. We found the means for the exploitation of this structure in

equivalence preserving transformations.

The introduced concepts were put into practice in the field of resource-constrained

project scheduling. Specifically, we suggested a method to restrict the search space

to progressive solutions by adding inferred precedence constraints to the model, when

there are many similar task sets to be executed within the scheduling horizon. We also

presented a procedure that addresses problems that have easy-to-solve and loosely

connected sub-problems in their internal structure. We argued that solutions of

such components should be discovered and separated as freely completable partial

solutions by a consistency preserving transformation.

The algorithms were validated on large-size practical scheduling problems, where

they showed that even in a problem containing a huge number of variables, often

only a few search decisions really matter. Such problems are hard to solve for pure

propagation-based solvers because many search decisions produce equivalent choices.

However, by constructing freely completable partial solutions we were able to avoid

growing the search tree by branchings on irrelevant search decisions, and thus schedul-

ing problems of large size became tractable. At the same time, the experiments also

demonstrated that strong inference methods cannot completely substitute sophisti-

cated search techniques, and the latter are inevitable for constraint solvers to scale

up to large practical problems as well.

Finally, we note that making the generic framework of freely completable partial

solutions operational in other application areas of constraint programming is possible,

and only requires the creation of heuristic algorithms that build freely completable

partial solutions for the given problem class.

Chapter 4

A Pilot Production Planner and
Scheduler System

The last chapter of the thesis focuses on the practical applicability of our theoretical

results described in the foregoing. It presents how the aggregate planner and the

constraint-based scheduler can be adjusted to the needs of real-life industries and fit

together into an integrated production planner and scheduler system.

Although our system in general addresses make-to-order project-oriented manu-

facturing systems, the problems were specified and the applied models were worked

out with the cooperation of one specific industrial partner. Real-life test problem

instances also originate from this company, a Hungarian plant of a multinational

enterprise that manufactures complex mechanical products for the energy industry.

Beyond basic research, the scope of this project also covered the demonstration

of the industrial applicability of the theoretical results through a software proto-

type. The developed integrated production planner and scheduler system was named

Proterv-II (Projekt tervező – project planner, in Hungarian). Since it is a pilot

system for experimental and demonstration purposes, it lacks many functionalities

substantial for industrial software, e.g., advanced reporting, hand-tailoring and trou-

bleshooting options. Nevertheless, it operated on the data directly received from the

company’s enterprise information system, and its algorithms were successfully tested

on these real-life problem instances. At the time of writing this thesis, our industrial

partner shows interest towards the system, but it is still an open issue whether an

extended version of Proterv-II will find application at that factory.

This chapter is organized as follows. In Sect. 4.1, we outline the current produc-

tion environment at the targeted field of our application. Afterwards, in Sect. 4.2 we

define the goals of the production planner and scheduler system. Then, in Sect. 4.3

77

78 4.1 Production Environment at the Target Enterprise

we briefly overview the tools we used for the development of Proterv-II, as well as

the components of the factory’s information systems that we could rely on as data

sources. Afterwards, we discuss in detail the models and algorithms applied in the

production planner (Sect. 4.4) and the production scheduler (Sect. 4.5) sub-systems.

Finally, in Sect. 4.6, we investigate how the results of our mathematical models can

bear up under the uncertainties and data inaccuracy or unavailability of a realistic

production environment.

4.1 Production Environment at the Target Enterprise

The target enterprise manufactures mechanical products of high value for the energy

industry. Its entire production addresses the fulfillment of customer orders, i.e., the

factory is a typical make-to-order production environment. An order always refers

to a single product, which belongs to one of the four product families. Each family

contains product variants with the same structure but different parameters. Although

products from different families significantly differ in their production technology, the

problem cannot be decomposed, because the sets of resources used for producing them

are not disjoint. At present, the overall number of different products is ca. 40, but

this number may grow in the future.

Figure 4.1: A product of the enterprise.

The master production schedule specifies a time window , i.e., a release date (earli-

est start time) and a deadline (latest finishing time) for fulfilling each accepted order

on the medium-term horizon. The length of this horizon ranges from three to six

months, and the time unit is one week. Since raw material arrival is sometimes er-

ratic, the enterprise endeavors to acquire all the raw material of a product before the

release date of the project. On the other hand, deadline observance is an absolute

must, even for unpredicted orders.

Each product is made in bundles called sets. The size of the set is fixed for each

A Pilot Production Planner and Scheduler System 79

product since the complete set will be built into the same larger unit. Members of

a set are indistinguishable, and the production of a set is not divisible by forming

smaller groups.

As usual, the assembly structure of a product is given by its bill of materials

(BOM). The BOM is tree-structured. It is rooted at the end product, while its

leaves stand for the raw materials that are purchased from outside of the factory.

Raw materials and intermediate products are all dedicated to specific projects, even

if some of them may be technically equivalent. Consequently, there is no need to

perform material planning.

To each intermediate product in the BOM tree, there is a sometimes lengthy

sequence of operations assigned. This operation sequence is specified in the routings.

A typical project consists of 20 to 500 discrete manufacturing operations altogether,

with operation processing times in the range of 0.5 to a maximum of 120 hours.

Subsequent operations cannot overlap in time, i.e., work must be finished on every

member of the set before it can proceed to the machine where the next operation

takes place. Most operations are non-preemptive but breakable, i.e., the workpieces

cannot be unmounted from and re-mounted to the machines but after completing

an operation. On the other hand, the on-going operations can be interrupted, e.g.,

during the weekends, and continued later on without any extra cost. However, some

operations, such as heat treatment, must not be broken due to technological reasons.

Some of the operations are preceded by a fixed-duration setup and transportation.

Each operation employs a single machine for a given length of time. During this

time, no other operation can be executed on the same machine tool. Amongst these

machines, there are machining and welding centers, assembly and inspection stations,

and other highly specialized machines as well. Machines with identical capabilities

are organized into homogeneous machine groups. Currently, there are ca. 80 unique

machines and 10 more homogeneous groups of machines with a capacity of between

2 and 8. However, the number of machines is growing as the facility is extended

continuously.

Operations also need the attendance of a worker from a given group. Currently,

each of the ca. 200 individual workers belongs to one of the 10 different worker groups,

like welders, NC machinists, or inspectors. We consider workers within the same

group to be of identical skills. When a sensitive (e.g., welding) operation requires

proficient workforce, the problem of selecting of the appropriate individual from the

worker group is left to the shop foreman.

80 4.2 Problem Statement

Both machine and worker capacities are time varying but fixed for the periods of

the planning horizon in resource calendars. Machine availability is also influenced by

maintenance. Periods of planned maintenance are given, and there is no need to do

maintenance planning. When these so-called normal capacities do not suffice, it is

possible to extend them by overtime or by renting workforce. These extra capacities

are available for extra cost.

Tools, fixtures, storage and transportation means do not cause bottlenecks, hence,

it is unnecessary to model them as finite capacity resources. In-process buffers are

also unlimited. At the same time, some operations can only be executed on external

resources, by subcontractors. These are the so-called outsource processes (OSP).

The factory is equipped with an enterprise resource planning (ERP) system that

stores all order, technology, and resource related data, as well as a manufacturing

execution system (MES) that collects on-line information about job shop status.

4.2 Problem Statement

Our goal within the project was to bridge the gap between the ERP and the MES

systems of the factory. This required the development of an integrated production

planner and scheduler (PPS) system with the following components.

• A medium-term planner whose challenge is the timing of production activities

over a 3-6 months long time horizon.

• A short-term scheduler that is responsible for producing detailed, executable

schedules that achieve the goals set by the production plans.

• A simulator whose role in the overall framework is to validate schedules and

test their sensitivity towards uncertainties that are not included in the planning

and scheduling models.

The medium-term planner should determine a temporal assignment of produc-

tion activities so that project deadlines and raw material arrivals are observed. At

the same time, it should respect the capacity constraints of the factory. When the

involvement of extra capacities – overtime, subcontracting, etc. – is inevitable, it

should minimize the cost of extra capacity usage. The plan should also keep the

work-in-process (WIP) as low as possible. The planner will be run once a week to

A Pilot Production Planner and Scheduler System 81

prepare and update production plans for the next quarter or half of a year, with a

rolling horizon.

The ultimate goal of the short-term scheduler is to unfold the medium-term plans

into executable detailed schedules. The scheduler has to determine the order of the

operations and the resource allocations with respect to all technological, temporal

and capacity constraints. The optimization objective of the scheduler is to minimize

tardiness with respect to the due dates set by the medium-term plan. Schedules

will be prepared at the beginning of each week, but can be revised any time, when

unexpected events occur.

Simulation captures such relevant aspects of the PPS problem that cannot be

represented in the deterministic models of the planner and the scheduler. It validates

the detailed schedules in the face of various uncertainties present at the shop floor.

Moreover, the simulator took the role of the factory during the development period

of the planner and scheduler system.

The planner, the scheduler and the simulator have to use the same master data

readily available in the de facto standard production information systems of the

factory. Furthermore, the solution methods applied at all levels have to be efficient

enough to find close-to-optimal solutions quickly, supporting interactive decision mak-

ing.

Production Planner

Production Scheduler

ERP SystemAggregation

Simulation

Production
Activity
Control

Manufacturing
Execution
System

Aggregate Project
Models

Production
Plan

Detailed
Schedules

PPS System

Evaluations

Evaluations

Routings

Resource Calendars

BOMs

Material
Requirement

Plan

Status
Report

Master Production Schedule

Capacity
Plan

PRODUCTION

Figure 4.2: Architecture of the PPS system.

82 4.3 System Overview

4.3 System Overview

The above requirements called for a hierarchical planner and scheduler architecture

[60, 65], as shown in Fig. 4.2. The system was realized using Microsoft .NET compo-

nent technology. The business logic components (the planner, the scheduler, and the

aggregator) were encoded in C++. The planner and the scheduler were built on the

top of a professional mathematical program solver [51] and a constraint solver [52]

software, respectively. The simulation model was implemented by using an object-

oriented discrete event simulation tool [86]. Proterv-II has a graphical user interface

that facilitates its use as a decision support system at both levels. The user interface

was encoded in Visual Basic.

The system stores all input, output and intermediate data in a Microsoft Access

relational database. Fig. 4.3 gives a view of the tables in the database and their rela-

tions. Proterv-II communicates with the factory’s database system via file interface.

The sources of the input data are the following.

• BOMs, routings, the master production schedule and the resource calendars

are available from the factory’s enterprise resource planning (ERP) system.

• The maintenance management system (MMS) provides the actual machine

availabilities with regard to planned maintenance.

• Shift-by-shift worker calendars can be obtained from a so-called time and at-

tendance system (T&A).

• The factory’s manufacturing execution system (MES) supplies our scheduler

with on-line information about job shop status.

4.4 The Production Planner Sub-system

The challenge of the medium-term production planner sub-system is the timing of the

production activities over a typically 3-6 months long time horizon with a time unit

of one week. The generated plans must comply with the project deadlines and raw

material arrivals, and respect the capacity constraints of the machines and workers

of the factory. At the same time, they should keep production cost as low as possible

by minimizing extra capacity usage and work-in-process. All in all, the production

planner produces the following outputs.

A Pilot Production Planner and Scheduler System 83

Figure 4.3: Tables in the database and their relations.

84 4.4 The Production Planner Sub-system

• A medium-term production plan that assigns operations to weeks of the plan-

ning horizon.

• A medium-term capacity plan that specifies the resource requirements of each

week within the planning horizon.

• Suggested outgoing and incoming dates of OSP operations.

Furthermore, the medium-term plan can also serve as a material requirement plan

that specifies the weekly requirements for raw materials and components. Clearly,

this is practicable only for raw materials whose order period is calculable.

Due to the variance of products and the fluctuation of production load, all the

above aims cannot be achieved by traditional material requirements planning (MRP)

logic. Moreover, the planner must cope with a hard combinatorial optimization

problem that cannot be solved for each individual manufacturing operation, because

of the sheer size of the problem. Hence, we applied the aggregate production planning

approach introduced in Chapter 2. In the production planning problem, we regard

each customer order as one project. Aggregate models of projects are formed from

the BOMs and routings by using the methods proposed in Sect. 2.3 and the bi-

criteria tree partitioning algorithm described in Sect. 2.4.5. During the creation of

the aggregate models, the throughput time of the activities is estimated by using the

LFT heuristic (see Sect. 2.5.1). The result of the aggregation procedure is an in-tree

of activities that are linked by end-to-start precedence relations. For example, from

the routings displayed in Fig. 4.4 the system prepares the aggregate model with 5

activities presented in Fig. 4.5.1

Then, the production plan is prepared for the activities which must be performed

within the planning horizon, based on their distance from the root activity in the

project’s aggregate model and the project’s deadline. All the activities of a project

have to fit into the project’s time window set by the forecasted raw material arrival

and the deadline.

We consider both machines and workers to be finite capacity resources. Activities

may require different amounts of an arbitrary number of these resources for their

processing. Normal weekly capacities of the resources can be computed from the

resource calendars, by applying a security factor to the total working hours of the

given resource. The security factor is indispensable because effective utilization of

1All data in the figures are distorted for reasons of confidentiality.

A Pilot Production Planner and Scheduler System 85

Figure 4.4: Routing of a product. Excerpt from the MS Access database.

304

308 307

306 305

Figure 4.5: An aggregate project model. Excerpt from the MS Access database.

resources never reaches 100% in practice. By default, we set this factor to 0.8 for the

upcoming weeks and 0.7 for distant weeks in order to allow for unforseen projects

as well. Extra capacities are also limited, they extend the normal capacities to the

86 4.4 The Production Planner Sub-system

theoretical total working hours of the resource. However, there is a possibility to plan

for infinite extra capacities as well.

In the aggregate project models, OSP operations take place in separate activities.

It is assumed that the outgoing and incoming dates of the OSP operations fall on

borders of the one-week time units. There are two ways to handle these dates. Those

which are already negotiated and fixed in the input of the planner, post temporal

constraints on the predecessors or successors of the corresponding OSP operations.

Hence, the generated plan will always comply with the negotiated OSP dates. For

other OSP operations, the dates specified in the plan can be regarded as a suggestion.

When solving the planning problem, our primary objective is to minimize extra

capacity usage. In this way, the planner attempts to keep the works allotted for a

medium-term horizon within the factory. There is also a secondary objective: in

order to minimize inventory costs, the WIP level should be minimal.

The planning problem is translated into a mixed-integer linear program, and

solved by the branch-and-cut algorithm described in Sect. 2.3. The proposed algo-

rithm is any-time: it generates a series of solutions with better and better objective

values, thus a first feasible solution is generated quickly, and then it can be refined

to converge towards the optimum. The first phase of the solution process, i.e., find-

ing a plan with minimum extra capacity usage generally takes a few seconds only.

However, minimizing WIP subject to this capacity constraint requires a significantly

higher effort. Finding a sufficiently good solution took between 5 and 60 minutes. At

the same time, reaching the theoretically optimal WIP level was not always possible

within a reasonable amount of time. Table 4.1 shows the typical size of the problems

we tackled.

Fig. 4.6 presents a fragment of a production plan prepared by our PPS system.

It is filtered for one of the product families. In this chart, the red and blue vertical

lines delimit the planning horizon, and each row stands for one project. White bars

show the allowed time windows of the projects, while green stripes indicate weeks

when one or more activities of the given projects have to be performed. A low WIP

level corresponds to relatively short green stripes shifted to the right hand side of the

white time windows. This particular production plan reflects an overloaded factory

where resource shortage causes temporary breaks in several projects.

Fig. 4.7 shows a capacity plan for the NC milling machinist worker group, for the

same period of time. The height of the green columns in the figure indicates the total

amount of work of the resource in the given weeks. The yellow and orange areas in

A Pilot Production Planner and Scheduler System 87

Planning horizon 15–30 weeks

Time unit 1 week

Running projects 600–1200

Operations per projects 20–500

Activities per projects 1–10

Resources, total ca. 100

Individual machines ca. 80

Machine groups ca. 10

Worker groups ca. 10

Solution time

Minimal extra capacities 2–15 sec.

Minimal extra capacities, minimal WIP ≥ 5 min.

Table 4.1: Typical size of a medium-term planning problem.

Figure 4.6: Project view of the production plan.

88 4.5 The Production Scheduler Sub-system

Figure 4.7: Resource view of the production plan.

the background show the limits of the normal and the extra capacities, respectively.

Three capacity limits are lower than others because national holidays fall into the

corresponding weeks. This capacity plan shows a contiguously overloaded group of

workers: the normal capacities are completely exploited and in several weeks the use

of overtime is also required.

The medium-term plan can be edited by the modification of the model’s input

parameters through the same user interface. The time windows of the projects can

be adjusted by dragging the corresponding white bar in the production plan chart,

and weekly resource capacities can be altered by using a similar technique, too. The

check box which facilitates the usage of infinite extra capacities proved to be greatly

helpful as well. It made possible the solution of some heavily overloaded test instances

where the capacity requirements of projects could not be satisfied even by the extra

capacities as described above.

4.5 The Production Scheduler Sub-system

In the integrated PPS framework, the responsibility of the scheduler is to achieve the

goals set by the planner by unfolding its aggregate plans into realizable operation

sequences. It has to determine the order of the operations on resources with respect

to all technological, temporal and capacity constraints. Hence, the scheduler works

with medium-term production plans, detailed resource calendars, as well as BOMs

and routings (see also Fig. 4.2). In return, it generates detailed predictive production

schedules that, besides satisfying the constraints, approach optimality with respect

to the actual optimization criteria. The scheduling horizon is one week – i.e., equals

A Pilot Production Planner and Scheduler System 89

Scheduling horizon 1 week

Time unit 0.1 hour

Running projects 30–80

Operations per projects 20–200

Processing time of operations 0.5–120 hours

Resources, total ca. 100

Machines (unary) ca. 80

Machines (cumulative) ca. 10

Workers (cumulative) ca. 10

Solution time ≥ 5 sec.

Table 4.2: Typical size of a short-term scheduling problem.

the time unit of the planner–, while the time unit of the scheduler is 0.1 hour.

Typically, schedules are generated for the next few weeks only. The work to be

scheduled for a specific week is received by disaggregating the activities which fall

into the given week in the medium-term plan. If the execution of an activity covers

several weeks then its operations are distributed among the weeks proportional to

the activity’s intensities.

Each operation has its processing time, and an optional transportation and setup

time. We assume that transportation and setup are performed before the operation,

but while the former needs the workpiece only, setup employs solely the resources of

the operation. Furthermore, operations may require several finite-capacity resources

during their execution. The capacity of the resources can vary shift-by-shift. The

typical size of our detailed production scheduling problems is presented in Table 4.2.

To be able to model all the above facets of the scheduling problem and solve

it close-to-optimally, we took the constraint-based approach. An overview of the

available methods for representing and solving scheduling problems by constraints

has been given in Sect. 3.1. Below, we describe how we applied these techniques to

solving practical scheduling problems in Proterv-II.

Although operations typically require one machine (e.g., a turning center) and

one worker (a turning machinist) in the particular application, our model allows the

operations to employ an arbitrary number of resources. Some longer operations do

not occupy all the required resources – typically, the worker – during the whole length

of their execution. In such cases we assume that all the resources start working at

90 4.5 The Production Scheduler Sub-system

the same time, but might finish individually, after the passing of a resource specific

execution time. Hence, to an operation with n different execution times on different

resources, n tasks correspond in the constraint-based representation. Each of the

fixed duration tasks require the resources on which the execution of the operation

equals the duration of the tasks. The start times of the tasks are bound together by

an equality constraint, and the precedence constraints referring to the operation are

posted on the longest task.

Transportation times can be modelled by delays attached to the precedence con-

straints between the corresponding operations. These generalized precedence con-

straints are propagated by the standard arc-B-consistency algorithm. There is a

limited opportunity to represent setup times as well. From the scheduling aspect, we

regard setup as the preliminary part of an operation which does not require the pres-

ence of the workpiece, but occupies one or more resources. Hence, the workpiece can

undergo other manufacturing operations or transportation while the given machine

is already busy with the adjustment to the forthcoming operation.2

Some of the resources, e.g., most of the machine tools are unique and able to pro-

cess one operation at a time. These are modelled by unary resources. Homogeneous

machine groups and worker groups are represented by cumulative resources. Their ca-

pacity varies shift-by-shift. In Proterv-II, both types of resource capacity constraints

are propagated by the widely used edge-finding algorithm (see. Sect. 3.1.2).

As it has been stated, the objective of the scheduler is to achieve the goals set by

the planner. Minimizing greatest delay w.r.t. the common due date of the weekly

workload is equivalent to minimizing the makespan of the schedule – provided that

there is a positive delay. Decreasing the makespan further is favorable even when

there is no positive delay, because – roughly speaking – it increases the parallelism

between the projects and improves the resistance of the schedule against disturbances.

All in all, we applied makespan as the optimization criterion at the scheduling level.

For the solution of the resulting constraint program, we applied a branch-and-

2The applied search strategy with a setting times branching scheme (see Sect. 3.1.3) is complete
and efficient only if

∀t1, t2 ∈ T : (t1 → t2) ⇒ st1 ≤ st2 + dt2 + ut1,t2

holds, where st denotes the setup time associated with task t and ut1,t2 stands for the time of
transportation between t1 and t2. This condition ensures that the chronological search strategy
will consider each task only after its predecessors’ start times have been bound. Consequently, we
truncate longer setup times to meet this criterion. In fact, more sophisticated methods exist in
the scheduling literature to handle setups [1], but those are computationally more complex and the
enterprise of our application could not provide them with the required detailed data.

A Pilot Production Planner and Scheduler System 91

bound search using a setting times branching strategy (see Sect. 3.1.3). This solution

method is – like that of the medium-term planner – any-time, which enables our

scheduler to be used interactively. Since the novel algorithms proposed in Sect. 3.2

were elaborated after the development of Proterv-II, they do not constitute an inte-

grated part of this scheduler.

Proterv-II allows the user to prepare detailed schedules for selected weeks of the

medium-term horizon. It presents the generated schedules in project- and resource-

oriented Gantt charts. The charts can be filtered for individual projects or resources,

and displayed with daily, shift-by-shift or hourly granularity. The project view of

the Gantt chart shows the operations of the activities distributed in the week, as

presented in Fig. 4.8. Green rectangles stand for the operations, while the black

arrows connecting them represent precedence constraints. Each row of the figure

corresponds to the production of one component within a project. The resource

view of the Gantt chart shows the order of operations to be executed by a particular

resource. Fig. 4.9 presents the Gantt chart of the fitter worker group. The current

implementation of Proterv-II does not provide any functionality to edit the short-

term schedules manually.

Figure 4.8: Project view of a detailed schedule.

92 4.6 Verification of the Results by Simulation

Figure 4.9: Resource view of a detailed schedule.

4.6 Verification of the Results by Simulation

The planning and scheduling models considered so far in this thesis were determin-

istic, and disregarded all types of uncertainty. However, the real-life production

environment in which the plans and schedules are to be executed is inevitably per-

turbed by various types of unexpected events. Sources of uncertainty in this factory

include the following.

• Downtimes, i.e., machine failures and unexpected absence of workforce.

• Processing, setup and transportation times that depend on the proficiency of

the worker or on other random factors.

• Adjustment operations that may have to be inserted into the schedules depend-

ing on the results of quality checks.

• Erratic raw material arrival.

Hence, the ability to evaluate the behavior of the plans and schedules in the face of

uncertainties is of key importance. To that end, our colleagues applied discrete event

simulation. The interface of the simulator can be seen in Fig. 4.10. Authors of [55]

analyzed situations where processing times could vary between the 90 and 130 percent

of the planned value, machines and workers were unavailable at the 10 or 20 percent

of their planned working hours, and the efficiency of new employees was decreased

by 5 to 25 percents. During the simulation runs, the start times of operations in the

A Pilot Production Planner and Scheduler System 93

detailed schedules were relaxed and only the order of the operations on each resource

was kept. Delay caused by the disorders w.r.t. the medium-term plan was measured

in the number of late tasks and the average and maximum tardiness.

The simulation experiments have shown that in most cases the medium-term plans

are robust enough to remain feasible despite the unexpected events. Operations which

could not be executed at the proper week were admitted by the schedule of the next

week, mostly without violating any customer deadlines. Using the same simulation

model, the authors could perform a sensitivity analysis, too. For example, they

pointed out the worker groups in which unexpected absence or decreased efficiency

can cause considerable lateness. A more detailed description of the simulation study

is out of the scope of this thesis. In this topic, readers should refer to [55].

Figure 4.10: The interface of the simulator [55].

94 4.6 Verification of the Results by Simulation

Chapter 5

Conclusions

In this thesis, we investigated production planning and scheduling in make-to-order

production systems. We argued that these problems need clear-cut models that

capture the relevant aspects of production, and efficient algorithms to find their

close-to-optimal solutions in a reasonable time.

For medium-term production planning, this required us to define a novel formu-

lation of the aggregate production planning problem. We proposed fast, polynomial-

time tree partitioning algorithms for constructing the best suited problem represen-

tation from detailed technology, order, and capacity related data. To our knowledge,

this approach is the first to seek the feasibility of the production plan by linking the

production planning model to the detailed scheduling representation. This link is

of crucial practical significance, since it makes possible the automated construction

of the production planning problem from data readily available in de facto standard

enterprise information systems, without the involvement of human experts. Exper-

iments performed on industrial test problems confirmed that our approach – with

appropriate extensions – can capture the relevant aspects of production planning,

and leads to production plans that can be unfolded into executable detailed sched-

ules.

For detailed scheduling, we defined two novel consistency preserving transfor-

mations for the solution of constraint-based scheduling problems. We argued that

extending current constraint solvers by such transformations can boost their per-

formance on typical, structured problem instances originating from the industry.

Specifically, progressive schedules exploited the presence of many similar projects in

the factory. This transformation is profitable in any computational paradigm where

a search space reduction can be converted into computational efficiency. In contrast,

95

96

freely completable partial solutions reveal components of a problem which are rela-

tively easy to solve and are only loosely connected to the remainder of the problem.

They help eliminate the irrelevant decisions from the search tree. In our experiments,

this resulted in a two orders of magnitude decrease of the search tree size. These re-

sults have shown that practical problem instances often contain a hidden structure

that, if exploited by appropriate means, can provide the clue to the efficient solution

of even the most complex combinatorial optimization problems.

Beyond presenting our theoretical results, we reported on the development of

Proterv-II, a pilot integrated production planner and scheduler software. This sys-

tem served as the test bed of the models and algorithms proposed in this thesis, in

experiments run on real-life planning and scheduling problems. We believe that the

achieved results enable an extended version of Proterv-II to proceed towards a true

industrial application.

97

Acknowledgements1

Although there is only a single name displayed on the front page as the author of this

thesis, its content is the fruit of a four years teamwork with my advisors, colleagues

– and also friends. Most contained ideas emerged during our abundant discussions,

and even the current presentation passed the hands of many people. Below, I would

like to thank the ones who helped the most.

At the first place, I am indebted to my advisors, Dr. József Váncza and Dr.

Tadeusz Dobrowiecki. I learnt a lot from them during the years spent together, and

not only about scheduling or artificial intelligence. I benefited much from proficiency

of Dr. Tamás Kis during our numerous conversations. I am grateful to Péter Egri

for taking a great part in the implementation of the Proterv-II system. And I also

owe one to Dr. Gábor Erdős, who helped me finish this work in several unorthodox

ways, e.g., by asking me three times a day whether my thesis is complete. I thank

Zoltán Mihályi, Attila Szántai, and János Gyapalyi from GE Hungary for providing

the industrial background of our research and supplying us with data that enabled

the validation of our results. I thank Dr. Sigrid Knust for sharing with us their tabu

search based RCPSP solver.

I enjoyed working together with the members of the Laboratory of Engineering

and Management Intelligence, headed by Prof. László Monostori. I also took pleasure

in my teaching practice spent at the Department of Measurement and Information

Systems, lead by Prof. Gábor Péceli. And finally, the inspiration that I was provided

by Prof. András Márkus is unforgettable, even if I was not provided to have his

control on the final outcome of my PhD studies.

1This work has been supported by NRDP grants No. 2/040/2001 and 2/010/2004, OTKA grant
No. T046509, and the VRL-KCiP NMP2-CT-2004-507487 and DECOS EU FP 6 projects.

98

List of Abbreviations

BOM Bill Of materials

DAG Directed acyclic graph

ERP Enterprise resource planning

FCPS Freely completable partial solution

LFT Latest finish time / a priority rule that sorts tasks by their increasing lft

LFTrand Randomized version of the LFT rule

LP Linear programming

MES Manufacturing execution system

MILP Mixed-integer linear programming

MMS Maintenance management system

MRP Material requirements planning

MRP II. Manufacturing resources planning

NC Numerical Control

OPL The Optimization Programming Language

OSP Outsource process

PPS Production planning and scheduling

RCPSP Resource-constrained project scheduling problem

RCPSVP Resource-constrained project scheduling problem with variable-intensity activities

SAT Boolean satisfiability problem

SBDD Symmetry Breaking via Dominance Detection

SBDS Symmetry Breaking During Search

T&A Time and attendance system

WIP Work-in-process

99

Notations

Aggregate Production Planning

Γ∗ Optimal detailed schedule

ΓΠ Detailed schedule, obtained by disaggregating the aggregate plan Π

Θ Length of the aggregate time unit

µA Activity security factor

µR Resource security factor

Π∗ Optimal aggregate plan

%A
r Amount of work required by activity A on resource r

τ Time unit

A Activity

A Overall set of activities

cr
τ Cost of extra capacity usage for each unit of resource r

d(A) Minimum throughput time of activity A

dt Duration of task t

endt End time of task t

estA Earliest start time of activity A

estP Earliest start time of project P

jA Maximal intensity of activity A

lftA Latest finish time of activity A

lftP Latest finish time of project P

P Project

P Overall set of projects

q(r) Capacity of resource r (detailed scheduling)

qr
τ Normal capacity of resource r at time τ (aggregate planning)

q̂r
τ Extra capacity of resource r at time τ (aggregate planning)

R Overall set of resources

r(t) Resource required by task t

startt Start time of task t

startP Start time of project P

t Task

T Overall set of tasks

100

TP Tasks of project P

WIP(Γ) Work-in-process value of the schedule Γ

wP Weight factor of project P

xA
τ Intensity of activity A at time τ

Constraint Programming, Constraint-based Scheduling

β Bijection between two pairs of tasks

Π Constraint program

τ Time unit

c Constraint

C Overall set of constraints in a constraint program

D Set of variable domains in a constraint program

Di Domain of variable xi

dt Duration of task t

Dmin(x) Minimum of the domain of variable x

Dmax(x) Maximum of the domain of variable x

eftt Earliest finish time of task t

endt End time of task t

endS
t End time of task t in schedule S

estt Earliest start time of task t

LB Lower bound

lftt Latest finish time of task t

lstt Latest start time of task t

M+
r,τ Set of tasks that are under execution at time τ on resource r

M−
r,τ Set of tasks that might be under execution at time τ on resource r

O Objective function

p Task

P Set of tasks

PS Partial solution

q Task

Q Set of tasks

r(t) Resource required by task t

101

S Solution of a constraint program (a schedule in case of scheduling problems)

st Setup time associated with task t

startt Start time of task t

startSt Start time of task t in schedule S

q(r) Capacity of resource r

T Overall set of tasks

T (r) Set of tasks processed on resource r

Tτ Set of tasks that can be processed at time τ (LFT heuristic)

TPS Set of tasks in partial solution PS

U Set of tasks

UB Upper bound

ut1,t2 Transportation time between tasks t1 and t2

vS
i Value of variable xi in solution S

X Overall set of variables in a constraint program

Xc Set of variables present in constraint c

xi Variable in a constraint program

XPS Set of variables in partial solution PS

Tree Partitioning

ϕ(v) Partitioning option of sub-tree T (v)

Φ(v) Set of partitioning options of sub-tree T (v)

Ψk,q Selection of partitioning options in the dynamic program

E Edge set of a tree

h Constant (denotes height)

h(P) Height of partitioning P

h(T) Height of tree T

hmin(T) Minimal height of the admissible partitionings of T

K Set of vertices

lPv
(u) Level of a vertex u with respect to a partitioning Pv

P Partitioning

Pv Partitioning of sub-tree T (v)

P ∗
v Optimal partitioning of sub-tree T (v)

102

PO(v) Set of Pareto optimal partitionings of T (v)

POh(v) Set of Pareto optimal partitionings of T (v) with height of at most h

q Constant (denotes cardinality)

q(P) Cardinality of partitioning P

qmin(T) Minimal cardinality of the admissible partitionings of T

Qv Partitioning of sub-tree T (v)

r Root

RC(P) Root component of partitioning P

rw(P) Root component weight of partitioning P

S(v) Set of the sons of vertex v

ST Sub-tree

T Tree

TP Tree obtained by contracting each sub-tree ST ∈ P into a vertex

T (v) Sub-tree rooted at vertex v

v Vertex

u Vertex

V Vertex set of a tree

V (ST) Vertex set of sub-tree ST

w Weight function

W Weight limit

Index

8-queens puzzle, 59

activity throughput time, 17–21, 36, 39

aggregation, 7–12, 15–22, 40

any-time, 86, 91

arc-B-consistency, 50, 51, 72, 90

backbone, 56

backdoor, 56

balance constraint propagator, 53

batch-type production, 10

benchmark problem, 74

bill of materials, 40, 79, 82, 84, 88

boolean satisfiability problem, 56

bottom-up framework, 25

Braess paradox, 37

branch-and-bound, 53–57, 65, 71, 91

branch-and-cut, 40, 86

branching strategy, 54, 55, 67, 91

breakable, 79

broken activity, 18, 19, 42

cardinality of a partitioning, 21, 23,

24–26, 29–35

closed set of tasks, 61

comb operator, 25, 27, 28, 30, 32–34

complete activity, 18

component weight function, 24

consistency preserving, 45, 49, 57, 58,

65

constraint optimization problem, 46, 64

constraint programming, 45–60, 76

constraint propagation, 50–53, 57

constraint satisfaction problem, 46, 64

constraint-based scheduling, 45–58, 61–

66, 77, 89

criticality index, 38

cumulative resource, 47, 53, 55, 73, 90

depth-first search, 54, 56, 71

dichotomic search, 54, 71

disaggregation, 8–12, 15, 18, 89

disjunctive propagator, 51

dominance rule, 59, 60

double dichotomic search, 71–74

dynamic program, 35

edge-finding propagator, 51, 52, 69, 72,

90

energetic reasoning, 53

energy precedence propagator, 53

engineering-to-order, 10

enterprise resource planning system, 80–

82

equivalence preserving, 49, 50–53, 57,

76

extra capacity, 13, 14, 42, 80, 85, 88

fail-first principle, 54

103

104 INDEX

feasibility of aggregation, 8–12, 15, 18–

22, 40–42

freely completable partial solution, 64–

70, 72, 73

Gantt chart, 48, 91

generator of a partitioning, 26, 29

hand-tailoring, 37

height of a partitioning, 20, 21, 23, 24–

29, 31–35

heuristic, 36, 39, 54, 65, 67–72, 76

homogeneous machine group, 90

incomplete dynamic backtracking, 56

industrial test problem, 40, 72, 77

input negation test, 51

input test, 51

input-or-output test, 51

interval consistency test, 51

invariant weight function, 25, 27–29,

31, 36

isomorphic sets of tasks, 61

job-shop scheduling, 48, 74

large neighborhood search, 55

LFT priority rule, 37, 55, 67–69, 84

limited discrepancy search, 54

linear program, 9

local search, 55, 56, 74

maintenance management system, 82

make-to-order, 7, 77, 78

makespan, 12, 14, 48, 90

manufacturing execution system, 80–

82

master production schedule, 78

material requirements planning, 3, 7,

84

maximum tardiness, 48

minimizing extra capacity usage, 13,

14, 40, 80, 82, 86

mixed-integer linear program, 9, 86

monotonous weight function, 24–28, 36

multi-criteria optimization, 57

national holiday, 39, 88

non-breakable, 79

non-preemptive, 79

normal capacity, 13, 14, 80, 84, 88

not-first, not-last test, 51

objective function, 46, 48

open-shop scheduling, 56

OPL, 48

optimality of aggregation, 9–12, 15, 18–

22, 40

output negation test, 51

output test, 51

outsource process, 80, 84, 86

Pareto optimization, 23, 31, 57

partial solution, 56, 64–69

precedence constraint, 13, 17, 20, 21,

47, 50, 66, 71, 90

problem structure, 56–59, 76

product family, 10, 58, 72, 78, 86

production planner and scheduler, 77,

80, 82

production planning, 7–21, 37–43, 77,

80–88

production scheduling, 12, 13, 77, 80,

81, 88–91

INDEX 105

profile-based metric, 55

progressive constraint, 62

progressive pair, 61, 62

progressive solution, 61–63, 73

project throughput time, 20, 38

project tree, 16, 21

Proterv-II, 77, 82–91

random perturbation, 68

raw material arrival, 13, 39, 78, 92

reservoir, 39, 47, 53

resource constraint, 19, 47, 50–53, 66,

72, 90

resource ranking, 54

resource-constrained project scheduling,

12–14, 46, 60, 76

resource-feasibility, 22

rolling horizon, 81

root component weight, 24, 32

routings, 40, 79, 82, 84, 88

rush order, 38

SAT, 56

security factor, 17, 19–21, 38, 40, 84

setting times, 55, 71, 91

setup time, 39, 40, 79, 90

shaving, 53

shifting algorithm, 23

simulation, 81, 92, 93

state resource, 47, 53

symmetry breaking, 59

Symmetry Breaking During Search, 59

Symmetry Breaking via Dominance De-

tection, 59

Symmetry Excluding Search, 59

symmetry groups, 60

tabu search, 74

task pair ordering, 54

temporal constraint, 47, 50

texture-based heuristic, 55

time and attendance system, 82

time window, 13, 21, 47, 78, 84, 86

time-feasibility, 21

time-tabling propagator, 51, 69

transportation time, 39, 79, 90

tree partitioning, 16, 21, 23–35

unary resource, 47, 51–54, 73, 90

uncertainty, 92

work-in-process, 12, 13, 15, 20–22, 40,

80, 82, 86

worker group, 90, 91

106 INDEX

Bibliography

[1] A. Allahverdi, J. Gupta, and T. Aldowaisan. A review of scheduling research

involving setup considerations. Omega, 27(2):219–239, 1999.

[2] K.R. Apt. Principles of Constraint Programming. Cambridge University Press,

2003.

[3] S. Axsäter. On the feasibility of aggregate production plans. Operations Re-

search, 34(5):796–800, 1986.

[4] H. Aytug, K. Kempf, and R. Uzsoy. Measures of subproblem criticality in de-

composition algorithms for shop scheduling. International Journal of Production

Research, 41(5):865–882, 2003.

[5] T. Baar, P. Brucker, and S. Knust. Tabu-search algorithms and lower bounds

for the resource-constrained project scheduling problem. In S. Voss, S. Martello,

I. Osman, and C. Roucairol, editors, Meta-heuristics: Advances and Trends in

Local Search Paradigms for Optimization, pages 1–18. Kluwer, 1998.

[6] R. Backofen and S. Will. Excluding symmetries in constraint-based search.

Constraints, 7(3):333–349, 2002.

[7] Ph. Baptiste and C. Le Pape. Constraint propagation and decomposition tech-

niques for highly disjunctive and highly cumulative project scheduling problems.

Constraints, 5(1/2):119–139, 2000.

[8] Ph. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based optimization and

approximation for job-shop scheduling. In Proc. of AAAI-SIGMAN Workshop

on Intelligent Manufacturing Systems (IJCAI-95), pages 5–16, 1995.

[9] Ph. Baptiste, C. Le Pape, and W. Nuijten. Satisfiability tests and time-bound

adjustments for cumulative scheduling problems. Annals of Operations Research,

92:305–333, 1999.

107

108 BIBLIOGRAPHY

[10] Ph. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based Scheduling. Kluwer

Academic Publishers, 2001.

[11] Ph. Baptiste, L. Peridy, and E. Pinson. A branch and bound to minimize the

number of late jobs on a single machine with release time constraints. European

Journal of Operational Research, 144(1):1–11, 2003.

[12] J.E. Beasley. The OR-Library (Visited June 1, 2005),

http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

[13] J.Ch. Beck, A.J. Davenport, and M.S. Fox. Five pitfalls of empirical scheduling

research. In Proc. of the 3rd International Conference on Principles and Practice

of Constraint Programming (Springer LNCS 1330), pages 390–404, 1997.

[14] J.Ch. Beck and M.S. Fox. Dynamic problem structure analysis as a basis for

constraint-directed scheduling heuristics. Artificial Intelligence, 117:31–81, 2000.

[15] R.I. Becker and Y. Perl. The shifting algorithm technique for the partitioning

of trees. Discrete Applied Mathematics, 62:15–34, 1995.

[16] G.R. Bitran, E.A. Haas, and A.C. Hax. Hierarchical production planning: a

two-stage system. Operations Research, 30(2):232–251, 1982.

[17] J. B lażewicz, W. Domschke, and E. Pesch. The job shop scheduling problem:

Conventional and new solution techniques. European Journal of Operational

Research, 93(1):1–33, 1996.

[18] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds for

selection. Journal of Computer and System Sciences, 7:448–461, 1973.

[19] P. Brucker. Complex scheduling problems. Osnabrücker Schriften zur Mathe-

matik, P214 (Preprints), 1999. Available from

http://citeseer.ist.psu.edu/brucker99complex.html.

[20] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-

constrained project scheduling: Notation, classification, models, and methods.

European Journal of Operational Research, 112(1):3–41.

[21] J. Carlier and E. Pinson. A practical use of Jackson’s pre-emptive schedule for

solving the job-shop problem. Annals of Operations Research, 26:269–287, 1990.

BIBLIOGRAPHY 109

[22] J. Carlier and E. Pinson. Adjustments of heads and tails for the job-shop prob-

lem. European Journal of Operational Research, 78:146–161, 1994.

[23] A. Cesta, A. Oddi, and S.F. Smith. Profile-based algorithms to solve multi-

ple capacitated metric scheduling problems. In Proc. of the 4th International

Conference on Artificial Intelligence Planning Systems, pages 214–223, 1998.

[24] J. Crawford, G. Luks, M. Ginsberg, and A. Roy. Symmetry breaking predicates

for search problems. In Proc. of the 5th International Conference on Knowledge

Representation and Reasoning, pages 148–159, 1996.

[25] S. Dauzere-Peres and J.B. Lasserre. An Integrated Approach in Production Plan-

ning and Scheduling. Number 411 in Lectures Notes in Economics and Mathe-

matical Systems. Springer-Verlag, 1994.

[26] E. Davis and J. Patterson. A comparision of heuristic and optimum solutions

in resource-constrained project scheduling. Management Science, 21:944–955,

1975.

[27] E.L. Demeulemeester and W.S. Herroelen. A branch-and-bound procedure for

the multiple resource-constrained project scheduling problem. Management Sci-

ence, 38(12):1803–1818, 1992.

[28] E.L. Demeulemeester and W.S. Herroelen. Project Scheduling: A Research

Handbook. Kluwer Academic Publishers, 2002.

[29] J. Erschler. Analyse sous contraintes et aide à la décision pour certains problèmes

d’ordonnancement. PhD thesis, Université Paul Sabatier, 1976.

[30] J. Erschler, G. Fontan, and C. Merce. Consistency of the disaggregation process

in hierarchical planning. Operations Research, 34(3):464–469, 1986.

[31] J. Erschler, P. Lopez, and C. Thuriot. Raisonnement temporel sous contraintes

de ressources et problèmes d’ordonnancement. Revue d’Intelligence Artificielle,

5(3):7–32, 1991.

[32] T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Proc.

of the 7th International Conference on Principles and Practice of Constraint

Programming (Springer LNCS 2239), pages 93–107, 2001.

110 BIBLIOGRAPHY

[33] B. Fleischmann and H. Meyr. Planning hierarchy, modeling and advanced plan-

ning systems. In A.G. de Kok and S.C. Graves, editors, Supply Chain Manage-

ment: Design, Coordination and Operation, volume 11 of Handbooks in Opera-

tions Research and Management Science, pages 457–523. Elsevier, 2003.

[34] P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.

Breaking row and column symmetries in matrix models. In Proc. of the 8th

International Conference on Principles and Practice of Constraint Programming

(Springer LNCS 2470), pages 462–476, 2002.

[35] F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming.

In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages

369–403. Kluwer Academic Publishers, 2003.

[36] F. Focacci and M. Milano. Global cut framework for removing symmetries. In

Proc. of the 7th International Conference on Principles and Practice of Con-

straint Programming (Springer LNCS 2239), pages 77–92, 2001.

[37] M.S. Fox, S. Smith, B. Allen, G. Strohm, and F.C. Wimberly. ISIS: A constraint-

directed reasoning approach to job-shop scheduling. In Proc. of the IEEE Trends

and Applications Conference, pages 76–81, 1983.

[38] M. Frank. The Braess paradox. Mathematical Programming, 20(3):283–302,

1981.

[39] M.R. Garey and D.S. Johnson. Computers and Intractability - A Guide to the

Theory of NP-completeness. Freeman, 1979.

[40] I.P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry break-

ing during search. In Proc. of the 8th International Conference on Principles

and Practice of Constraint Programming (Springer LNCS 2470), pages 415–430,

2002.

[41] I.P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic SBDD using computa-

tional group theory. In Proc. of the 9th International Conference on Principles

and Practice of Constraint Programming (Springer LNCS 2833), pages 333–347,

2003.

BIBLIOGRAPHY 111

[42] I.P. Gent and B.M. Smith. Symmetry breaking in constraint programming. In

Proc. of the 14th European Conference on Artificial Intelligence, pages 599–603,

2000.

[43] S.T. Hackman and R.C. Leachman. An aggregate model of project-oriented

production. IEEE Transactions on Systems, Man and Cybernetics, 19(2):220–

231, 1989.

[44] A. Hallefjord and S. Storøy. Aggregation and disaggregation in integer program-

ming problems. Operations Research, 38(4):619–623, 1990.

[45] A. Hamacher, W. Hochstättler, and C. Moll. Tree partitioning under constraints

– clustering for vehicle routing problems. Discrete Applied Mathematics, 99:55–

69, 2000.

[46] E.W. Hans. Resource Loading by Branch-and-Price Techniques. PhD thesis,

Twente University, 2001.

[47] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14(3):263–313, 1980.

[48] W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Proc. of

IJCAI’95 – the 14th International Joint Conference on Artificial Intelligence,

pages 607–613, 1995.

[49] C. Holt, F. Modiglinai, and H.A. Simon. A linear decision rule for production

and employment scheduling. Management Science, 2(1):1–30, 1955.

[50] H.H. Holtsclaw and R. Uzsoy. Machine criticality measures and subproblem solu-

tion procedures in shifting bottleneck methods: A computational study. Journal

of the Operational Research Society, 47(5):666–677, 1996.

[51] Ilog. Ilog Cplex 7.1 User’s Manual, 2001.

[52] Ilog. Ilog Scheduler 5.1 User’s Manual, 2001.

[53] D.S. Johnson and K.A. Niemi. On knapsacks, partitions, and a new dynamic

programming technique for trees. Mathematics of Operations Reserach, 8(1):1–

14, 1983.

112 BIBLIOGRAPHY

[54] N. Jussien and O. Lhomme. Local search with constraint propagation and

conflict-based heuristics. Artificial Intelligence, 139(1):21–45, 2002.

[55] B. Kádár, A. Pfeiffer, and L. Monostori. Discrete event simulation for supporting

production planning and scheduling decisions in Digital Factories. In Proc. of

the 37th CIRP International Seminar on Manufacturing Systems, pages 441–

448, 2004.

[56] T. Kis. A branch-and-cut algorithm for scheduling of projects with variable-

intensity activities. Mathematical Programming, in print, 2005.

[57] R. Kolisch and S. Hartmann. Heuristic algorithms for the resource-constrained

project scheduling problem: Classification and computational analysis. In

J. Weglarz, editor, Project Scheduling: Recent Models, Algorithms and Appli-

cations, pages 147–178. Kluwer, 1999.

[58] A. Kovács. A novel approach to aggregate scheduling in project-oriented manu-

facturing. In Proc. of the 13th International Conference on Automated Planning

and Scheduling, Doctoral Consortium, pages 63–67, 2003.

[59] A. Kovács. A novel approach to aggregate scheduling in project-oriented man-

ufacturing. Projects & Profits, pages 73–80, October 2004.

[60] A. Kovács, P. Egri, and J. Váncza. Integrált termeléstervezés és ütemezés

megrendelésre történő gyártásban (Integrated production planning and schedul-

ing in make-to-order manufacturing. In Hungarian). Gépgyártás, submitted,

2004.

[61] A. Kovács and T. Kis. Partitioning of trees for minimizing height and cardinality.

Information Processing Letters, 89(4):181–185, 2004.

[62] A. Kovács and J. Váncza. Constraint feedback in solving incomplete models:

A case study in sheet metal bending. In STAIRS 2002 – Proc. of the Starting

Artificial Researchers Symposium, pages 109–118, 2002.

[63] A. Kovács and J. Váncza. Completable partial solutions in constraint program-

ming and constraint-based scheduling. In Proc. of the 10th International Con-

ference on Principles and Practice of Constraint Programming (Springer LNCS

3258), pages 332–346, 2004.

BIBLIOGRAPHY 113

[64] A. Kovács, J. Váncza, and A. Márkus. Structural exploration of constraint-

based scheduling problems. In Proc. of the 37th CIRP International Seminar on

Manufacturing Systems, pages 433–439, 2004.

[65] A. Kovács, J. Váncza, L. Monostori, B. Kádár, and A. Pfeiffer. Real-life schedul-

ing using constraint programming and simulation. In Intelligent Manufacturing

Systems 2003 – Proc. of the 7th IFAC Workshop on Intelligent Manufacturing

Systems, pages 213–218, 2003.

[66] S. Kundu and J. Misra. A linear tree partitioning algorithm. SIAM Journal on

Computing, 6:151–154, 1977.

[67] Ph. Laborie. Algorithms for propagating resource constraints in AI planning

and scheduling: existing approaches and new results. Artificial Intelligence,

143(2):151–188, 2003.

[68] Ph. Laborie and M. Ghallab. Planning with shareable resource constraints.

In Proc. of IJCAI’95 – the 14th International Joint Conference on Artificial

Intelligence, pages 1643–1649, 1995.

[69] R.C. Leachman, A. Dincerler, and S. Kim. Resource constrained scheduling of

projects with variable intensity activities. IIE Transactions, 22(1):31–40, 1990.

[70] R.C. Leachman and S. Kim. A revised critical path method for networks in-

cluding both overlap relationships and variable-duration activities. European

Journal of Operational Research, 64:229–248, 1993.

[71] R. Leisten. An LP-aggregation view on aggregation in multi-level production

planning. Annals of Operations Research, 82(1):229–248, 1998.

[72] O. Lhomme. Consistency techniques for numeric CSPs. In Proc. of IJCAI’93 –

the 13th International Joint Conference on Artificial Intelligence, pages 232–238,

1993.

[73] M. Maravalle, B. Simeone, and R. Naldini. Clustering on trees. Computational

Statistics & Data Analysis, 24(2):217–234, 1997.

[74] A. Márkus, J. Váncza, T. Kis, and A. Kovács. Project scheduling approach to

production planning. CIRP Annals – Manufacturing Technology, 52(1):359–362,

2003.

114 BIBLIOGRAPHY

[75] A. Márkus, J. Váncza, and A. Kovács. Constraint-based process planning in

sheet metal bending. CIRP Annals – Manufacturing Technology, 51(1):425–428,

2002.

[76] J.G. Monks. Operations Management – Theory and Problems. McGraw-Hill,

1987.

[77] T.E. Morton and D.W. Pentico. Heuristic Scheduling Systems: With Applica-

tions to Production Systems and Project Management. Wiley Series in Engineer-

ing and Technology Management. Wiley & Sons, 1993.

[78] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.

Wiley & Sons, 1988.

[79] Oracle. Oracle Advanced Scheduler, 2003. Available from

http://www.oracle.com/applications/service/adv sched datasheet.pdf.

[80] G. Pesant and M. Gendreau. A view of local search in constraint program-

ming. In Proc. of the 2nd International Conference on Principles and Practice

of Constraint Programming (Springer LNCS 1118), pages 353–366, 1996.

[81] S. Prestwich. Combining the scalability of local search with the pruning tech-

niques of systematic search. Annals of Operations Research, 115:51–72, 2002.

[82] I. Razgon and A. Meisels. Maintaining dominance consistency. In Proc. of the 9th

International Conference on Principles and Practice of Constraint Programming

(Springer LNCS 2833), pages 945–950, 2003.

[83] D.F. Rogers, R.D. Plante, R.T. Wong, and J.R. Evans. Aggregation and dis-

aggregation techniques and methodology in optimization. Operations Research,

39(4):553–582, 1991.

[84] SAP. Production Planning and Detailed Scheduling with SAP Advanced Planner

& Optimizer, 2002. Available from

http://www.sap.com/solutions/business-suite/scm/brochures.

[85] J. Slaney and T. Walsh. Backbones in optimization and approximation. In Proc.

of IJCAI-01 – the 17th International Joint Conference on Artificial Intelligence,

pages 254–259, 2001.

[86] Technomatix. eM-Plant 5.5 Reference Manual, 2000.

BIBLIOGRAPHY 115

[87] E. Toczy lowski and K. Pieńkosz. Restrictive aggregation of items in multi-stage

production systems. Operations Research Letters, 10(3):159–163, 1991.

[88] P. Tormos and A. Lova. Tools for resource-constrained project scheduling and

control: forward and backward slack analysis. Journal of the Operational Re-

search Society, 52(7):779–788, 2001.

[89] P. Torres and P. Lopez. On not-first/not-last conditions in disjunctive schedul-

ing. European Journal of Operational Research, 127:332–343, 2000.

[90] P. Torres and P. Lopez. Overview and possible extensions of shaving techniques

for job-shop problems. In Proc. of the 2nd International Workshop on Integration

of AI and OR techniques (CP-AI-OR’2000), pages 181–186, 2000.

[91] T. Tóth, F. Erdélyi, and S. Radeleczki. Similarity-based project planning in

the field of the production of individual machines. In Proc. of the 37th CIRP

International Seminar on Manufacturing Systems, pages 225–230, 2004.

[92] M. Urgo. Personal communication, 2005.

[93] S. Vajda. Mathematical Programming. Addison-Wesley, 1961.

[94] P. Van Hentenryck. The OPL Optimization Programming Language. The MIT

Press, 1999.

[95] J. Váncza, T. Kis, and A. Kovács. Aggregation – the key to integrating pro-

duction planning and scheduling. CIRP Annals – Manufacturing Technology,

53(1):377–380, 2004.

[96] T. E. Vollmann, Berry W.L., and Whybark D.C. Manufacturing Planning and

Control Systems. McGraw-Hill, 1997.

[97] M.G. Wallace. Practical applications of constraint programming. Constraints,

1(1):139–168, 1996.

[98] R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity.

In Proc. of IJCAI’03 – the 18th International Joint Conference on Artificial

Intelligence, pages 1173–1178, 2003.

[99] A. Wolf. Better propagation for non-preemptive single-resource constraint prob-

lems. In Proc. of the CSCLP04 – Joint Annual Workshop of ERCIM / CoLogNet

on Constraint Solving and Constraint Logic Programming, pages 230–243, 2004.

