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Reproducing Kernels Preserving Algebraic Structure:
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Abstract— From the classical reproducing kernel theory of equivalence classes which are not necessarily functions. The
function spaces it is well-known that there is an inverse relation- novelty of our approach is that it deals with linear spaces
ship between inner-products and kernels. In applications, such ,hich possess no function space structure. Also spaces

as linear system theory and machine learning, these kernels are ith ltiole functi truct idered. Wi
often highly structured. In order to exploit algebraic structure, with multiple Tunction space structures are consiaered. Ve

it is common to choose basis functions and fall back to matrix therefore extend the theory of reproducing kernel iKre
representations. However, the basis has to be chosen in a way spaces from function spaces to general linear spaces.
that is compatible with the algebraic structure, which is itself The framework is developed in a coordinate-free manner

a nontrivial task. We therefore choose a different approach . L .
and use standard duality theory where additional algebraic and applies to non-degenerate sesquilinear forms on linear

structures form no obstacle. This is demonstrated by examples SPaces. In other words, we present a erx_ibIe an_d unifying
from linear system theory, namely two variable polynomials theory of kernels together with an algebraic version of the
given by Bézoutians and quadratic differential forms. reproducing property. This algebraic reproducing property

_ _ o agrees with the classical one, whenever the space admits an
Keywords: reproducing kernels, duality theory, shiftez8utians, eyaluation, i.e., an identification with a function space.
Hankel operators, asymptotic stability . . .

In applications, such as linear system theory and machine
. INTRODUCTION learning, the kernels of interest are often highly structured.

. . . In order to exploit an algebraic structure, it is common to
The theory of reproducing kernels developed impressively, o pagis functions and fall back to matrix representa-

in the last decades and is of importance not only in functione?ions For this to work the basis has to be chosen in a
analysis, but also in a large range of applied fields, such '

statistics, control theory and machine learning [5]. An exam-. :

support vect'or machines in stat|st|gal learning ,[8]' algebraic structures form no obstacle. The effectiveness of
The classical theory of reproducing kernels is formulatefhis theory is demonstrated by examples from linear system

in the framework of Hilbert spaces of scalar-valued function§heory namely two variable polynomials given bgutians
From the start the bijection between positive kernels a d qijadratic differential forms

reproducing kernel Hilbert spaces was characterized essen- . )
tially as an inverse relationship [5]. In recent years there were ThiS paper is structured as follows: In Section Il we
many attempts to extend this theory. Rather natural generéifroduce the conjugate dual space and related constructs
izations focused on the function space and allowed vectotch as the conjugate dual map. In Section Il we explain
valued functions [2]. More further-reaching generalizationf1€ relation between forms and kernels using the concept
relaxed the Hilbert space assumption and thus moved froff Primal dual operators and dual primal operators. In
positive kernels to indefinite kernels and reproducing kernéi€ction Ill-C we provide the link to classical integral-kernel
Krein spaces [5]. The generalization to indefinite kernel§€Presentations on function spaces. In Section IV we discuss
has practical importance not only because testing Merce®9Sitivity, signature and truncation of forms and kernels. We
condition can be challenging, but also because some of tHECUSS the resulting computational issues in Section IV-
often applied kernels, for example, the hyperbolic tangedft USING matrix representations. In Section V we focus
kernel, are indefinite [6]. on additional algebraic structure, more precisely, Hankel
In this paper we develop a novel framework of reproducingPerators, Bzoutians and general intertwining maps. As an
kernels suitable for applications with rich algebraic structuré*ample we treat stability analysis for linear systems, in
e.g., modelling of dynamical systems. In these applicatiorfyder to illustrate how this structure can be exploited. Finally,

more often than not the linear space consists of relations B Section VI we provide some concluding remarks.
Notations: The letterK denotes a field which is eithé (real
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Il. PRELIMINARIES ON DUALITY THEORY A. Operators from Primal to Dual and Vice Versa

i i A (linear) operatorG : U — V* is called primal to
AmapT : U — V between two linear spaces is calledy o) operator (pd-operator). Similarly a (linear) operator
additiveif T(u +v) =Tu+Tv for all u,v € U. K : U* — V is called adual to primal operator(dp-
If T is additive and satisfied'(ku) = k- Tu for all  gperator). Pd-operators are related to forms and dp-operators
k € K,u € U we say thatl is a linear map or simply are related to kernel-representations as we shall see next.

an operator. The space of all (linear) operatdis— V is The associated fornof a pd-operatoG : U — V* is
denoted by.(U, V). We denote th&ernelandimageof T by
KerT andIm T, respectively. If¢ : U — K is additive and (u,v) == (Gu)(v) forall welwveV. ®)

{(ku) = k*{(u) we call it aconjugate linear functionabn  The associated form is callebiilinear for K = R and

U. The space of conjugate linear functions@nis denoted sesquiliniearfor K = C. If G is bijective one the associated

by U* and called theconjugate duabf U. form is callednondegenerate. Thadjoint of a pd-operator
We useU** to denote the conjugate dual spaceldf, G :U — V* is an operator fron?” to U* and defined by

ie. th U*)*. Foru e U we def :
e., the spaceU™)". Foru € U we define (Go)(u) = (Gu)(v)* forall wel,weV. (6)

w:U" =K, le=al)=L(u)". (1) A pd-operator withG = G is calledself-adjoint. Similarly,
the adjoint of a dp-operatot : U* — V is the dp-operator
The mapU — U**,u — 4 is linear and injective and AN : SN x
called ther?atural inclusionof U in U**. If T : (J] — Vis K:Vi—= U with n(Ke) = ((Kn)", )
an operator we define fare V* foralln e U*,¢{ € V*. If K = K, thenK is calledself-
adjoint. In what follows we shall see that dp-operators admit
TY:U =K, wuw (Tu), (2) aninterpretation as kernel representations. In order to do this

algebraically, we will apply tensor products.
and callT* : V* — U* the conjugate dual operatoof 7.

X : B. Tensor Products and Abstract Kernel Representations
For a general overview on linear spaces, see [7].

In order to avoid the need for topological constructs and
. - other techniques from analysis, we shall constrain ourselves
A. Quotient Spaces and Annihilators to the case where all kernels have finite rank.

The conjugate tensor producif two linear space$’ and

Linear equn{alence relations are those whose equwalgni:)_eis given by the pai(U @ V, @) where the first component
classes form linear subspaces. These relations are crucial,in

the study of operators with nontrivial kernels. denotes the linear space

Given a subspac& C U we set denote the equivalence UV :={K e L(U",V)|rank K < oo}, (8)
crl]ass ofu mod X' by u+ X :={u+x|x € X} and define 5,4 the second component denotes the conjugate linear map
the quotient spacevia ©:U x V — L(U*, V) defined by
U/X ={u+X|ueU}. () (u®v)(n):=n(u)-v foral neU*. 9)
) . ) Every elementk € U ® V has afinite sumrepresentation
Moreover, we define thannihilator spacevia of the form K = 3", u; @ v; with u; € U andw; € V
ij i 7 .

N Note that the elements é&f ® V' are dp-operators.

X ={{eU"|Kert 2D X}. 4)
Lemma 1 Letu,w € U andv € V. Then, there holds:

There exists a natural inclusion operater from X+ into 1) u@v) =veu,

(U/X)* given by(0)*(u+X) = £(u)* forallu € U. Inother  2) (u+w)@v=u®v+wR0,

words, the annihilator of{ forms a subset of the conjugate 3) (ku) ® v =k*(u ® v),

dual of the quotient spadé/ X . We shall use these facts later 4) T'o (u®v) =u® (1),

on when we discuss truncation of forms and integral-kernels. 5) (v ® u) o T* = (Tv) @ u,

for all operatorsT : V — V and scalarsk € K.

[1l. FORMS AND KERNEL REPRESENTATIONS Definition 2 Given two operators

. * .

In this section we introduce forms and integral-kernels G:U—-U" ad T:U=V, (10)
from an operator perspective which makes it easier to se@ elementll € U ® V is calledkernel representationf 7'
the connections between them. The approach we choosewiigh respect toG if for all u € U and/ € V* there hold$
algebraic in the sense that we do not assume that linear UTw) — (Cu)\ (D Tor all ¢ . 11
spaces form function spaces. Moreover, our approach is also (Tw)* = (Gu)(K¢) forall uweUleV™. (12)
geometric in the sense that we are working in a Coord'nat(?lGeometrically speaking (11) says th&t/ is the gradient of the linear
free setup, i.e., all results are independent of the chosen basisctionalu — £(Tw)* with respect to the forng.
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In the special case wheé = U and T is the identity we
call K the reproducing kernel ot/ with respect toG.

Remark 3 Let K € U ® V be given by{v;}, C V,
{u;}jt, CU anda € K™*™, e,

K= ZJ 122 . (uj @ ;). (12)
For all ¢ € V* there holds
Kl = ZFI Zi;l af; - (uj - (vy). (13)
Moreover, for allnp € U* we have
Z i Zz Cagy () ). (14)

Theorem 4 Given three operators7, T as in (10) and a

IV. SIGNATURE AND CONGRUENCE

Orthogonal projections and other approximation opera-
tions on inner-product spaces are possible due to the fact
that inner-product spaces carry a natu2ahorm. In this
section we shall introduce the notions of positivy, signature
and congruence for pd- and dp-operators. After that, we will
discuss how to truncate such operators in a fashion which
preserves their signature.

Given a self-adjoint pd-operat@r : U — U* one writes
G > 0 to indicateG is positive-semidefinite, i.e., satisfies

(Gu)(u) >0 forall weUl. (29)

If additionally the associated form is nondegenerate, one
writesG > 0 and say<7 is positive definite. If7 is positive-

kernel K € U @ V the following statements are equivalent:definite we call the associated form immer-product. For two

1) T = KG,
2) T* = GK,
3) K is a kernel representation @ w.r.t.G.

In particular, K is the reproducing kernel df with respect
to G if and only if K = G~ 1.

C. Evaluation Structures and Function Spaces

In this section we link our algebraic constructions to
the classical function space setup. We do this by using
evaluations. Since evaluations are linear, we will have to
conjugate them, in order to remain in the conjugate dual

space. More precisely, given a functional: U — K we
defineq; via 7j(u) = n(u)*. We call

ev|g :={ev,: U = K|z € Q}, (15)

an evaluation structureon U if ev, € U* for all points
z € Q in thedomain(). Given thatev,(u) = 0 for all z € Q
implies u = 0, the pair (U, ev]q) is said to form alinear
function space.

Remark 5 In linear function spaces it is common to identify

vectorsu € U with functionsQ — K,z — ev,(u) if the
evaluation structure is clear. In particular, one writgs)
instead ofev(u). We follow this tradition in Theorem 6.

Theorem 6 AssumeK € U ® V' given by (12) is the kernel
representation of" : U — V' with respect toG.

Moreover, assume thét/, ev|q) and(V, ev|z) form linear
function spaces and

9) = / F(2)9(2)" dp(z),

wherey, denotes a signed measure @nThen for allw € =
the following integral kernel representation holds

(16)

w= [ fE) K duz),  7a)
Q
W)= D, 0 wl2) uw), (17b)
where the integral kernet is given by
k:QxE 2K, k(z,w) =ev,(Kev,), (18)

or, equivalentlys(z, w) = ev, (Kev,,).
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self-adjoint pd-operator§, H : U — U* one writesG > H
andG > H if G— H >0 andG — H > 0, respectively.

Definition 7 Let G : U — U* denote a self-adjoint pd-
operator. LetZ(U) denote the latice of all linear subspaces

of U, vpr : M — U denote the natural inclusion and define
the numbers
ind_(G) = Mmgg( {dim M| — 3G >0}, (20a)
ind = dim M , 20b
ind4 (G) MIélgg(U){ im M | 3,G|n > 0}, (20Db)
indg(G) = Mrggg{(}){dimM | 3G v = 0}, (20c¢)

which we callnegative indexpositive index, andlegree of
degeneracy. Moreover, we define thignature

(@) = ind4 (GQ) — ind_(G). (21)

Remark 8 Similar definitions apply to dp-operators. Instead
of stating them twice we note thdt € U ® U admits and
interpretation as a pd-operator éhby looking at

K:U"—=U as K:U"—=U" modU— U".

In other words, we may think ok as a form onU* x U*.
All definitions for pd-operators such as positivity, signature,
etc., applymutatis mutandisn the context of dp-operators.

Definition 9 Let G : U — U*, H : V — V* denote pd-
operators, and{ : V* — V denote a dp-operator.

The operatorss, H are calledcongruentif there exists
a bijective operatofl’ : U — V such thatG = T*HT.
Similarly, the operatorss and K are calledcongruentif
G = TKT for some bijective pd-operatdf : V — U*.

Remark 10 Let K = 37", vy (y; @ »;) € V@V and
G : U — U* be congruent, i.e.G = TKT, for some
bijective operatorl’ : V' — U*. There holds

n

(Gu)(v) = ) aj; (Ty;)(w)"(Tz)(v).  (22)

1,j=1

In Theorem 11 we quote the celebratiedv of inertia of
Sylvester in this coordinate free context.
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Theorem 11let G : U — U* denotea pd-operator
congruenttoH : V — V*and K : V* — V. Then

o(G) =o(H) = o(K), (23)
and all operators have the same degree of degeneracy.

Definition 12 Given a dp-operatok : U* — V with

ImK=Y and ImK = X, (24)
we denote theruncated version of by K, where
K.:X* =Y with K.({yx)=K{, (25)

for all ¢ € U* is indeed well-defined. I’ = X one says
that K lifts X into U.

Theorem 13 1If K : U* — U lifts X into U, then the
truncated dp-operatorK, € X ® X is the reproducing
kernel of the subspack¥ C U with respect toG = (K,) .

Moreover, the signatures df and K, are equal.

Definition 14 Given a pd-operato6G : U — V* we define
the factor mapvia

Gy :U/X - (V/Y), Guu+X):=Gu+Y, (26)
for all w € U where
X :=KerG and Y :=KerG. (27)

Let Tx : (U/X)* — X+ andTx : (V/Y)* — Y+ denote
the natural linear identifications. The dp-operator

G,: X" =Yt with G, =TyGyTx, (28)

is calledthe truncated version afr. If X+ =Y one says
that G lifts X1 into U*.

Theorem 151f G : U — U* lifts X+ into U*, then the
truncated dp-operatoli, € X+ ® X+ is the reproducing
kernel of the subspac& C U* with respect to(G.)~!.

Moreover, the signatures @ and G, are equal.

A. Matrix Representations and Gramians

ach

and denoted by3 = {by,...,b,}.

Theorem 17 Let K : U* — V denote a dp-operator. For
any two base#3 andC of U andV respectively, there holds

c# B#
K= > K5 (0@c), (32)
and [K|2] = [K|]*. Moreover, there holds
&i(Kby) = [K|Z)i; and [nP]" - [KIZ)- [07].  (33)

In particular, K self-adjoint if and only if K|];; = [K|Z]7;.
In this case,[K|Z] is diagonalizable and

o(K)={ e A|XA>0}" —{AecA|X< 0}, (34)

where A denotes the eigenvalues [@f |Z]. In particular the
kernel K > 0 if and only if [K|2] > 0.

Theorem 18 Let B and C denote bases of the linear spaces
U and V, respectively. Given a pd-operate¥ : U — V*
andj < B# i < C# there holds

[G13)ij = (bjr i) (35)
i.e., [G|¢] is the Gramian of the forn{-,-) : U x V — K

associated with the pd-operatd¥. If the associated form is
non-degenerate, there holds

<ﬂ=2i2iw®ﬂwmm”

Corollary 19 LetG : U — U* denote a pd-operator whose
associated form-,-) is an inner-product. The reproducing
kernel of U with respect toGG is given by

K=3" bob,

, by, is arbitrary basis ofU which is orthonor-

(36)

whereb, ...

Matrix representations, especially in spaces that admit 82! With respect to the inner-produgt, -).
natural choice of basis, provide a way to do computations
in the context of forms. In particular they allow to compute
signature and the the reproducing kernel of form. Before we

V. EXPLOITING STRUCTURED SPACES ANDFORMS

discuss this we shall first fix the notation. The uniguoatrix
represenatiorof an operatofl’ : U — V' with respect to the
basesB = {by,...,by} andC = {cy,...,¢c,}, of U and
V, respectively, is denoted H¥'|S] € K™*™ and defined by

Th; = [T|5]y ex + -+ [T15]nj cn, (29)
forallj =1,...,m. Foru € U we denote byu|?] € K™ its
coordinate vectomwith respect to the basiB or equivalently

w= [ul7ib + -+ [ul b (30)

Definition 16 Let B = {b,...,b,} denote a basis o¥.
The conjugate dual basisf U* with respect toB C U is

bi(u) = [u|?]* forall wel, (31)
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Historically speaking, Hermitian forms, and therefore
inner-products, have been developed by Hermite for the study
of root location problems. The treatment back then was
algebraic and centered around highly structured quadratic
forms such as Bzoutians. In section V-A we introduce the
language of intertwining operators to describe the structure
of these forms. In Section V-B we study Hankel angzBut-
operators from this abstract point of view.

Quite recently the algebraic approach had a revival in
linear system theory with the introduction of quadratic differ-
ential forms. These form inner-products on the state space.
However, the state space admits no natural interpretation as a
function space. Still, these quadratic differential forms admit
an interpretation as kernels as we shall see in Section V-C.
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A. Intertwining Maps and Forms

Definition 20 An operator?T’ : U — V is said tointertwine

the operatorsA : U — U andB : V — V if
TA = BT. (37)

If T is bijective, thend and B are calledsimilar. A subspace
X C U is called A-invariant if Ax € X for all z € X. For
A-invariant subspac& C U the operator

Agx :U/X - U/X via Ayx(u+X)=Aut+X, (38)
is well-defined and calledl modulo X.

Theorem 21 Let A, B denote two operatorsi : U — U
and B : V — V and consider a dp-operatok such that

K:U"=V with KA*— BK. (39)
Then, K B* = AK. Moreover,
X=ImKCU and Y=ImK CV, (40)

are A- and B-invariant, respectively. The truncated kermnel,ang 4 ¢ 7 denote a polynomial wittKer H = Im g(S)

given in Definition 12, satisfies
K, Ax = (By)" K.. (41)

In other words, the truncated kernel intertwindsrestricted
to X and the adjoint ofB restricted toY'.

Theorem 22 Let A, B denote two operatorsi : U — U
and B : V — V and consider a pd-operatatz such that

G:U—V* with GA=DBG. (42)
Then,GB = A*G. Moreover,
X=KeeGCU and Y=KerGCV, (43)

are A- and B-invariant, respectively. The factor magy,,
given in Definition 14, satisfies

GyAyx = (Byy) Gy,

i.e., the factor map intertwined moduloKer G and adjoint
of B moduloKer G.

(44)

Theorem 23 If K € X ® X is the reproducing kernel of a

subspaceX C U with respect toG : X — X*, thenK is
intertwines A*, B if and only if G is intertwinesA, B*.

B. Hankel Forms and &outian Kernels

Let U := K[z] denote the polynomial ring in the indeter-

minantz with coefficients inK. Moreover, letS denote the
shift S given by
S:U—U with (Sp)(z):=x-p(z).

For ¢ € U let ¢ denote the unique polynomial such that

q(8)" = q(5™). (46)

(45)

Then,U — U, g — ¢ defines a conjugate linear map which

Theorem 24 Let Z C U denote a subspace and define the
conjugate space := {C|¢ € Z}. The following conditions
are equivalent:

1) Z is S-invariant.

2) Z is S-invariant.

3) Z =Imgq(S) for someq € U.

4) Z =Tm(S) for someq € U.

Definition 25 We call H : U — U* a Hankel operatorif it
satisfies the Hankel functional equation

HS = S*H. (47)

Similarly, we call K € U ® U a Bézoutian kerneif K lifts
X =span{2°,...,2"} into U and

SK -KS*eZ®Z, (48)

for somesS-invariant subspac& C U which is complemen-
tary to X, i.e., satisfiesX + Z = U with X n Z = {0}.

Theorem 26 Let H : U — U* denote a Hankel operator

Then,H = 0 or H is of the form

1 f(z)-9(2)
H = lim —f —_
(Hf)(g) = lim o b, aC2)
wherep € K]z] is such thatp and ¢ are coprime and/q is
strictly proper. The rational functiop/q € K(z) is uniquely
determined byH and called thesymbol of H. The adjoint
of H is of the form

p(z)dz,  (49)

1 - g
L 09,
p—00 271—] |z|=p Q(Z)
and Ker H = Im¢(S). The matrix[H|*] representingH
w.r.t.the standard basig?,...,z" !, with n = deggq, is
called Hankel matrix and satisfies,

Wig = firmr With ()=~ fiz" (B1)

forall i,j =1,...,n. In particular H is determined by the
first 2n—1 coefficients of the Laurent expansion of its symbol
f around infinity.

(Hf)(g) (2)dz,  (50)

[H

In Theorem 27 we characterizeéBoutian kernels and
comment on their relation to Hankel operators.

Theorem 27 The kernelK € U @ U with
K=Y e )
Ky =) _ oia'y,

and o;; € K is called a Bezoutian kernel if and only if it
satisfies one of the two equivalent conditions

(z —y)K(z,y) = q(x)d(y) — d(x)q(y), or
SK — KS* =d(y) ® q(z) — 4(y) @ d(),

(52a)
(52b)

(53a)
(53b)

conjugates the coefficients of its argument. By using the 2tne associated form of the Hankel operator is caliesidual form

natural evalation we havg(z) = ¢(z*)* for all z € K.

1165

because H f)(g) denotes the sum of the residuesut) f(2)g(z)/q(z)
at the zeroes of(z).
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with d, ¢ € U sud thatdeg(q) > deg(d). If this is the case,
then K intertwines S; and S, whereS,,S; : U — U are
operators given by

(Sgf)(x) =z - f(x) (54a)
(Saf)(x) == f(x) (54b)

respectively. MoreoverK lifts X = span {z°,..., 2771},
with n = deg(q), into the ambient spac®. In particular
the truncated versionk, is the reproducing kernel ofX
with respect toK . If d and ¢ are coprime, thenk[ ! is
congruent to a truncated Hankel operatéf, with symbol
p/q where

mod ¢(z),
mod §(x),

p-d=1 mod g, (55)

and Ker H = Im¢(S). In fact (K 'f)(g) is given by the
right hand side of equation (49) for alf,g € X.

Remark 28 The classical notation for (53) is given by

K(z,y) = q(ﬂs)d(yg)c - Cyl(l‘)q(y) 7 (56)

some, and then any, operator: X — K where(A4,C) is

an obsevable pair, there exist)a: X — X* s.t3
Q>0 and S;Q+QS;=-C"C. (63)

There exists uniquék’ € X ® X and7 € X such that
Q =HKH andC = (1 ® #)H which yields

C*C=H{F®1)(1eM)H,
S;Q+QS;=S;HKH+ HKHS;.

(64a)
(64b)
The observability ofC' is equivalent to the coprimeness of

r andgq. Multiplying (64a) and (64b) by ~! from the left
and H~! from the right we obtain

—F@i=H'S;HK + KHS;H ' (65a)
=H 'HS,K + KS;HH (65b)
=S,K +KS;. (65¢)

If such aK € X ® X exists, thenK (z,y) := Y a;; 2'y? is
given by

where one says that (56) is the generating function of the

Bézoutian and the matrijs
C. Stability Theory

] is calledBézoutian matrix.

Given a polynomial € K[z] we define the corresponding

autonomous behavioria
B = {w € C*(R,K) [ ¢(d)w(t) = 0}, (57)

where (Ow)(t) := w(t) for all ¢ € R. Moreover, we define
the time shifte™ : B — B via

(c"w)(t) =w(t—7) foral weB. (58)

The behavior B is called asymptotically stable if
(c"w)(0) — 0 asT — oo for all w € B. The natural

guestion emerges, on what condition the coefficients; of

have to satisfy in order foB to be asymptotically stable.

The origininal approach by Fuhrmann and Willems in [1]

is centered around the Hankel operafdrwith symbol1/q
defined in (49) and restricted to

X = {f € K[s]|deg(f) < deg(q)}- (59)

A bijective operatorF : B — X* which links the spacé&
and the conjugate dual of is given by

(Fw)(f) :== (f(@)w)(0) forall fe X ,weB. (60)

q(x)d(y) + d(x)q(y) — 7 (2)r(y)

K (x,y) = Ty . (69)
wherethe polynomiald € X must solve
¢()d(~z) + d(2)§(~z) = F(z)r(~z), (67)

to ensure that (66) indeed defines a polynomiatiand y.
We arrive at the following result.

Theorem 30 The behaviorB is asymptotically stable if and
only if for one, and then any, polynomiale X, such thaty
and r are coprime, the equation (67) admits a solution and
K(z,y) = > a;jz'y? given by (66) satisfies > 0.

Since@ and K are congruent we haw@ > 0 if and only
if K >0, i.e., the coefficient matrixv is positive definite.

In order to relate this to the quadratic differential form
approach, initiated in [9] by Willems and Trentleman, we
note that the differential forn¥ : B — B* given by

(Tv)(w) = Z o (0™)(0) (?w)(0)* Yuv,w € B, (68)

is congruent toK via ¥ = FKF. Again we havel > 0
if and only if « is positive definite. In particula) > 0,
K >0,¥% >0anda >0 are all equivalent.

Theorem 29 Given S, S; as in (54). The operator defined  Clearly, checking stability with instead ofQ = HK H is

in (60) satisfies

(Fow)(f) = (Fw)(Szf) and (61a)
(FoTw)(f) = (Fw) (e f), (61b)

forall T € R, f € X andw € B. In particular
eTf 50 (tr—o00) foral feX, (62)

if and only if B is asymptotically stable.

conceptualy more sound because it avoids the construction of
the state spac& and the auxiliuary Hankel operatéf. The
advantage of the Hankel form method is that standard results
from state space theory can be directly applied to higher
order differential equations without destroying structure. We
did not discuss this, but we want to mention, that the Hankel
form method is also more closely related to realization theory
and standard companion matrices. The connection between
both approaches is the congruence transformafion

Using the classical Lyapunov’s stability test and state-
space theory one verifies that (62) holds if and only if for 3The mapC* : K* — X* is regarded as a mag — X* by K = K*.
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VI. CONCLUSIONS

Reproducingkernels have many important applications
not only in functional analysis, but in statistics, control
theory and machine learning, as well. Their theory developed
impressively in the last decades, but the classical results on
kernels concentrated on Hilbert spaces of functions.

In the paper we presented a purely algebraic approach
to reproducing kernels. This approach is versatile in the
sense that it can handle bilinear and sesquilinear forms that
are not necessarily positive definite. Moreover, it extends
the existing reproducing kernel theory from linear function
spaces to general linear spaces. We showed that our approach
makes it easy to exploit algebraic structures induced by
intertwining relations. As opposed to a function space point
of view, in our approach quotient space structures form no
obstacle. The Classical&outian is shown to be a bona
fide kernel in this context. Additionally, the importance of
the Hankel operator as a congruence transformation has
been highlighted. Future work is planned on adding suitable
topological regularity conditions to handle kernels of infinite
rank. Another point of interest is the extension of the theory
to operator valued kernels. This means switching from the
scalar-valued reproducing property to a vector valued one.
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