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incomplete pairwise comparison matrix and its graph
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The Logarithmic Least Squares (LLS) problem

min
∑

i, j :

aij is known

[

log aij − log

(

wi

wj

)]2

wi > 0, i = 1, 2, . . . , n.

The most common normalizations are
n
∑

i=1
wi = 1,

n
∏

i=1
wi = 1

and w1 = 1.
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Theorem (Bozóki, Fülöp, Rónyai, 2010): Let A be an
incomplete or complete pairwise comparison matrix such
that its associated graph G is connected. Then the optimal
solution w = expy of the logarithmic least squares problem
is the unique solution of the following system of linear
equations:

(Ly)i =
∑

k:e(i,k)∈E(G)

log aik for all i = 1, 2, . . . , n,

y1 = 0

where L denotes the Laplacian matrix of G (ℓii is the degree
of node i and ℓij = −1 if nodes i and j are adjacent).
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Pairwise Comparison Matrix Calculator (PCMC)

The logarithmic least squares optimal weight vector can be
calculated at

pcmc.online

CR-minimal (λmax-minimal) completion is also calculated.

PCMC deals with Pareto optimality (efficiency) of weight
vectors, too.
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Pareto optimality (efficiency)

Let A = [aij ]i,j=1,...,n be an n× n pairwise comparison matrix

and w = (w1, w2, . . . , wn)⊤ be a positive weight vector.

Definition: weight vector w is called efficient, if there exists
no positive weight vector w′ = (w′

1, w
′
2, . . . , w

′
n)⊤ such that

∣

∣

∣

∣

∣

aij −
w′

i

w′
j

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

aij −
wi

wj

∣

∣

∣

∣

for all 1 ≤ i, j ≤ n,

∣

∣

∣

∣

akℓ −
w′

k

w′
ℓ

∣

∣

∣

∣

<

∣

∣

∣

∣

akℓ −
wk

wℓ

∣

∣

∣

∣

for some 1 ≤ k, ℓ ≤ n.

Remark: A weight vector w is efficient if and only if cw is
efficient , where c > 0 is an arbitrary scalar.
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Pareto optimality (efficiency)

See more in

Bozóki, S., Fülöp, J. (2017): Efficient weight vectors from
pairwise comparison matrices, European Journal of
Operational Research (in print)
DOI 10.1016/j.ejor.2017.06.033
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The spanning tree approach (Tsyganok, 2000, 2010)




















1 a12 a14 a15 a16

a21 1 a23

a32 1 a34

a41 a43 1 a45

a51 a54 1

a61 1





















– p. 14/43



The spanning tree approach (Tsyganok, 2000, 2010)
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The spanning tree approach

Every spanning tree induces a weight vector.

Natural ways of aggregation: arithmetic mean, geometric
mean etc.
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Theorem (Lundy, Siraj, Greco, 2017): The geometric mean
of weight vectors calculated from all spanning trees is
logarithmic least squares optimal in case of complete
pairwise comparison matrices.
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Theorem (Lundy, Siraj, Greco, 2017): The geometric mean
of weight vectors calculated from all spanning trees is
logarithmic least squares optimal in case of complete
pairwise comparison matrices.

Theorem (Bozóki, Tsyganok): Let A be an incomplete or
complete pairwise comparison matrix such that its
associated graph is connected. Then the optimal solution of
the logarithmic least squares problem is equal, up to a
scalar multiplier, to the geometric mean of weight vectors
calculated from all spanning trees.
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proof
Let G be the connected graph associated to the
(in)complete pairwise comparison matrix A and let E(G)
denote the set of edges. The edge between nodes i and j
is denoted by e(i, j).

The Laplacian matrix of graph G is denoted by L. Let
T 1, T 2, . . . , T s, . . . , TS denote the spanning trees of G, where
S denotes the number of spanning trees. E(T s) denotes the
set of edges in T s.

Let ws, s = 1, 2, . . . , S, denote the weight vector calculated
from spanning tree T s. Weight vector ws is unique up to a
scalar multiplication. Assume without loss of generality that
ws

1 = 1.

Let ys := log ws, s = 1, 2, . . . , S, where the logarithm is taken
element-wise.
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proof

Let wLLS denote the optimal solution to the incomplete
Logarithmic Least Squares problem (normalized by
wLLS

1 = 1) and yLLS := log wLLS, then
(

LyLLS
)

i
=

∑

k:e(i,k)∈E(G)

bik for all i = 1, 2, . . . , n,

where bik = log aik for all e(i, k) ∈ E(G).

bik = −bki for all e(i, k) ∈ E(G).

In order to prove the theorem, it is sufficient to show that
(

L
1

S

S
∑

s=1

ys

)

i

=
∑

k:e(i,k)∈E(G)

bik for all i = 1, 2, . . . , n.

– p. 21/43



proof

Challenge: the Laplacian matrices of the spanning trees
are different from the Laplacian of G.

Consider an arbitrary spanning tree T s. Then ws
i

ws
j

= aij for all

e(i, j) ∈ E(T s).
Introduce the incomplete pairwise comparison matrix As by
as

ij := aij for all e(i, j) ∈ E(T s) and as
ij := ws

i

ws
j

for all

e(i, j) ∈ E(G)\E(T s). Again, bs
ij := log as

ij(= ys
i − ys

j ).
Note that the Laplacian matrices of A and As are the same
(L).
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proof

Since weight vector ws is generated by the matrix elements
belonging to spanning tree T s, it is the optimal solution of
the LLS problem regarding As, too. Equivalently, the
following system of linear equations holds.

(Lys)i =
∑

k:e(i,k)∈E(T s)

bik+
∑

k:e(i,k)∈E(G)\E(T s)

bs
ik for all i = 1, . . . , n
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proof

Lemma

S
∑

s=1





∑

k:e(i,k)∈E(T s)

bik +
∑

k:e(i,k)∈E(G)\E(T s)

bs
ik



 = S
∑

k:e(i,k)∈E(G)

bik
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proof of the lemma
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proof of the lemma
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proof of the lemma
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45

b1
12 + b4

15 = b12 + b15
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45

b1
12 + b4

15 = b12 + b15
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proof of the lemma

b1
12 = b15 + b54 + b43 + b32

b4
15 = b12 + b23 + b34 + b45

b1
12 + b4

15 = b12 + b15
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proof

Finally, to complete the proof, take the sum of equations

(Lys)i =
∑

k:e(i,k)∈E(T s)

bik+
∑

k:e(i,k)∈E(G)\E(T s)

bs
ik for all i = 1, . . . , n

for all s = 1, 2, . . . , S and apply the lemma

S
∑

s=1





∑

k:e(i,k)∈E(T s)

bik +
∑

k:e(i,k)∈E(G)\E(T s)

bs
ik



 = S
∑

k:e(i,k)∈E(G)

bik

to conclude that yLLS = 1
S

S
∑

s=1
ys.
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Remarks

Complete pairwise comparison matrices (S = nn−2) are
included in our theorem as a special case, and our proof
can also be considered as a second, and shorter proof of
the theorem of Lundy, Siraj and Greco (2017).

Special incomplete cases, investigated by Harker (1987);
van Uden (2002); Chen, Kou, Tarn, Song (2015); Bozóki
(2017) are also included.
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Conclusions

The equivalence of two fundamental weighting methods
has been shown.

The advantages of two approaches have been united.
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