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Abstract— In this paper we propose an algorithm for con-
structing non-asymptotic confidence regions for parameters of
general linear systems under mild statistical assumptions. The
constructed regions are centered around the prediction error
estimate and are guaranteed to contain the “true” parameter
with a user-chosen exact probability. Our main assumption
is that the noise terms are independent and symmetrically
distributed about zero, but they do not have to be stationary,
nor do their variances and distributions have to be known. The
construction of the region is based on the uniform ordering
property of some carefully selected sign-perturbed sums (SPS)
which, as we prove, rigorously guarantees the confidence
probability for every finite dataset. The paper also investigates
weighted estimates and presents a simulation example on an
ARMA process that compares our exact confidence regions with
the approximate ones based on the asymptotic theory.

I. INTRODUCTION

One of the core problems of system identification is

how to estimate parameters of dynamical systems from

noisy measurements [7], [9]. Standard solutions, such as

the least squares-, or more generally, prediction error- and

correlation- methods, typically provide point estimates and

only offer asymptotically guaranteed confidence regions. In

many practical applications, especially in those that involve

strong safety, stability or quality constraints, having guar-

anteed confidence regions, in addition to standard point

estimates, is strongly desirable. However, generally the noise

characteristics are only partially known and the noise may

as well have changing intensity through time, i.e., it can be

nonstationary. Furthermore, in practice we have only a finite

dataset available. These features make the standard methods

inapplicable to deliver rigorously guaranteed confidence

regions.

A predecessor of the approach presented in this paper is

the “Leave-out Sign-dominant Correlation Regions” (LSCR)

method, which was developed in [1], [2], [3], [5]. LSCR

is a finite-sample system identification algorithm that can

build non-asymptotic confidence regions for parameters of

various (linear and non-linear) dynamical systems under

weak assumptions on the noise. An important theoretical

property of LSCR is that it constructs regions whose prob-

ability is rigorously lower bounded, that is the user is
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guaranteed that the regions contain the “true” parameters

with a minimum probability level. However, (i) LSCR does

not provide confidence regions with exact probabilities when

more than one parameter is being estimated, moreover, (ii)

it does not guarantee the inclusion of a chosen nominal (for

example, least-squares) estimate.

This paper extends our earlier work on the Sign-Perturbed

Sums (SPS) algorithm that guarantees non-asymptotic con-

fidence regions around the least-squares estimate for FIR

and ARX systems [4]. Here, we generalize our earlier

results in two directions: (i) we generalize the method for

general linear systems such that the constructed finite-sample

confidence regions will be centered around the estimates of

the prediction error method (PEM). Moreover, (ii) we allow

weighting the measurements depending on, for example, their

reliability.

First, we revisit the SPS algorithm for ARX systems to

recall some core ideas developed in [4]. Then, we extend

SPS to general linear systems and PEM estimates, and also

investigate the case when different measurements can have

different weights. Finally, we present a simulation example

on an ARMA(1,1) process that illustrates the constructed

confidence regions. In the appendix, we provide a sketch of

the proof of the main theorem, which states that the “true”

parameter will be in the confidence region with a user-chosen

exact probability.

II. PRELIMINARIES: ARX SYSTEMS

We start by presenting the SPS method for ARX systems,

which allows us to demonstrate the main ideas of the method.

A. Problem Setting

Consider the following general SISO ARX system

Yt +

na∑

j=1

a∗jYt−j ,

nb∑

j=1

b∗jUt−j +Nt, (1)

where Yt is the output, Ut is the input and Nt is the noise

affecting the system at time t. Yt, Ut and Nt are real-

valued scalars. We assume that the inputs are observed and

the orders na and nb are known. Regarding the noise, we

only assume that (Nt)
n
t=1 is a sequence of independent

random variables, which are also independent of the input,

symmetrically distributed about zero and have densities1. No

other assumptions are imposed, e.g., the noise can be time-

varying with unknown (but symmetric) distributions.

1The density assumption is introduced for simplicity and can be replaced
by more general assumptions.
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The available data are (Yt)
n
t=1−na

and (Ut)
n−1

t=1−nb
. The

goal is to construct a confidence region around the least-

squares (LS) estimate that is guaranteed to contain the “true”

parameter vector θ∗ with a user-chosen probability.

B. Least-Squares Estimate

The system (1) can be written in a linear regression form

Yt = ϕT

t θ
∗ +Nt, (2)

where the regressor ϕt and the parameter θ∗ is defined as

ϕt , (−Yt−1, . . . ,−Yt−na
, Ut−1, . . . , Ut−nb

)
T
, (3)

θ∗ ,
(
a∗1, . . . , a

∗
na
, b∗1, . . . , b

∗
nb

)T
. (4)

A generic parameter θ ∈ R
d, d , na + nb, is denoted by

θ = (a1, . . . , ana
, b1, . . . , bnb

)
T
. (5)

For a given θ and t, the predictor error at time t is

N̂t(θ) , Yt − ϕT

t θ. (6)

The least-squares estimate for (2) can be found by minimiz-

ing the sum of the squared prediction errors,

θ̂LS , argmin
θ∈Rd

n∑

t=1

N̂2

t (θ) = argmin
θ∈Rd

n∑

t=1

(
Yt − ϕT

t θ
)2
,

which is achieved by solving the normal equations, i.e.,

n∑

t=1

ϕtN̂t(θ̂LS) =

n∑

t=1

ϕt(Yt − ϕT

t θ̂LS) = 0. (7)

It is well-known [9] that θ̂LS can be explicitly written as

θ̂LS =

(
1

n

n∑

t=1

ϕtϕ
T

t

)−1(
1

n

n∑

t=1

ϕtYt

)
, (8)

assuming the invertability of the matrix 1

n

∑n

t=1
ϕtϕ

T
t .

C. Asymptotic Confidence Ellipsoids

It is also known that under some moment conditions on

the noise sequence, such as the Lindeberg condition [8], the

error of the LS estimates is asymptotically normal, that is

√
n(θ̂n − θ∗)

d−→ N(0,Γ) as n→ ∞, (9)

where θ̂n is the LS estimate using n data points,
d−→ denotes

convergence in distribution and N(0,Γ) denotes the normal

distribution with zero mean and covariance matrix

Γ , σ2

0

(
E
[
ϕ0ϕ

T

0

])−1

, (10)

with σ2
0 being the variance of the noise, where the noise and

input signals are here assumed to be stationary.

This result allows the construction of asymptotic confi-

dence ellipsoids. In fact, from (9) one obtains [7] that

n ‖ θ̂n − θ∗ ‖2Γ
d−→ χ2(d) as n→ ∞, (11)

where ‖ θ̂n − θ∗ ‖2
Γ
= (θ̂n − θ∗)T Γ−1 (θ̂n − θ∗), and χ2(d)

denotes the χ2 distribution with dim(θ∗) = d degrees of

freedom. Matrix Γ is, of course, not known in practice, but

it can be estimated from the data. By using estimates for σ2
0

and E
[
ϕ0ϕ

T
0

]
, a confidence region is obtained as

Θα
n ,

{
θ ∈ R

d : ‖ θ − θ̂n ‖2Φn
≤ α σ̂n/n

}
, (12)

where the probability that θ∗ is not in Θα
n can be computed

as the α-level of the χ2(d) distribution, and where

Φn ,
1

n

n∑

t=1

ϕtϕ
T

t , and σ̂n ,
1

n

n∑

t=1

N̂2

t (θ̂n). (13)

Here we shall make two observations: (i) the confidence

region Θα
n is stochastic, since it depends on θ̂n, σ̂n and

Φn, which are random elements. Moreover, (ii) region Θα
n is

only an approximated confidence region, and it does not have

rigorous guarantees. As Monte Carlo simulation studies show

[7], this approach is usually not applicable to small samples.

D. Non-Asymptotic Confidence Regions

There are several applications in which it is desirable

to have rigorously guaranteed confidence regions even for

finite, possibly small, datasets. In this section we present the

Sign-Perturbed Sums (SPS) method to build non-asymptotic

confidence regions for the LS estimate. The constructed

confidence regions are guaranteed to contain the “true”

parameter with a user-chosen exact probability, hence no

conservativism is introduced. In addition, only mild as-

sumptions on the noise terms are made: the noise terms

are independent of each other (and of the inputs), and

symmetrically distributed about zero. Note that each noise

term can have different distribution and no knowledge about

the particular distributions are assumed.

Now, we present the pseudo-code of the algorithm that

decides whether a given θ is included in a p-level confidence

region. Probability p is a user-chosen parameter.

PSEUDO-CODE: IS-INCLUDED ( θ, p )

1) Given p, which is assumed to be a rational number, set

integers m ≥ 1 and q ≥ 0 such that p = 1− q/m;

2) Compute

N̂t(θ) , Yt − ϕT

t θ, 1 ≤ t ≤ n; (14)

3) Generate n · (m− 1) independent random signs with

P(αit = 1) = P(αit = −1) =
1

2
, (15)

where 1 ≤ i ≤ m− 1 and 1 ≤ t ≤ n;

4) Create m− 1 sequences of sign-perturbed noise terms:

(αit N̂t(θ))
n
t=1, (16)

using the prediction errors, where 1 ≤ i ≤ m− 1;

5) Use the sign-perturbed prediction errors to construct

perturbed version of the outputs:

Ȳt(θ, αi) , −
na∑

j=1

aj Ȳt−j(θ, αi)+

7322



+

nb∑

j=1

bjUt−j + αitN̂t(θ), (17)

where 1 ≤ i ≤ m − 1 and 1 ≤ t ≤ n, using the initial

conditions Ȳt(θ, αi) , Yt, for 1− na ≤ t ≤ 0;

6) Construct the perturbed version of the regressors:

ϕ̄t(θ, αi) , (18)

(−Ȳt−1(θ, αi), . . . ,−Ȳt−na
(θ, αi), Ut−1, . . . , Ut−nb

)T,

where 1 ≤ i ≤ m− 1 and 1 ≤ t ≤ n;

7) Compute the perturbed covariance estimates:

Φ̄n(θ, αi) ,
1

n

n∑

t=1

ϕ̄t(θ, αi)ϕ̄
T

t (θ, αi), (19)

where 1 ≤ i ≤ m− 1 (assume, they have full rank);

8) Evaluate the sign-perturbed sums below at parameter θ :

S0(θ) , Φ
− 1

2

n

n∑

t=1

ϕtN̂t(θ), (20)

Si(θ) , Φ̄
− 1

2

n (θ, αi)
n∑

t=1

αit ϕ̄t(θ, αi)N̂t(θ), (21)

where 0 ≤ i ≤ m− 1 and Φn is defined as in (13);

9) Generate (εi)
m−1

i=0
“small” continuous random variables

(they are included used to break possible ties);

10) Compute

Zi(θ) , ‖Si(θ)‖22 + εi, (22)

where 0 ≤ i ≤ m− 1 and ‖·‖
2

is the Euclidean norm;

11) Order scalars (Zi(θ))
m−1

i=0
in a descending order and let

R0(θ) be the rank of Z0(θ), i.e., the number of those

Zi(θ)’s that are larger than Z0(θ);

12) Return “true” if R0(θ) ≥ q, otherwise return “false”;

Applying the method above, we can construct a random

confidence region for the “true” parameter θ∗, as follows

Θq
m ,

{
θ ∈ R

d : R0(θ) ≥ q
}
. (23)

Furthermore, the probability that θ∗ ∈ Θq
m is

P (θ∗ ∈ Θq
m) = P (R0(θ

∗) ≥ q) = 1− q

m
= p, (24)

note that it is an exact probability (cf., Theorem 1).

Therefore, for any given (rational) probability p ∈ (0, 1),
we can construct a confidence region that contains the

unknown “true” parameter θ∗ with exact probability p.

E. How does this work?

In this section we provide some intuition behind the

construction. The related theoretical result, Theorem 1, is

stated in Section III-D.

Before we continue, we formalize the definition of uniform

ordering, since it is one of the key concepts of our method.

Definition 1: A finite sequence of real-valued random

variables Z0, . . . , Zm−1 is called “uniformly ordered”, if,

for all possible permutations i0, . . . , im−1 of their indexes,

we have that P(Zi0 < Zi1 < · · · < Zim−1
) = 1/(m!).

Note that if Z0, . . . , Zm−1 are uniformly ordered, this

implies that they are also almost surely pairwise non-equal;

and, for all i, j, Zi takes position j with probability 1/m.

Observe that

Si(θ
∗) = Φ̄

− 1

2

n (θ∗, αi)

n∑

t=1

αit ϕ̄t(θ
∗, αit)Nt, (25)

for all 0 ≤ i ≤ m − 1, where for i = 0 we let α0t = 1
for all t. Based on this expression, and since (Nt)

n
t=1 are

independent and symmetric, in the Appendix it is shown that

the variables

Zi(θ
∗) , ‖Si(θ

∗)‖2
2
+ εi, 0 ≤ i ≤ m− 1, (26)

are uniformly ordered. This means that Z0(θ
∗) takes position

i in the ordering of variables (Zi(θ
∗))m−1

i=0
with probability

1/m, and this implies that the exact probability that θ∗ ∈ Θq
m

is p = 1 − q/m since R0(θ
∗) ≥ q means that Z0(θ

∗) takes

one of the positions 0, . . . ,m− q − 1 in the ordering.

On the other hand, Z0(θ) grows faster than the other Zi(θ),
i 6= 0, functions for values of θ away from θ∗, and thus

values different from θ∗ will eventually be excluded from

the confidence region.

Finally, note that θ̂LS solves the normal equations (7) so

that S0(θ̂LS) = 0. This implies that the LS estimate will be

included in the confidence region for all p, provided the εi’s
are chosen small enough and αi 6= 1 for i 6= 0.

III. GENERAL LINEAR SYSTEMS

The SPS method is extended in this section to general

linear systems.

A. Problem Setting

Let us consider the following general linear system [7]

A(z−1)Yt =
B(z−1)

F (z−1)
Ut +

C(z−1)

D(z−1)
Nt, (27)

where Ut is the input, Yt is the output, Nt is the noise,

and A, B, C, D and F are polynomials in z−1, the

backward shift operator (z−1Yt = Yt−1). The coeffi-

cients of A, B, C, D and F are (a∗k)
na

k=1
, (b∗k)

nb

k=1
,

(c∗k)
nc

k=1
, (d∗k)

nd

k=1
and (f∗k )

nf

k=1
, respectively. We use θ∗ =

(a∗1, ..., a
∗
na
, b∗1, ..., b

∗
nb
, c∗1, ..., c

∗
nc
, d∗1, ..., d

∗
nd
, f∗1 , ..., f

∗
nf
)T.

This system can be written as

Yt , G(z−1; θ∗)Ut +H(z−1; θ∗)Nt, (28)

where G(z−1; θ∗) and H(z−1; θ∗) are rational transfer func-

tions. We make the following five assumptions:

Assumption 1: The “true” system that generates the data

is in the model class, i.e., it has the form (28). The orders

of the polynomials are known;

Assumption 2: The transfer function H(z−1; θ∗) has a

stable inverse. Moreover, G(0; θ∗) = 0 and H(0; θ∗) = 1;

7323



Assumption 3: (Nt)
n
t=1 is an independent (but not neces-

sarily identically distributed) noise sequence (not observed),

where each Nt is symmetrically distributed about zero;

Assumption 4: (Ut)
n−1

t=1
is an observed (but not necessar-

ily chosen) input signal, independent of (Nt)
n
t=1;

Assumption 5: The system is initialized with Yt = Nt =
Ut = 0, t ≤ 0.

The available data are (Yt)
n
t=1 and (Ut)

n−1

t=1
, and the goal is

to construct a confidence region that includes the prediction

error estimate and it is guaranteed to contain the “true”

parameter θ∗ with a user-chosen exact probability.

B. Prediction Error Estimate

For simplicity, here we only consider the quadratic cost

criterion. The prediction errors can be calculated from rela-

tion [9]

N̂t(θ) , H−1(z−1; θ)(Yt −G(z−1; θ)Ut). (29)

Note that N̂t(θ
∗) = Nt.

The prediction error estimate for (28) is found by mini-

mizing the sum of the squared prediction errors,

θ̂PEM , argmin
θ∈M

n∑

t=1

N̂2

t (θ),

where M is the class of allowed models.

In general the PEM estimate does not have a closed-form

solution. It can be found, e.g., by using the equation

n∑

t=1

ψt(θ̂PEM)N̂t(θ̂PEM) = 0, (30)

where ψt(θ) is the gradient of the prediction error,

ψt(θ) ,
d

dθ
N̂t(θ). (31)

In case of ARX systems ψt(θ) is simply ϕt, yielding (7).

These gradients can be directly calculated in terms of the

defining polynomials. This immediately leads to formulas for

most known models (e.g., AR, ARMAX, Box-Jenkins).

The gradients of the prediction errors are [7]

∂

∂ak
N̂t(θ) =

D(z−1)

C(z−1)
Yt−k, (32)

∂

∂bk
N̂t(θ) = − D(z−1)

C(z−1)F (z−1)
Ut−k, (33)

∂

∂ck
N̂t(θ) =

D(z−1)B(z−1)

C(z−1)C(z−1)F (z−1)
Ut−k −

−D(z−1)A(z−1)

C(z−1)C(z−1)
Yt−k, (34)

∂

∂dk
N̂t(θ) =

A(z−1)

C(z−1)
Yt−k −

− B(z−1)

C(z−1)F (z−1)
Ut−k, (35)

∂

∂fk
N̂t(θ) =

D(z−1)B(z−1)

C(z−1)F (z−1)F (z−1)
Ut−k. (36)

C. Sign-Perturbed Sums

In order to extend our confidence region construction, we

need to re-define the sign-perturbed sums. We again apply

perturbed versions of the outputs that are

Ȳt(θ, αi) , G(z−1; θ)Ut +H(z−1; θ) (αitN̂t(θ)), (37)

where αit are random signs as previously.

As we saw above, ψt(θ) can be treated as a linear filtered

version of the outputs and the inputs, that is

ψt(θ) = W0(z
−1; θ)Yt +W1(z

−1; θ)Ut, (38)

where W0 and W1 are vector-valued.

We use them to define perturbed versions of ψt(θ) as

ψ̄t(θ, αi) , W0(z
−1; θ) Ȳt(θ, αi) +W1(z

−1; θ)Ut, (39)

where the difference is that we filter the perturbed outputs.

Finally, the sign-perturbed sums for θ are defined as

S0(θ) , Ψ
− 1

2

n (θ)
n∑

t=1

ψt(θ)N̂t(θ), (40)

Si(θ) , Ψ̄
− 1

2

n (θ, αi)

n∑

t=1

αit ψ̄t(θ, αi)N̂t(θ), (41)

where 0 ≤ i ≤ m− 1, and Ψn and Ψ̄n(θ, αi) are defined as

Ψn(θ) ,

n∑

t=1

ψt(θ)ψ
T

t (θ), (42)

Ψ̄n(θ, αi) ,

n∑

t=1

ψ̄t(θ, αi)ψ̄
T

t (θ, αi), (43)

which is the perturbed version of the covariance estimate. If

the model is ARX, these sums are the same as (20) and (21).

Applying the previous method with the new sign-perturbed

sums, (40) and (41), we again arrive at a confidence region

Θq
m ,

{
θ ∈ R

d : R0(θ) ≥ q
}
. (44)

Note that for θ = θ∗ all sums Si(·), i = 0, . . . ,m − 1,

take the form

Si(θ
∗) = Ψ̄

− 1

2

n (θ∗, αi)

n∑

t=1

αit ψ̄t(θ
∗, αi)Nt. (45)

Moreover, Si(θ
∗), i 6= 0, can be constructed from S0(θ

∗) by

replacing each occurrence of Nt with αitNt, which has the

same distribution as Nt as Nt is symmetric. This ensures

the uniform ordering property. Based on this feature the

desired confidence probability p = 1−q/m can be rigorously

guaranteed (see Theorem 1).

We know that the PEM estimate, θ̂PEM, satisfies (30), thus

we have that S0(θ̂PEM) = 0, which guarantees the inclusion

of θ̂PEM in Θq
m, under the same conditions as before.
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D. Weighted Measurements

It is often useful to assign different weights to different

measurements reflecting the reliability of the data.

In the case that we want to build a confidence region

around a weighted nominal estimate, we resize the random

signs αit according to the given weights. In fact, this

approach works more generally, since symmetric random

variables can be applied with great generality. In order to

do this, we need to refine the sign-perturbed sums

S0(θ) , Ψ
− 1

2

n (θ)

n∑

t=1

|αit|ψt(θ)N̂t(θ), (46)

Si(θ) , Ψ̄
− 1

2

n (θ, ᾱi)
n∑

t=1

αit ψ̄t(θ, ᾱi)N̂t(θ), (47)

where ᾱi denotes the sign-vector (sign(αi1), . . . , sign(αin))
and αit are now arbitrary symmetric random variables with

the property that (αit)
m−1

i=0
are i.i.d. for any fixed t; however,

they can have different distributions for different t indexes.

If αit are random signs, we get back (40) and (41).

Our main result, using (46) and (47), can be stated as

Theorem 1: For general linear systems, under Assump-

tions 1-5, the probability that θ∗ is in Θq
m is exactly 1−q/m.

A proof of this theorem can be found in the Appendix.

IV. SIMULATION EXAMPLE

In this section we demonstrate the SPS method through a

simulation experiment. We consider the ARMA process

Yt + a∗Yt−1 = Nt + c∗Nt−1, (48)

where the “true” parameter is θ∗ = (a∗, c∗). The filter of the

noise is C(z−1; θ)Nt = Nt+ cNt−1. To apply the previous

results, we need the inverse of polynomial C(z−1; θ), that is

C−1(z−1; θ) =

∞∑

k=0

(−1)k ck z−k, (49)

which we use to define the prediction errors as

N̂t(θ) = C−1(z−1; θ) (Yt + a Yt−1), (50)

where θ = (a, c) is a generic parameter.

The perturbed versions of the outputs are

Ȳt(θ, αi) = −a Ȳt−1(θ, αi)+αi,t N̂t(θ)+ c αi,t−1N̂t−1(θ),

for 1 ≤ i ≤ m − 1 and 1 ≤ t ≤ n, where αit are random

signs. Finally, we can calculate ψ̄t(θ, αi),

ψ̄t(θ, αi) =

[
C−1(z−1; θ) Ȳt−1(θ, αi)

C−2(z−1; θ)A−1(z−1; θ)αi,t Ȳt−1(θ, αi)

]
,

which can be used to define functions (40) and (41).

A numerical experiment with the ARMA system (48) is

demonstrated in Figure 1. The unknown “true” parameter

was θ∗ = (−0.7, 0.3), we used n = 500 observations, where

Nt were i.i.d. zero mean Gaussian random variables with

variance one, and we aimed at a 99% confidence region

around the PEM estimate. Therefore, we set m = 100 and

q = 1. The result of the simulation shows that the SPS

confidence region, which has rigorously guaranteed exact

probabilty, is comparable in size and shape to the confidence

ellipsoids of the asymptotic theory.

−0.9 −0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

a

c

Fig. 1. The 99% SPS confidence region (blank part), the “true” parameter
“⋆”, the PEM estimate “+” with its 99% asymptotic confidence ellipsoid
(dashed)

V. CONCLUDING REMARKS

System identification algorithms with guaranteed finite-

sample properties are of high practical importance. In this

paper we extended our Sign-Perturbed Sums (SPS) method

and showed that it can build confidence regions for general

linear systems around the prediction error estimate. The

“true” parameter is guaranteed to be included in the region

with a user-chosen exact probability for any finite dataset.

Our main assumptions are: (i) The “true” system is in

the model class; (ii) The noise sequence is independent and

symmetrically distributed about zero.

The SPS method does not require the knowledge of the

particular noise distributions, which can even change over

time and have unknown variances.
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APPENDIX

Here, we provide a sketch of the proof of Theorem 1.

We say that a random variable X is symmetric or sym-

metrically distributed about zero, if X and −X have the

same distribution. A special case of symmetric variables is

the random sign, which is a ±1 valued Bernoulli random

variable, i.e., it takes +1 and −1 with probability 1/2 each.

Now, we state some lemmas (without proof, due to space

limitations), which will be used in the sketch of the proof.

Lemma 1: Let X be a symmetric real-valued random

variable and let β be a random sign, independent of X . Then,

β and βX are independent and, of course, X = β · (βX).

Lemma 2: Let β1, . . . , βk be independent symmetric ran-

dom variables, α is a random sign, independent of

β1, . . . , βk. Then, α·β1, . . . , α·βk are independent symmetric

random variables with the same distribution as β1, . . . , βk.

Lemma 3: Let X and Y be two independent, Rd-valued

and R
k-valued random vectors, respectively. Let us consider

a measurable function g : Rd × R
k → R and a measurable

set A ⊆ R. If for all x ∈ R
d we have P( g(x, Y ) ∈ A ) = p,

then we also have P( g(X,Y ) ∈ A ) = p.

Lemma 4: Let Z0, . . . , Zm−1 be real-valued, i.i.d., con-

tinuous random variables. Then, they are uniformly ordered.

A proof of this “uniform ordering lemma” is given in [4].

Proof Sketch of Theorem 1

By definition, parameter θ∗ is in the confidence region

if R0(θ
∗) ≥ q. It means that Z0(θ

∗) should take one of the

positions 0, . . . ,m−q−1 in the ordering. We will prove that

the Zi(θ
∗)’s are uniformly ordered, which means that Z0(θ

∗)
takes each position in the ordering with probability 1/m,

hence, its rank will be at least q with probability 1− q/m.

To show that the Zi(θ
∗)’s are uniformly ordered, we start

by fixing an arbitrary realization of the inputs, (ui)
n
i=1

, and

henceforth we will condition on this realization.

Assuming the (conditional) uniform ordering of the

Zi(θ
∗)’s, we have that P (θ∗ ∈ Θq

m) = 1 − q/m, given

(ui)
n
i=1

. Since, this result is independent of the realization,

Lemma 3 shows that it also holds without fixing the realiza-

tion.

To complete the proof, we have to show that, after the

realization (ui)
n
i=1

was fixed, the Zi(θ
∗)’s are uniformly

ordered.

First, we highlight that, for θ = θ∗, all Si(·) have the form

Si(θ
∗) = Ψ̄

− 1

2

n (θ∗, ξ̄i)

n∑

t=1

ξit ψ̄t(θ
∗, ξ̄i)Nt, (51)

where ξit = αit if i 6= 0 and ξit = |αit| otherwise,

and the notations are the same as in (47). Therefore, all

the Si(·)’s depend on the perturbed noises, (ξitNt)
n
t=1, via

the same function for all i, which we denote by Si(θ
∗) =

S(ξi1N1, . . . , ξinNn).

Then, we can write variables (Zi(θ
∗))m−1

i=0
in the form

Z0 , Z0(θ
∗) = g(|α01|N1, . . . , |α0n|Nn) + ε0, (52)

Zi , Zi(θ
∗) = g(αi1N1, . . . , αinNn) + εi, (53)

where i ∈ {1, . . . ,m−1} and g(·) = ‖S(·)‖22. Since (Nt)
n
t=1

are symmetric, using Lemma 1, we have Nt = βt(βtNt) =
βtVt, for all t ∈ {1, . . . , n}, where Vt , βtNt and (βt)

n
t=1

are random signs independent of (Nt)
n
t=1 and, as it was

shown by Lemma 1, also independent of (Vt)
n
t=1. Then, for

all i,
Zi = g(γi1V1, . . . , γinVn) + εi, (54)

where, for all t, γ0t , |α0t|βt and, for all i 6= 0, γit , αitβt.
Now, as shown by Lemma 2, (γit)

m−1

i=0
are i.i.d. random

variables for all t, and they are also independent of (Vt)
n
t=1.

By fixing a realization of (Vt)
n
t=1, called (vt)

n
t=1, we have

Z ′
i , g(γi1v1, . . . , γinvn) + εi, (55)

where (vt)
n
t=1 are deterministic constants. We continue our

investigation by conditioning on this fixed realization.

Random variables (g(γi1v1, . . . , γinvn))
m−1

i=0
are i.i.d.,

since (γit)
m−1

i=0
are i.i.d., for all t. Moreover, since (εi)

m−1

i=0

are conditionally i.i.d. and continuous, given σ{(±Ni)
n
i=1

},

random variables (Z ′
i)

m−1

i=0
are real-valued, i.i.d. and contin-

uous (note that constants (vt)
n
t=1 only provide information

about the realization of the noise sequence (Nt)
n
t=1 up to

±1 multiplications). Therefore, Lemma 4 can be applied to

show that variables (Z ′
i)

m−1

i=0
are uniformly ordered.

Since this uniform ordering can be obtained independently

of the realization of the sequence V , (Vt)
n
t=1, the statement

of the theorem follows. This last step can be made more

precise, as follows. First, let us decompose ε , (εi)
m−1

i=0
to

the form of ε = r(V, δ), where r is a measurable function

and δ is a real-valued random variable, uniform on (0, 1),
independent of V . The validity of this decomposition is

supported by Theorem 6.10 of [6]. Then, let Q , (γ, δ),
where γ , (γit)

m−1,n
i,t=0,1. As we have shown above, if we fix a

realization of V , then the probability of a particular ordering

of (Z ′
i)

m−1

i=0
is 1/(m!) independently of the realization. By

letting p(Z0, . . . , Zm−1) denote the function that provides

the ordering of the variables (viz., takes values from a set

with size m!), we can write this function as p̂(V,Q), because

the ordering only depends on V and Q. Finally, since V and

Q are independent, we can apply Lemma 3 to show that the

result also holds without fixing a particular realization. �
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