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Regularity Assumption

Carè, Csáji, Campi, Weyer Finite-Sample System Identification | 2



Perturbed Residuals
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Perturbed Datasets
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Alternative Regression Models
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Data Generation

Let us consider the following data generating system

System Structure

Yn , F( Un,Wn, I )

where

I — initial conditions

Un , (U1, . . . ,Un)T — inputs

Wn , (W1, . . . ,Wn)T — noises

Yn , (Y1, . . . ,Yn)T — outputs

F — true data generating function
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Point Estimation

Consider the parametric estimation problem of the system

Yn , Fθ∗( Un,Wn, I )

parametrized with θ∗ ∈ Θ ⊆ Rd (true parameter)

Given: finite sample of data, Z , ( Un,Yn, I )
We typically search for a model that best fit the data, that is

Point Estimate (Parametric)

θ̂Z , arg min
θ∈Θ

V(θ | Z)

where V is a criterion function
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Confidence Regions

In practice often some quality tag is needed to judge the estimate.

Safety, stability, or quality requirements? ⇒ confidence regions

Confidence Region (Level µ)

P
(
θ∗ ∈ Θ̂Z,µ

)
≥ µ

for some µ ∈ (0, 1), where θ∗ is the “true” parameter, Θ̂Z,µ ⊆ Θ.

Typically the level sets of the (scaled) limiting distribution is used.

Issues: only approximately correct for finite samples,
requires the existence of a (known) limiting distribution.
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Main Assumptions

Assumption 1

For any value of θ∗ ∈ Θ, the relation Yn , Fθ∗( Un,Wn, I, ) is
noise invertible in the sense that, given the values of Yn, Un, I,
we can recover the noise Wn.

Assumption 2

The noise Wn is jointly symmetric about zero, i.e., (W1, . . . ,Wn)
has the same joint probability distribution as (σ1W1, . . . , σnWn)
for all possible sign-sequences, σi ∈ {+1,−1}, i = 1, . . . , n.
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Residuals and Sign-Perturbations

Given a θ ∈ Θ and dataset Z, the estimated noise is Ŵn(θ).

Note that we have Ŵn(θ∗) = Wn (Assumption 1).

Given vector vn = (v1, . . . , vn) and signs sn = (σ1, . . . , σn)
∈ {+1,−1}n, we denote the sign-perturbed vector by

sn[vn] , (σ1v1, . . . , σnvn).

Note that Wn
d
= sn[Wn], for all sn ∈ {+1,−1}n (Assumption 2)

where “
d
= ” denotes equal in distribution.
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Evaluation Functions

A core concept is the evaluation function (test statistic),

Z : Rn × Rn ×Θ→ R,

to evaluate the parameter based on ideas discussed before.
(Note that Z can also depend on the initial conditions.)

Using Z we define a reference and m − 1 sign-perturbed functions,

Z0(θ) , Z (Un, Ŵn(θ), θ),

Zi (θ) , Z (Un, s
(i)
n [Ŵn(θ)], θ),

for i = 1, . . . ,m − 1, where s
(1)
n , . . . , s

(m−1)
n are m − 1

user-generated vectors containing i.i.d. symmetric random signs.
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Evaluating Parameters

It can be shown that Z0(θ∗), . . . ,Zm−1(θ∗) are conditionally i.i.d.

Consider the ordering Z(0)(θ∗) < · · · < Z(m−1)(θ∗),

where we apply random tie-breaking, if needed.

Then All orderings are equally probable!

We want to design Z to such that as θ gets “far away” from θ∗,

Z0(θ) < Zi (θ)

with “high probability” for all i = 1, . . . ,m − 1; or

Zi (θ) < Z0(θ)

with “high probability” for all i = 1, . . . ,m − 1.
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Non-Asymptotic Confidence Regions

The rank of Z0(θ) in the ascending ordering of {Zi (θ)}m−1
i=0 is

R(θ) = 1 +
∑m−1

i=1
I(Zi (θ) < Z0(θ)),

where I(·) is an indicator function.

Exact Confidence

The confidence region defined as

Θ̂n ,
{
θ ∈ Rd : h ≤ R( θ ) ≤ k

}
is such that P{θ∗ ∈ Θ̂n} = (k − h + 1)/m, where h, k and m
are user-chosen integers (design parameters).
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Construction Ideas

Typical construcions of the evaluation function Z are based on

• Correlations: we use the fact that, for the true parameter,
the residuals (noises) are uncorrelated, also with the inputs
E.g.: LSCR (Leave-out Sign-dominant Correlation Regions)

• Gradients: based on the gradient (w.r.t. the parameter) of
the criterion function of a given point estimate; we perturb
the residuals in the gradient and scalarize it with a norm
E.g.: SPS (Sign-Perturbed Sums)

• Models: new models are estimated based on the alternative
(perturbed) datasets and then they are compared to the
original (unperturbed) estimate (bootstrap style approach)
E.g.: DP (Data Perturbation)
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A New Correlation Approach: Combining LSCR and SPS

What are the advantages and disadvantages of LSCR and SPS?

LSCR uses correlations (and subsampling).
It is a flexible and easy to implement algorithm.
It is computationally light, does not require perturbed datasets.
However, it is conservative for high dimensinal parameters.

SPS uses gradients (and sign-perturbations).
It evaluates the errors in all parameters simultaneously (norm).
It always constructs confidence regions having exact confidence.
However, it needs perturbed datasets, it is computationally heavy.

Let us try to combine the advantages of these two approaches!
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A New Correlation Approach: SPCR

New method: SPCR (Sign-Perturbed Correlation Regions).

For concretness, let us consider an ARX(na, nb) model

Yt = a1Yt−1 + · · ·+ anaYt−na + b1Ut−1 + · · ·+ bt−nbUt−nb + Wt .

Stacked Correlations

For a generic U′n and W′
n, we introduce the correlation vectors

Ct(U′n,W
′
n) , (W ′

tW
′
t−1, . . . ,W

′
tW
′
t−k ,W

′
tU
′
t , . . . ,W

′
tU
′
t−l+1)T,

for t = 1, . . . , n, where k and l are user-chosen parameters.

(Typically k + l ≥ na + nb, and we may need terms from I.)
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A New Correlation Approach: SPCR

Evaluation Function for SPCR

Z (U′n,W
′
n, θ) ,

∥∥Q−
1
2 (U′n,W

′
n)

1

n

n∑
t=1

Ct(U′n,W
′
n)
∥∥2
,

where Q is a “scaling” matrix defined as

Q(U′n,W
′
n) ,

1

n

n∑
t=1

Ct(U′n,W
′
n)CT

t (U′n,W
′
n).

which is assumed to be invertible, for convenience.
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A New Correlation Approach: SPCR

Confidence Regions for SPCR

Θ̂n , { θ ∈ Rna+nb : R(θ) ≤ k }.

And we have exact confidence for parameter vectors, as well

P{ θ∗ ∈ Θ̂n } = (k + 1)/m.

Note that SPCR is a class of methods where different
constructions correspond to different choices of (k , l).
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Simulation Example for SPCR

Consider a bilinear system generated by

Yt , a∗Yt−1 + b∗Ut +
1

2
UtNt + Nt ,

for t = 1, . . . , n, with a∗ = 0.7, b∗ = 1, with zero initial conditions.

The input sequence {Ut} is generated by Ut , 0.5Ut−1 + Vt ,
with zero initial conditions, where {Vt} is i.i.d. standard normal.

The noise sequence {Nt} is i.i.d. Laplacian with zero mean and
unit variance, independent of {Ut}.

Our model class is ARX(1, 1), that is

Ŷt(θ) , a Yt−1 + b Ut .
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Simulation Example for SPCR

Figure: 95% confidence regions built by SPCR with k = 2 and l = 2.
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Desirable Properties of Finite Sample Sys.Id. Methods

• Inclusion of a point estimate: the confidence region should be
centered around a given point estimate (e.g., PEM, QML).

• Consistency: for any false parameter, θ′ 6= θ∗, the probability
of θ′ ∈ Θ̂n should decrease as the sample size, n, increases.

• Favorable topology: region Θ̂n should have good topological
properties, e.g., it should be bounded, connected, star convex.

• Weak computability: deciding whether a candidate parameter
value θ belongs to Θ̂n should be computationally easy.

• Strong computability: calculating a representation of Θ̂n or an
approximation of it should be computationally feasible.
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Conclusions

• A general, unifying overview on finite-sample system
identification (FSID) methods was provided.

• The core ideas behind bulding exact, non-asymptotic, quasi
distribution-free confidence regions were highlighted.

• A new method, SPCR (Sign-Perturbed Correlation Regions)
was suggested as the combination of LSCR and SPS.

• SPCR combines the computational advantages of LSCR with
the exactness of SPS by using stacked correlation vectors.

• A numerical experiment on a bilinear system was presented.

• Finally, desirable properties of FSID methods were highlighted
and discussed based on the LSCR, SPS and SPCR methods.
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Thank you for your attention!

B balazs.csaji@sztaki.mta.hu
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