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Abstract We consider the identification of ARX systems which are observed via a binary sensor.
Previous solutions typically assumed the complete knowledge of the noise distribution and that
the inputs can be chosen by the user. Here, we only make mild assumptions on the noise and
we make no assumptions that we can control the inputs. However, we assume that we can
choose the threshold of the binary sensor or, equivalently, we can apply a dither signal to the
system. We propose two recursive algorithms for this problem. The first one is based on an FIR
approximation of the ARX system and requires post-processing. We prove that it provides a
strongly consistent estimator. The other algorithm estimates the parameters directly, without
post-processing, by simultaneously estimating the parameters and the outputs of the system.
Numerical experiments which show that both algorithms work effectively are also presented.

1. INTRODUCTION

Estimating parameters of dynamical systems based on
noisy observations is one of the fundamental problems
of system identification (Goodwin and Sin [1984], Ljung
[1999]). In some situations only quantized measurements
are available, due to, e.g., limited sensor capacities or
signal coding. Quantized variants of estimation problems
were studied, for example, by Colinet and Juillard [2010],
Wang et al. [2010], Casini et al. [2011], Godoy et al.
[2011], but, with a few exceptions (Gerencsér and V&gé
[1999], Weyer et al. [2009]), only for the case when the
characteristics of the noise are known, e.g., its cumulative
distribution function (CDF) is invertible and known to the
user and its density function is continuously differentiable.

However, making strong assumptions on the noise is un-
desirable as the noise characteristics are often unknown.

Here, we try to reduce the statistical assumptions on the
system and do not presuppose the knowledge of the noise
distribution or that we can choose the inputs. We follow
our previous framework (Csdji and Weyer [2011]) and
assume that the threshold of the binary sensor can be
changed at each time step or, equivalently, we can apply a
carefully chosen dither signal to the system.

We propose two recursive estimators which, as we will see,
can also be seen as “sign-error” type stochastic approxi-
mation algorithms (Chen [2009]). The idea of Algorithm
I is to approximate the system with an FIR model and
estimate the ARX parameters via a post-processing step.
We will show that this estimator is strongly consistent and
its error is asymptotically normally distributed.

Our other proposed recursive estimator, Algorithm IT, does
not require any post-processing, it directly estimates the
true parameters by simultaneously estimating the outputs
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(the hidden states of the system), too. We will also present
results of numerical experiments which demonstrate the
effectiveness of both recursive estimation methods.

1.1 Outline

After this introductory Section 1, in Section 2 we precisely
define the problem and state our general assumptions.
Then, in Section 3, we give the fundamental form of the
solution algorithms, describe in details the two recursive
estimators and prove that the first one is strongly consis-
tent. In Section 4 we present numerical experiments on
a 2nd-order ARX system which demonstrate that both
algorithms work well. Finally, Section 5 summarizes the
paper and highlights some further research directions.

1.2 Notations

If..., Xy 1, X, Xiy1,... is a (one- or two-sided) sequence
(e.g., of random variables), the whole sequence is denoted
by (Xt):. Symbol R stands for the field of real numbers,
while P denotes probability and E denotes expected value.
Variables with capital letters usually indicate random vari-
ables, while variables with small letters are deterministic
(constants). Symbol = represents a defining equation, i.e.,
the left hand side is defined to be equal to the right hand
side. Term “independent and identically distributed” is
abbreviated by “i.i.d.” and (-)T denotes matrix transpose.
Function I(-) denotes the indicator function, whose value
is 1 if its argument (a formula) is true and 0 otherwise.

2. PRELIMINARIES

In this section, we introduce the problem of binary identi-
fication of ARX models as well as present the general form
of the proposed recursive estimation algorithms.
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2.1 Problem Setting

Let us consider the problem of identifying the parameters
of an ARX system based on binary observations:

P q

X £ ZGZXtﬂ‘ + beUtﬂ‘ + NV, (1)
i=1 i=1

Y £ (X, < Cy), (2)

where X;, U; and Ny denote the output (hidden state), the
input and the noise at time ¢. The user can only observe
the inputs, (U;), and the binary outputs, (Y3):, while the
thresholds of the binary sensor, (C}):, can be controlled
at each time-step ¢. The aim is to identify (estimate) the

“true” parameters, 0* = (af, N Y P b;) € R,

The binary output can be rewritten as follows

Yi = I(g/ 0" + Ne < ), 3)
where the (random) vector ¢; € RPT? is defined as
Yt = (Xt717'-'7Xt7ant717"'7Ut7q)' (4)

Note that “choosing the threshold” can also be seen as
a special form of “dithering”, namely, adding a carefully
chosen noise term to the output Xy, i.e.,

Y, = I(X; — C; <0) = I(pf0* + Ny — C; <0), (5)

therefore, changing the threshold is equivalent to using a
system with a fixed threshold, but applying an additional
term, —C}, at each time step t. The two perspectives on
the problem are illustrated by Figure 1.

2.2 System Assumptions

In this paper, we will apply the following assumptions on
the system, the (observed) inputs and the (hidden) noises:

Assumption 1. (Ny); is i.i.d., continuous, zero mean, zero

median, has a finite variance: 02 = E[N?] < oo, and has
a continuous and positive density at zero (thus o2 > 0).

Assumption 2. (Up)y is i.d.d., zero mean, (U;); and (Vi)
are independent, and 0 < 02 < oo, where 02 = E[U?].

Assumption 3. The system is stable, namely, the roots of
the polynomial A*(z) lie strictly inside the unit circle; ad-
ditionally, the transfer function B*(z)/A*(z) is irreducible,
i.e., there are no pole-zero cancellations, where

b
*
—
N
~—
|

Ay * _—1 * —2 * —p
l—ajz™" —a3z " — - —ayz 7, (6)

T bR b, (7)

Sy
*
—~
I3
~
(1>

where 27! is the backward shift operator, 2 x; L
We also assume that the orders p and ¢ are known.

2.8 Underlying Probability Space

Let (Q, F,P) be the underlying probability space, where {2
is the sample space, F is the o-algebra of events and P
is the measure. We denote the o-algebra generated by the
past of the process up to time ¢t > 0 by F; C F,

]:t é O’{Nt,Nt_l,...,Ut,Ut_l,...,ét,...,éo}, (8)

where (F3)ter is a filtration, viz., a nondecreasing sequence
of o-fields. Random variables (Y)}_, are F; measurable
and we only need to include (6;)¢~0 in (8) if want to apply
some additional randomization for the estimates.

3. RECURSIVE ESTIMATION

In this paper we propose two recursive identification meth-
ods (Ljung and Soderstrom [1987]) for finding 6*. First,
we will define the general form of the algorithms, then, we
will specify the step-sizes and the expanding truncation
of the iterations. Finally, we will present and analyze the
proposed recursive estimation algorithms.

Algorithm I applies a FIR approximation of the system.
This method requires post-processing in the form of a
matrix inversion, in order to get an estimate of parameter
0*. We will prove that, under the assumptions above,
Algorithm I provides a strongly consistent estimator.

Algorithm IT does not require any post-processing, it works
by simultaneously recursively estimating 68* and ;.

Both algorithms generate a sequence, (ét)t, such that at
time ¢ either 6, itself is the estimate of 8* (Algorithm II)

or there is a measurable function f(-), such that f(6;)
is the estimate of 6* (Algorithm I). In both algorithms,
the threshold of the sensor at time ¢ is set according to

C, = @tTét, where @, is an appropriately chosen regressor.

(a) adjustable threshold Nt
perspective l
1
A*(2)
B*(z) ]
H—v > Y
Ut " A*(Z) Xt t

binary sensor with an

adjustable threshold

(b) dither signal
perspective

B*(2)
A*(2)

v
~
~

binary sensor with a
fixed threshold at zero

Figure 1. The perspectives of (a) applying an adjustable
threshold and (b) inserting a dither signal.
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3.1 General Form of the Algorithms

The general form of both proposed algorithms is
ét+1 = HMH(t)[étﬁ’Oét@t(l*z]I(Xt S@?éf)}, (9)

where @, is a regression vector defined differently in the
two algorithms, (a;) is a sequence of step-sizes and Il
is an appropriately chosen sequence of projections, to
prevent the iterations from growing too fast.

Assuming that Ny is continuous, we (P-a.s.) have that
sign(X, — 91 0) = 1-21(X, <{0),  (10)
where sign(-) is the signum function, i.e., sign(z) = —1 if

x < 0, sign(z) = 1if > 0 and sign(z) = 0 if z = 0.
Therefore, the algorithm (9) will behave almost surely as

Or41 = HM,L(“[ét + o By sign(X; — 37 0y) }7 (11)
which is a “sign-error” type algorithm with expanding
truncation bounds (Chen and Yin [2003]). This kind of
stochastic approximation algorithms typically arise if the

L1 optimization criterion is applied. They can also be seen
as variants of the least-mean squares (LMS) algorithm.

3.2 Step-sizes
Algorithm (9) is a stochastic approzimation algorithm

(Kushner and Yin [2003]) for which it is typical to assume
that the (possibly randomized) step-sizes satisfy (P-a.s.)

oo
Zat = 00, (12)
t=0
Z a? < oo (13)
t=0

VE>0:a; > 0. (14)

Condition (13) can often be weakened to lim; o ap = 0
(Kushner and Yin [2003]). Here, we will simply apply

Assumption 4. ap =1 and Vt>0:a4 =1/t.

which is the archetypical choice of step-sizes. Note that in
practice, a small, constant step-size could also be applied,
in order to achieve tracking of time-varying parameters.

3.3 FExpanding Truncation Bounds

If (M;): is a sequence of (strictly) monotone increasing
positive real numbers with M; — oo as t — oo, then we
define a sequence of random variables p(t) as follows

p(t) =

%

1
H(|é1 + Aél| > Mlt(i))’
1

(15)

where I(-) is the indicator function, as before, and Af; is
Ab; 2 o, 3:(1 - 21(X; < 310))), (16)
where the notations are the same as previously.

Given a positive real M, projection Il is defined as

xzif x| < M,

0 otherwise, (17)

My () 2 {

where ||-|| is an (arbitrary) norm, chosen by the user.

Therefore, the estimates are projected back to the origin,
each time they leave a given closed norm ball; furthermore,
the radius of this ball is increased each time the estimates
leave it. Since this radius goes to infinity, the estimates
will eventually almost surely stay inside the ball.

The use of the origin to which we project the iterations
back is only for convenience; any other interior point of the
bounding sphere could be applied (Chen and Yin [2003]).

8.4 Algorithm I: FIR Approxzimation

In the first algorithm, we will consider a finite impulse
response (FIR) approximation of the ARX system and
estimate the parameters of this FIR approximation. As
we will see, by assuming the knowledge of some (finitely
many) input weights, the “true” system parameters, 6*,
can be easily computed by a simple matrix inversion.

First, note that (1) can be written in the form of

X = ZC;‘th +Zd:Nt*i’
i=1 i=0
*)oo

where (¢})2, and (d})2, are the impulse responses. We
will approximate this system with an FIR system of order
p + q, more precisely we will consider the representation

(18)

Xy = @ 0"+ W, (19)
where the vectors @; and #* are defined as follows
@t 2 (U=, Up—p—g)", (20)
0 £ (i, o) (21)
and W; is simply the unmodelled part of the system
Wy & > Ui+ Y diN, ;. (22)

i=p+q+1 1=0

An easy computation shows that if we can estimate 6%, we
can also estimate the true parameter vector 6*.

We can observe that given model (1) parametrized by the
vector (a1,...,ap,b1,...,by), we can compute all input
parameters, (¢;)2,, of problem (18) by the recursion

i—1
¢ =b; + Z Qj Ci—j, (23)
J=1

with the convention that a; £ 0 if j > p and b; £ 0 if
7 > q. We treat the empty sum as zero, hence, ¢; = b;.

Then, we obtain parameter #* from 6* by writing the above
recursion in a matrix form and inverting it. More precisely,
there is a measurable function f, such that

0 = f(0"), (24)
where f : RPT9 — RPH4 is defined for a vector 6 as
_ G(0)7'0 if det(G(0)) #0,
0) £ 25
1) {O otherwise, (25)

1187



16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

where G(0) is a (p + ¢) x (p + q) matrix parametrized by

vector 6 = (c1,¢2,. .., Cpyq). Matrix G(8) is defined as
_ 0) I
T -
where I is the p x p identity matrix and Gy () is
I 07
cgt O
GO 2| ., ¢ , (27)
0
[ Cp—1 "'+ C2 0_
a p x p matrix, while G(0) is a ¢ X p matrix,
¢ - e c
@) 2 cp.+1 6.3 c2 (28)
Cp+'q*1 Cq.+1 C.q

Note that G(0*) is always invertible because of the as-

sumptions on the system. Moreover, if 0, is the estimate
provided by recursion (9) at time ¢, then it is easy to see

that random variable f(f,) is F;-measurable.

Now, we specify Algorithm I by defining @; £ @, cf.
equation (20). The next theorem shows that, after post-
processing the iterations with function f, Algorithm I
provides a strongly consistent recursive estimate for 6*.

Theorem 1. Let (ét)fio be the sequence generated by recur-
sion (9) with p; = @¢. Then, under Assumptions 1-4, f(0;)
converges (P-a.s.) to 6%, as t — oo, for any 0y € RPTY.

Proof. First, note that it is enough to prove that 6, — 0
almost surely as ¢ — oo, since function f is continuous in a
(small enough) neighbourhood of 6*. This local continuity
of f simply follows from the continuity of matrix inversion
and the fact that G(0*) is invertible (cf. Assumptions 3).

We will prove that 8, — 6* as t — oo (P-a.s.) by applying
Theorem 3.5 of Chen and Yin [2003], which states that if
process (Xy, @t) is stationary and ergodic as well as the
following matrix is (well-defined and) positive definite

E[X5] E[Xopg ]
E[Xogo] E[@o@; |

then d(f,,S) — 0 as t — oo (P-a.s.), where (8]); is the
sequence generated by (11), ay = 1/t, set S is defined as

S £ {6° R E [@osign(Xo — ¢ 0°)]=0}, (30)

r >0, (29)

and d(-,-) is a metric based on an (arbitrary) norm.

Our theorem is about sequences generated by iteration (9),
but as it was noted earlier, if N; is continuous (Assumption
1), then the sequences generated by iterations (9) and (11)
are (P-a.s.) the same (assuming the same initial estimates,

0o = 0()). Thus, it is enough to study iteration (11).

Therefore, in order to prove Theorem 1, we have to prove
the following three claims: (i) process (Xt, ;) is stationary

and ergodic; (ii) matrix I' is positive definite; and (iii) the
vector 0* is the only element of the set S, i.e., S = {6*}.

Part (i): First, we will argue that the process (X¢, @¢):
is stationary and ergodic. It is easy to see that (@;):
is stationary, since the input sequence (U;): is an i.i.d.
process. Its ergodicity follows from its m-dependence, with
m =n—1,ie., ¢; and ¢; are independent if [i —j| > n—1.

Now, we have to show that (X;); also has these properties.
If we consider the representation (18), it can be seen
that (X¢): is the sum of two processes and both of these
processes are filtered i.i.d. sequences, where the filters are
linear and stable. Therefore, both of these are stationary
and ergodic, moreover, since they are independent, their
sum, i.e., (Xy)y, is also (strictly) stationary and ergodic.

Part (ii): Next, we will prove that matrix I is positive
definite. In our case (Assumptions 1, 2), " takes the form

_| P Q
r—[QTR] (31)
where P =E[X¢] is a scalar defined as
P 252 Z c? 4o Z di?, (32)
i=1 =0

where 02 and o2 are the variances of the noise and the
input, respectively. Vector @ = E [ Xo@{ | is

A *x 2 * 2

Q = (ClUu7C§0'Z,~-- acp+qau)' (33)

Finally, matrix R = E[@o@g | is simply 021, where I is
the p+ g x p+ ¢ identity matrix. Since I' is symmetric and
R is positive definite, the positive definiteness of I' follows
from the positive definiteness of the Schur complement of
R (see, e.g., Corollary 14.8.6 of Harville [1997]). We have

P-QR'Q"=0> ¢?+o2> d =02 >0, (34)
i=p+q+1 7=0

since dj; = 1 and o2 > 0. Therefore, I' is positive definite.

Part (iii): Now, we will show that (a) vector §* € S and,
moreover, (b) this is its only element, S = {6*}.

We can observe, that #° € S if and only if #° minimizes
the L; (or least absolute deviations) error criterion,

0° € argming E ’ Xo — @OTé ) (35)

since function g(f) £ —E [ @ sign(Xo — @g )] can be seen
as its (sub)gradient, which must be zero to minimize it.

First, we show that g(6*) = 0, which proves that * € S.

This is indeed the case, since we have

9(6") = —E[@osign(Xo — @5 0°)] = —E[@osign(Wo)] =
= —E[@o] E[sign(Wo)] =0, (36)

where variable W, is defined according to equation (22).

The uniqueness of the solution follows from the classical
theory of L; linear regression. More precisely, assume that
there is a vector 6° € S such that 6° # 6*. Then, this
solution also minimizes the L; loss function, an thus

10°)=E|Xo—@30°| =E | No + @5 (6 — 6°)
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=E[E|No+¢(0*—6)|1G]. (37)

where G is the o-algebra generated by random variables
U_1,...,U_p_q. Thus, the loss function ! is minimized if

E[|No+ @5 (0" —0°) 1G] (38)

is minimized. Since Ny is independent of G and it has a
unique median zero (Assumption 1), @g (6* —0°) =0on G
almost surely. But (using Assumption 2) this can only be
the case if 0° = 6* (see, e.g., Lemma 3 of Bloomfield and
Steiger [1983]). Hence, we have showed that S = {6*}.

Therefore, by Theorem 3.5 of Chen and Yin [2003], (P-a.s.)

Jim |6 — 67| = 0. (39)
Moreover, as it was highlighted, f(-) is continuous around
0* and thus there is an index %, such that for all t > tg:

G(6,) is invertible and as 6, — 6% we also have that
f(0;) — f(0*) = 6*, which completes the proof. O

An interesting question is the rate of convergence of such
algorithms. By the “rate of convergence” we mean the
asymptotic properties of the normalized estimation errors
around point 6*. We should find a scaling factor, @ € (0, 1),
such that ¢*(6; — 6*) has a non-trivial limit distribution.
As it was shown by Chen and Yin [2003] for sign-error
algorithms, the scaling factor is & = 1/2 and, furthermore,

for large enough t, \/f(ét — 6*) is approximately normal.

3.5 Algorithm II: Simultaneous State Estimation

In the previous section we saw that Algorithm I provided
a strongly consistent estimator, moreover, the estimation
error was approximately normal. However, Algorithm I
requires post-processing in the form of a matrix inversion,
which could become numerically sensitive if matrix G(9)
is ill-conditioned. Additionally, the noise that Algorithm I
needs to handle is “larger” than N;, more precisely, it is

oo oo
Wy = Z C:Ut—i‘i‘zd:Ntfia
i=ptq+1 i=0

(40)

which can also slow down the convergence of the algorithm.

In this section we will present another recursive estimator
that does not need any post-processing and does not
require to treat the unmodelled part of the system as part
of the noise. Hence, it has numerical advanteges.

The main idea of our Algorithm II is to achieve a direct
estimate of #* by simultaneously maintaining an estimate

for the output, )A(t and for the parameter, ét, at time t.
The algorithm starts with setting the estimate of the past
outputs of the hidden process to zero, and it constructs a
sequence of output estimates recursively as follows

s S0 i X1+ by i £>0
! 0 otherwise,

where (a,)"_, and (by;)?_, are the estimates of the true
parameters at time ¢t. Algorithm II is also defined as (9),

ét—‘,—l = HMH(t)|:0At + o @t (1 — 2]I(Xt S @rtrét> ], (41)

by setting the components of this general recursion to

@t = (thlw--aXt7p7Ut717“‘7Ut7q)T7 (42)
Op 2 (g1, - ey Gepy bty ooy big)" (43)
Though, we cannot expect our estimates ()?t_l, e ,)A(t_p)

to eventually reach the true outputs (states) of the system,
since the process progresses to a new state in each iteration
and we only have binary measurements about its past, our
numerical experiments support that this algorithm is also
an efficient way of estimating parameter 6*.

4. EXPERIMENTAL RESULTS

The two recursive estimation methods were tested on a
second order ARX system. More precisely, we investigated

the identification of the following ARX process
X £ a1 Xy 1+ a2 Xy o +b1Ui1 + b2Us_o + Ny, (44)

where the inputs, (U;)¢, were i.i.d., standard normal, and
the noises, (V;):, were ii.d., zero mean Gaussian with
variance 1/4. The true system parameters were set to
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Figure 2. Recursive estimation with Algorithm I (based on
FIR approximation); dashed lines: location of the true
parameters, solid lines: evolution of their estimates.
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dashed lines: true parameters, solid lines: estimates.
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a)p = 02, g = 03, b1 = 04, bQ = 05, (45)

and the initial conditions were X_; =0 and X_5 = 0.

The initial parameter estimates were all set to zero, as
well, y = (0,0,0,0), and the step-sizes were ay = 1/t. We
applied My = 103 as the (first) truncation bound, which
was never reached, hence it did not affect the iterations.

Figures 2 and 3 demonstrate the progress of Algorithms I
and II, respectively. They show that after 300 iterations,
the estimated parameters became “close” to the real
ones. The convergence was quick for both algorithms,
however, it can also be seen from the figures that, in these
experiments, Algorithm II exhibited smaller fluctuations
than Algorithm I did. An explanation of this could be the
larger noise terms that Algorithm I needed to handle.

The estimates approached the true system parameters
for both algorithms. These experiments agree with the
theoretical results regarding Algorithm I and support our
expectation that Algorithm IT is also (strongly) consistent.

5. CONCLUDING REMARKS

In this paper the identification of ARX systems via binary
sensors has been analysed and two recursive estimation
methods have been proposed. In contrast to the previous
approaches to this problem, which typically presupposed
the complete knowledge of the noise distribution and that
the inputs can be chosen by the user, we only made mild
assumptions on the noise and assumed that the inputs can
only be observed, but they cannot be changed. However,
we made the assumption that the threshold of the binary
sensor is adjustable, it can be set in each step.

Note that our problem setting can be reformulated in the
framework of binary identification with a non-adjustable,
fixed threshold, in case a dither signal is allowed.

This paper can be seen as a generalization of our ear-
lier work (Cséji and Weyer [2011]) in which we investi-
gated the identification of constants via binary sensors
with adjustable thresholds. In that paper we showed that
under minimal assumptions (i.e., the noise process is a
mediangale and its conditional CDFs almost surely do
not converge to 1/2 at any nonzero point), a strongly
consistent estimator can be given. The proposed recursive
estimator was based on stochastic approximation. It also
had an easy extension to FIR systems, in case the inputs
can be chosen by the user. In this paper we generalized
these ideas to the binary identification of ARX systems
without assuming the controllability of the input.

We have suggested two recursive identification algorithms
to estimate the unknown true parameters of the process.
Algorithm I applied an FIR approximation and required a
matrix inversion to get an estimate of the original system
parameters. We argued that it was a strongly consistent
estimator and its error was approximately normal.

Then, we also introduced a second recursive estimator,
Algorithm II. This method simultaneously estimates the
outputs of the system together with the unknown param-
eters. It is an open question whether Algorithm II can also
almost surely find the true parameters, asymptotically.

Finally, we presented results of numerical experiments
about the suggested recursive estimators. These exper-
iments demonstrated that the parameter estimates pro-
duced by both Algorithms I and II efficiently approached
the unknown system parameters of a 2nd order ARX
system after “small” number data points.

Possible future research directions are (i) to prove (or
refute) the (strong) consistency of Algorithm II; (ii) to
analyze its rate of convergence; and (iii) to extend both
algorithms to more general systems, for example, to gen-
eralize the methods to Box-Jenkins models.
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