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Abstract We propose a new finite sample system identification method, called Sign-Perturbed
Sums (SPS), to estimate the parameters of dynamical systems under mild statistical assump-
tions. The proposed method constructs non-asymptotic confidence regions that include the least-
squares (LS) estimate and are guaranteed to contain the true parameters with a user-chosen
exact probability. Our method builds on ideas imported from the “Leave-out Sign-dominant
Correlation Regions” (LSCR) approach, but, unlike LSCR, also guarantees the inclusion of the
LS estimate and provides confidence regions for multiple parameters with exact probabilities.
This paper presents the SPS method for FIR and ARX systems together with its main theoretical
properties, as well as demonstrates the approach through simple examples and experiments.
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1. INTRODUCTION

Estimating parameters of dynamical systems from exper-
imental data is one of the fundamental problems of sys-
tem identification (Söderström and Stoica [1989], Ljung
[1999]). Classical solutions, such as the least-squares-, or
more generally, prediction error- and correlation- methods
typically provide point estimates and only offer asymptot-
ically guaranteed confidence regions.

In practical applications, however, only a finite number of
measurements are available, and the noise characteristics
are only partially known, moreover, the noise can as
well have changing intensity through time, i.e., it can
be nonstationary. Furthermore, in many situations, for
example, when the safety, stability or quality of a process
has to be guaranteed, confidence regions are needed in
addition to the standard point estimates.

A finite sample system identification method, called
“Leave-out Sign-dominant Correlation Regions” (LSCR),
was developed in (Campi and Weyer [2005], Dalai et al.
[2007], Campi et al. [2009], Campi and Weyer [2010]).
LSCR builds non-asymptotic confidence regions for pa-
rameters of various (linear and non-linear) dynamical sys-
tems under weak assumptions on the noise.

One important theoretical property of the LSCR algorithm
is that it constructs regions whose probability is rigorously
lower bounded, that is the user is guaranteed that the
regions contain the true parameters with a minimum level
of probability. However, the LSCR method is not able to
provide regions with exact probabilities when more than
one parameter is being estimated simultaneously.

In this paper, we introduce a new system identification
method, called Sign-Perturbed Sums (SPS), that provides

non-asymptotic confidence regions for multiple parameters
with exact probabilities, and which are guaranteed to
include the least-squares (LS) estimate. The main ideas
underlying the SPS method are to substitute subsampling
in LSCR with multiplications by random signs, and to
apply a norm to enforce a multi-dimensional ordering.

We begin with introducing the SPS method through sim-
ple examples. First, we consider Finite Impulse Response
(FIR) systems, then, after presenting a numerical exper-
iment, we generalize the algorithm to Autoregressive Ex-
ogenous (ARX) systems. Finally, a theorem is presented
about the guarantees of the constructed regions.

2. IDEAS AND INTRODUCTORY EXAMPLES

In this section, we introduce the main ideas in an informal
way through examples of increasing complexity. We post-
pone the more rigorous formulation of the assumptions,
the pseudo-code and our main theorem to Section 3.

2.1 First-order FIR Systems

We start by considering the simplest possible FIR model,
i.e., a first-order scalar system. Let

Yt , b∗1Ut−1 +Nt, (1)

where Yt is the output, Ut is the input and Nt is the noise
at time t. We limit the assumptions and only assume that
(Nt)t, which denotes the whole noise sequence, contains
independent random variables which are also independent
of the inputs, symmetrically distributed about zero, and
have densities 1 . No other assumptions are imposed, the
noise can be nonstationary with unknown distributions.
1 The density assumption is only introduced for simplicity.
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The available data are (Yt)
n
t=1 and (Ut)

n−1
t=0 . The goal is to

construct a confidence interval around the least-squares
(LS) estimate which is guaranteed to contain the true
parameter b∗1 with an exact and user-chosen probability.

The system (1) can be rewritten as a linear regression

Yt = ϕT
t θ

∗ +Nt, (2)

with ϕt , [Ut−1 ] and θ∗ , [ b∗1 ]. The assumption that
the inputs are independent of the noise ensures that the
regressors, ϕt, are exogenous 2 . In order to find the least-
squares estimate of b∗1, we first introduce the predictors

Ŷt(θ) , b1Ut−1 = ϕT
t θ, (3)

where θ = [ b1 ] is a generic model parameter. The predic-
tion errors (reconstructed noises) for a given θ are

N̂t(θ) , Yt − b1Ut−1 = Yt − ϕT
t θ, (4)

and the least-squares (LS) estimate is found by minimizing
the sum of the squared prediction errors, that is

θ̂LS , argmin
b1

n∑

t=1

(Yt−b1Ut−1)
2 = argmin

θ

n∑

t=1

(Yt−ϕT
t θ)

2,

which is achieved by solving the normal equation, i.e.,

n∑

t=1

Ut−1(Yt − b1Ut−1) =
n∑

t=1

ϕt(Yt − ϕT
t θ) = 0. (5)

Before we present our non-asymptotic confidence regions,
we recall the construction of the standard, approximate
confidence ellipsoids of the asymptotic theory.

Asymptotic Confidence Regions. It is known that, under
some moment conditions, the LS estimates are asymptoti-

cally normal. More precisely, let θ̂n denote the LS estimate

based on n data points, then
√
n (θ̂n−θ∗) converges in dis-

tribution to the Gaussian distribution with zero mean and
covariance Γ , σ2

0

(
E [ϕ0ϕ

T
0 ]

)
−1
, where σ2

0 is the variance
of the noise, assuming stationary noises and inputs.

The covariance of the error with n data points is approxi-

mately Γn , Cov(θ̂n−θ∗) ≈ 1/nΓ, which allows the con-
struction of approximate confidence ellipsoids based on the

fact that n (θ̂n−θ∗)T Γ−1 (θ̂n−θ∗) converges in distribution
to χ2(d), i.e., the χ2 distribution with dim(θ∗) = d = 1
degrees of freedom (Ljung [1999]). Usually Γ is not known
in practice, but it can be estimated. By using estimates
for σ2

0 and E
[
ϕ0ϕ

T
0

]
, a confidence region can be built as

Θµ
n ,

{
θ ∈ R

d : ‖ θ̂n − θ ‖2Φn
≤ µ σ̂2

n/n
}
, (6)

Φn ,
1

n

n∑

t=1

ϕtϕ
T
t , and σ̂2

n ,
1

n

n∑

t=1

N̂2
t (θ̂n), (7)

where the probability that θ∗ is not in Θµ
n can be computed

as the µ-level of the standard χ2 distribution.

The confidence regions constructed this way are random,

since they depend on θ̂n, σ̂n and Φn, which are random.
Moreover, they do not have rigorous guarantees and are
usually imprecise for small samples (Ljung [1999]).

2 Regressors that are statistically independent of the noise terms are
called (strongly) exogenous, otherwise they are called endogenous.

Non-Asymptotic Confidence Regions. Now, we introduce
our exact, finite sample confidence regions. As we will see,
their construction exploits the symmetry of the noise. Let

S0(θ) ,

n∑

t=1

ϕt(Yt − ϕT
t θ), (8)

and further introduce sign-perturbed normal equations

Si(θ) ,

n∑

t=1

ϕt αi,t(Yt − ϕT
t θ), (9)

for i = 1, . . . ,m − 1, where αi,t (t = 1, . . . , n) are i.i.d.
random signs, that is αi,t = ±1 with probability 1/2 each.

Observe that corresponding to the true value, θ∗, we have

S0(θ
∗) =

n∑

t=1

ϕtNt, (10)

Si(θ
∗) =

n∑

t=1

ϕt αi,tNt, (11)

where i = 1, . . . ,m−1. Note that since Nt is symmetrically
distributed about 0, Nt and αi,tNt have the same distribu-

tion. Now, consider the order of the (Si(θ
∗))m−1

i=0 from the
smallest to the largest 3 . Since (Nt)

n
t=1 and (αi,tNt)

n
t=1

have the same symmetric distribution, all orderings are
equally probable. I.e. there is no reason a particular Si(θ

∗)
should be bigger or smaller than another Sj(θ

∗) and the
probability that the sum Si(θ

∗) is the lth largest one is
1/m independently of i and l. Moreover, this ordering
property still holds if we take squares (i = 0, . . . ,m− 1),

Zi(θ
∗) , S2

i (θ
∗). (12)

A confidence interval for θ∗ can now be obtained as follows.
Compute Zi(θ) = S2

i (θ), i = 0, . . . ,m − 1, for a generic
parameter value θ. Exclude those values of θ for which
Z0(θ) are among the q largest values of (Zi(θ))

m−1
i=0 . It

can be shown that the true parameters, θ∗, belong to the
constructed region with exact probability 1− q/m.

Remarks. The least-squares estimate has the property that

S0(θ̂LS) = 0 and hence it is always in the confidence region
(which is in fact an interval). When θ 6= θ∗ we have that

Z0(θ) =

[
n∑

t=1

(θ∗ − θ)U2
t−1 + Ut−1 Nt

]2

, (13)

Zi(θ) =

[
n∑

t=1

αi,t (θ
∗ − θ)U2

t−1 + αi,t Ut−1 Nt

]2

. (14)

Due to the sign-perturbations,
∑

t αi,t(θ
∗ − θ)U2

t−1 grows
slower than the term

∑
t(θ

∗ − θ)U2
t−1 in Z0(θ). Hence, for

θ sufficiently far away from θ∗, θ will be excluded from the
confidence interval since Z0(θ) will be the largest.

2.2 General FIR Systems

Now, consider general FIR systems of the form

Yt =
d∑

k=1

b∗k Ut−k +Nt = ϕT
t θ

∗ +Nt, (15)

3 Due to the density assumption, the probability that two sums are
equal is zero, assuming that all sign-sequences are different. Note
that we could also add small tie-breaking variables to ensure this.
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for t = 1, . . . , n, where ϕt , [Ut−1, . . . , Ut−d ]
T, θ∗ ,

[ b∗1, . . . , b
∗

d ]
T and the assumptions are as before.

Our aim is again to construct a non-asymptotic confidence
region around the LS estimate that contains the true
parameters with a user-chosen exact probability.

In order to construct an exact non-asymptotic confidence
region, we can follow the construction of Section 2.1.
However, Si(θ), i = 0, . . . ,m−1, are now vector-valued. We
could define the sign-perturbed sums similarly as before,
but since the ϕt’s are now vectors, we take their internal
dependencies into account and define the sums as

S0(θ) , Φ
−

1

2

n

n∑

t=1

ϕt(Yt − ϕT
t θ), (16)

Si(θ) , Φ
−

1

2

n

n∑

t=1

ϕt αi,t(Yt − ϕT
t θ), (17)

where matrix Φn is defined as in (7). We can construct a

confidence region even without using weights Φ
−1/2
n , but,

as we will see (cf. Figure 1), they help to shape the region.

To proceed with the construction, we need to order the
vector-valued sign-perturbed sums above. We achieve this
by mapping them to real-numbers by using a norm:

Zi(θ) , ||Si(θ)||22. (18)

Then, the confidence region containing the least-squares
estimate, and the true parameter θ∗ with exact probability
1− q/m, is again obtained by excluding those θ for which
Z0(θ) are among the q largest values of (Zi(θ))

m−1
i=0 .

Numerical Example. A natural question to ask is what
these confidence regions look like. Figure 1 demonstrates
this through a simulation example. It presents 99% confi-
dence regions for parameters of a 2nd order FIR system.
The true parameters were θ∗ = [ 0.2, 0.3 ]T, and we used
an i.i.d. noise sequence of zero mean Gaussian variables
with variance one, i.e., standard normal. The inputs were

Ut+1 = κUt + Vt, (19)

where κ = 1/2, U−1 = 0 and (Vt)t was an i.i.d. standard
normal process, independent of the noise sequence (Nt)t.
The construction was based on n = 200 observations, and
the design parameters were m = 100 and q = 1. The

constructed region with and without the weights, Φ
−1/2
n ,

is demonstrated. For comparison, the 99% confidence
ellipsoid based on the asymptotic theory is also shown.

Figure 1 demonstrates that our non-asymptotic confidence
regions are comparable in size with the standard, approx-
imate confidence ellipsoids; and the weighted approach
produces confidence regions with similar shape as the
ellipsoids obtained with the asymptotic theory.

2.3 First-order ARX Systems

Now, we move onto ARX systems, which require some
extra care due to the presence of past outputs in the
regression vectors, which makes them endogenous.

First, consider the following first order system

Yt , −a∗1Yt−1 + b∗1Ut−1 +Nt, (20)

−0.5 0 0.5 1

−0.6

−0.1

0.4

0.9

Figure 1. 99% confidence regions for the parameters of
a 2nd order FIR system. The (complement of the)
constructed region obtained by using weights in (16)
and (17) is denoted by “x”. The (complement of
the) region built without weights is denoted by “o”.
The “?” shows the true parameters, while the “+”
is the LS estimate. The dashed ellipsoid is the 99%
confidence set obtained with the asymptotic theory.

with |a∗1| < 1. In linear regression form it reads

Yt = ϕT
t θ

∗ +Nt, (21)

where ϕt , [−Yt−1, Ut−1 ]
T and θ∗ , [ a∗1, b∗1 ]

T.

The available data are (Yt)
n
t=0, (Ut)

n−1
t=0 and we aim at an

exact confidence region for θ∗ around the LS estimate.

As before, the least-squares estimate is found by solving
n∑

t=1

ϕt(Yt − ϕT
t θ) = 0. (22)

Corresponding to θ = θ∗ we have (without the weights)

S0(θ
∗) =

n∑

t=1

ϕt(Yt − ϕT
t θ

∗) =

n∑

t=1

[
−Yt−1

Ut−1

]
Nt. (23)

In this case, the direct application of the previous ap-
proach will not work. The reason is that

∑n
t=1

−Yt−1Nt

and
∑n

t=1
−Yt−1αi,tNt will not have the same distribution

since Yt−1 depends on Nt−1, Nt−2, . . .. The idea is to make
everything “symmetric” again by “constructing” alterna-
tive output terms Ȳt−1 using sign-perturbed prediction
errors such that corresponding to θ = θ∗,

∑n
t=1

−Yt−1Nt

and
∑n

t=1
−Ȳt−1αi,tNt have the same distribution.

For a given generic value θ = [ a1, b1 ]
T, we can compute

the prediction errors (reconstructed noise terms) as

N̂t(θ) , Yt − ϕT
t θ, t = 1, . . . , n. (24)

As before, we can sign-perturb these prediction errors
obtaining αi,tN̂t(θ); Ȳt can now be “constructed” as

Ȳt(θ, αi) , −a1Ȳt−1(θ, αi) + b1Ut−1 + αi,tN̂t(θ), (25)
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with initial condition Y0(θ, αi) = Y0. If θ = θ∗, we have

N̂t(θ) = Nt, and Ȳt(θ
∗, αi) can be expressed as

Ȳt(θ
∗, αi) = (−a∗1)

t Y0 +
t−1∑

k=0

b∗1(−a∗1)
k Ut−1−k + (26)

+

t−1∑

k=0

(−a∗1)
k (αi,t−kNt−k). (27)

We can now introduce the sign-perturbed sums

S0(θ) , Φ
−

1

2

n

n∑

t=1

ϕt(Yt − ϕT
t θ), (28)

Si(θ) , Φ̄
−

1

2

n (θ, αi)

n∑

t=1

ϕ̄t(θ, αi)αi,t (Yt − ϕT
t θ), (29)

i = 1, . . . ,m− 1, where ϕ̄t(θ, αi) , [−Ȳt−1(θ, αi), Ut−1 ]
T

and Φ̄n(θ, αi) are the (perturbed) covariance estimates

Φ̄n(θ, αi) ,
1

n

n∑

t=1

ϕ̄t(θ, αi)ϕ̄
T
t (θ, αi). (30)

Corresponding to θ∗ everything is “symmetric”. Indeed

S0(θ
∗) = Φ̄

−
1

2

n (θ∗,1)

n∑

t=1

[
−Ȳt−1(θ

∗,1)
Ut−1

]
Nt, (31)

where 1 is the all-one vector. Note that Φ
−

1

2

n = Φ̄
−

1

2

n (θ∗,1)

and Yt−1 = Ȳt−1(θ
∗,1), since N̂t(θ

∗) = Nt. We also have

Si(θ
∗) = Φ̄

−
1

2

n (θ∗, αi)

n∑

t=1

[
−Ȳt−1(θ

∗, αi)
Ut−1

]
(αi,tNt), (32)

in both of the cases we can express Yt and Ȳt−1(θ
∗, αi) as

Yt−1 = (−a∗1)
t Y0 +

t−2∑

k=0

b∗1(−a∗1)
k Ut−1−k +(33)

+

t−2∑

k=0

(−a∗1)
k Nt−k, (34)

Ȳt−1(θ
∗, αi) = (−a∗1)

t Y0 +

t−2∑

k=0

b∗1(−a∗1)
k Ut−1−k +(35)

+
t−2∑

k=0

(−a∗1)
k (αi,t−kNt−k). (36)

We can observe that in the equation for Si(θ
∗), i 6= 0,

every occurrence of Nt has been replaced by αi,tNt, and
therefore the “symmetry” has been restored.

We can now proceed as for FIR systems and compute

Zi(θ) = ||Si(θ)||22. (37)

A confidence set can again be constructed by excluding
those θ for which Z0(θ) are among the q largest values of
(Zi(θ))

m−1
i=0 . The inclusion of the LS estimate is guaranteed

and θ∗ is in the confidence set with probability 1− q/m.

3. GENERAL ARX SYSTEMS

In this section, we provide a more rigorous formulation
of the method for general ARX systems. As we will see,

the construction includes additional tie-breaking variables,
denoted by (εi)i. We also present a pseudo-code as well as
a theorem about the guarantees of the constructed regions.

The data generating system is an ARX system

Yt + a∗1Yt−1 + · · · a∗na
Yt−na

, b∗1Ut−1 + · · · b∗nb
Ut−nb

+Nt,

which can be written in linear regression form as

Yt = ϕT
t θ

∗ +Nt, (38)

ϕt , [−Yt−1, . . . ,−Yt−na
, Ut−1, . . . , Ut−nb

]T, (39)

θ∗ , [ a∗1, . . . , a
∗

na
, b∗1, . . . , b

∗

nb
]T. (40)

Let θ be a generic parameter

θ = [ a1, . . . , ana
, b1, . . . , bnb

]T. (41)

We make the following three assumptions:

Assumption 1. The orders na and nb are known.

Assumption 2. (Nt)t is an independent (but not necessar-
ily identically distributed) noise sequence (not observed),
where each Nt is symmetrically distributed about zero.

Assumption 3. (Ut)t is an observed (but not necessarily
chosen) input signal, independent of (Nt)t.

The available data for the construction of the confidence
region are (Yt)

n
t=1−na

and (Ut)
n−1
t=1−nb

.

Construction of the Confidence Regions:

(1) Using the data, compute the prediction errors (i.e.,
reconstruct the noise for parameter θ)

N̂t(θ) , Yt − ϕT
t θ, t = 1, . . . , n. (42)

(2) Select an integer m and construct m sequences (αi) =
(αi,t)

n
t=1, i = 0, . . . ,m − 1, with the following prop-

erties. Let α0,1, . . . , α0,N = 1, . . . , 1 be the sequence
of all 1s. Every element of the other sequences takes
the values −1 or 1 with probability 1/2 each. Each
such sequence is i.i.d. and their elements are also
independent of the other variables in the system.
Build sequences of sign-perturbed prediction errors

(αi,t N̂t(θ))
n
t=1, i = 0, . . . ,m− 1. (43)

Use the sign-perturbed prediction errors to construct
perturbed alternatives of the outputs

Ȳt(θ, αi) = −a1Ȳt−1(θ, αi)− · · · − ana
Ȳt−na

(θ, αi)+

+b1Ut−1 + · · ·+ bnb
Ut−nb

+ αi,tN̂t(θ), (44)

with using the initial conditions Ȳt(θ, αi) = Yt, for
t = 1− na, . . . , 0; and form the regressors

ϕ̄t(θ, αi) = [−Ȳt−1(θ, αi), . . . ,−Ȳt−na
(θ, αi), (45)

Ut−1, . . . , Ut−nb
]T, i = 0, . . . ,m− 1. (46)

(3) Compute the following functions

Zi(θ) ,
∥∥Si(θ)

∥∥2
2
+ εi, (47)

for i = 1, . . . ,m − 1, where Si(θ) is as in (28)-(29),
while (εi)

m−1
i=0 are “small” random variables, intro-

duced to break ties. They are conditionally i.i.d. and
continuous given σ{(Ut)t, (±N̂t(θ))t} (cf. Appendix).
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(4) Let R0(θ) be the rank of Z0(θ) in the ordering of
(Zi(θ))

m−1
i=0 i.e., R0(θ) denotes the number of Zi(θ)’s

that are larger than Z0(θ). The confidence region, Θ
q
m,

for the true parameters θ∗ is constructed as follows

Θq
m ,

{
θ ∈ R

d : R0(θ) ≥ q
}
. (48)

In other words, Θq
m is the region in parameter space

where there are at least q functions larger than Z0(θ).

This confidence region has the following property

Theorem 1. Under Assumptions 1-3, the probability that
θ∗ is in the confidence region Θq

m is exactly 1− q/m.

A sketch of the proof is given in the Appendix.

Remarks. The idea behind the construction is that, cor-
responding to θ∗, Z0(θ

∗) will only be among the largest
Zi(θ

∗) functions with a small probability, and hence the
values of θ for which this happens are excluded. On the
other hand, Z0(θ) grows faster than the other Zi(θ), i 6= 0,
functions as ‖θ−θ∗‖22 gets larger, and thus values different
from θ∗ will eventually be excluded from the region.

The parameters q and m are user-chosen, so the probabil-
ity 1− q/m is under complete control of the user.

The least-squares estimate, θ̂LS, is obtained from
n∑

t=1

ϕt(Yt − ϕT
t θ) = 0, (49)

and hence θ̂LS has the property that S0(θ̂LS) = 0. Thus,
it is always in the constructed region, assuming, e.g., that
each αi sequence is different and the noises are continuous.

4. CONCLUDING REMARKS

In this paper, a new system identification approach, called
Sign-Perturbed Sums (SPS), has been proposed that allows
the construction of guaranteed non-asymptotic confidence
regions for the parameters of dynamical systems under
mild statistical assumptions. The constructed confidence
regions always contain the the least-squares estimate and
the true parameters with exact and user-chosen probabil-
ities, therefore, no conservatism is introduced.

The theoretical tool behind our approach is that certain
random variables are “uniformly ordered”, which allows us
to perturb the signs of the reconstructed noise sequences
and build confidence regions by ranking the rerandomized
sums of some carefully selected functions. Depending on
how these functions are selected, we can arrive at con-
fidence regions for different identification methods. This
fact has been demonstrated for FIR and ARX systems.
Moreover, a numerical experiment has shown that the
constructed region is comparable in size and shape with
the standard, asymptotic confidence ellipsoid.
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APPENDIX

In this appendix, we provide definitions and background
information as well as a sketch of the proof of Theorem 1.

Symmetric Variables

Let (Ω,F ,P) be a probability space, where Ω is the sample
space, F is the σ-algebra of events and P is the probabil-
ity measure. We call an (Rd-valued) random variable X
symmetric (about the origin, the zero vector), if

∀A ∈ F : P(X ∈ A) = P(−X ∈ A). (50)

Many standard distributions, e.g., Gaussian, Laplace,
Cauchy-Lorentz, Bernoulli, Binomial, Students t and uni-
form are symmetric (e.g., assuming zero mean).

If X1, . . . Xn are (Rd-valued) random variables, we intro-
duce their sign-independent σ-algebra as follows

σ{±X1, . . . ,±Xn} , {A ∪ −A : A ∈ σ{X1, . . . , Xn}} ,
where σ{X1, . . . , Xn} is the σ-algebra generated by ran-
dom variables X1, . . . , Xn. Note that σ{±X} gives us all
information about X up to a ±1 multiplication. It is easy
to see that if X is real-valued, then σ{±X} = σ{|X|}.
Note that (εi)

m−1
i=0 in (47) is only needed to resolve ties. It is

sufficient that (εi)
m−1
i=0 are i.i.d. conditionally on the avail-

able data, more precisely, given σ{(Ui)
n
i=1, (±N̂i(θ))

n
i=1}.

In this way, we can make sure that they only break ties
and do not change the order of Zi(θ)’s inadvertently.

Random Signs

We define random signs as symmetric ±1 valued Bernoulli
variables: they take +1 and −1 with probability 1/2 each.

A characterization of symmetric random variables can be
given as: X is symmetric if and only if it has the same
distribution as β · X, where β is a random sign that is
independent of X (see Ledoux and Talagrand [1991]).

In order to prove the confidence probability, we will need
the following definition of uniform ordering.

Definition 1. A finite sequence of real-valued random vari-
ables Z0, . . . , Zm−1 is said to be “uniformly ordered” if, for
all permutations i0, . . . , im−1 of 0, . . . ,m−1, we have that

P(Zi0 < Zi1 < · · · < Zim−1
) =

1

m!
. (51)
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Note that if Z0, . . . , Zm−1 are uniformly ordered, then they
are almost surely pairwise not-equal. Moreover, Zi takes
position j in the ordering with probability exactly 1/m.

Now, we state some lemmas (mostly without proofs, due
to space limitations) which will be used in the main proof.

Lemma 1. Let X be a symmetric R
d-valued random vari-

able and let β be a random sign, independent of X. Then,
β and βX are independent and, of course, X = β · (βX).

Lemma 2. Let α, β1, . . . , βk be i.i.d. random signs. Then,
random variables α, α·β1, . . . , α·βk are i.i.d. random signs.

The next lemma shows that probabilities can be calculated
by considering all realizations, if they are unanimous.

Lemma 3. Let X and Y be two independent, Rd-valued
and R

k-valued random variables, respectively. Let us con-
sider a measurable function g : R

d × R
k → R and a

measurable set A ⊆ R. Then, if for all x ∈ R
d we have

P( g(x, Y ) ∈ A ) = p, we also have P( g(X,Y ) ∈ A ) = p.

Uniform Ordering Lemma

Lemma 4. Let Z0, . . . , Zm−1 be real-valued, i.i.d., contin-
uous random variables. Then, they are uniformly ordered.

Proof. Let us consider a function g that gives an ascend-
ing order of Z0, . . . , Zm−1, i.e., it provides a permutation
i0, i1, . . . , im−1, such that Zi0 ≤ Zi1 ≤ · · · ≤ Zim−1

.
Then, function g(Z0, . . . , Zm−1) can be treated as a dis-
crete random variable with m! possible outcomes, where
an outcome represent a particular ordering of the Zi’s.
Because g depends only on the ordering of the variables,
if z0, . . . , zm−1 is a realization, where the zi’s are pairwise
not equal, which has probability one, g(z0, . . . , zm−1) 6=
g(zi0 , . . . , zim−1

) if (0, . . . ,m − 1) 6= (i0, . . . , im−1), where
(i0, . . . , im−1) is a permutation of (0, . . . ,m − 1). More-
over, g(zi0 , . . . , zim−1

) = g(zj0 , . . . , zjm−1
) if and only if

(i0, . . . , im−1) = (j0, . . . , jm−1). But, since Z0, . . . , Zm−1

are i.i.d., the distribution of g(Zi0 , . . . , Zim−1
) is the same

for all permutations. There are m! permutations, thus,
each of its outcomes must have probability 1/(m!). 2

Proof Sketch of Theorem 1

By its construction, the confidence region Θq
m contains the

true parameters θ∗ if and only if R0(θ
∗) ≥ q. It means that

Z0(θ
∗) should take one of the positions 0, . . . ,m − q − 1

in the ordering of (Zi(θ
∗))m−1

i=0 . We will prove that the
Zi(θ

∗)’s are uniformly ordered, which means that Z0(θ
∗)

takes each position in the ordering with probability 1/m,
hence, its rank will be at least q with probability 1− q/m.
To show that the Zi(θ

∗)’s are uniformly ordered, we start
by fixing an arbitrary realization of the inputs, (ui)

n
i=1,

and henceforth we will condition on this realization.

Assuming the (conditional) uniform ordering of Zi(θ
∗), we

have that P (θ∗ ∈ Θq
m) = 1−q/m, given (ui)

n
i=1. Since, this

result is independent of the realization, Lemma 3 shows
that it also holds without fixing the realization.

To complete the proof, we have to show that, after the
realization (ui)

n
i=1 was fixed, Zi(θ

∗) are uniformly ordered.

Let g(·) be the (measurable) function defined as

g(x̃) ,

∥∥∥ Φ̄−
1

2

n (x̃)

n∑

t=1

ϕ̄t (x̃)xt

∥∥∥
2

2
, (52)

where x̃ = [x1, . . . , xn ]
T, and ϕ̄t (x̃), Φ̄

−
1

2

n (x̃) are the
“constructed” regressors and covariance estimates using
θ∗ and applying noise term Nt = xt as well as the fixed
inputs Ut = ut, for all t. Thus, ϕ̄t (N1, . . . , Nn) = ϕt.

Then, we can write variables (Zi(θ
∗))m−1

i=0 in the form

Z0 , Z0(θ
∗) = g(N1, . . . , Nn) + ε0, (53)

Zi , Zi(θ
∗) = g(αi,1N1, . . . , αi,nNn) + εi, (54)

where i ∈ {1, . . . ,m− 1} and (αi,t)
m−1,n
i,t=1,1 are as before.

Since (Nt)
n
t=1 are symmetric, using Lemma 1, we have

Nt = βt(βtNt) = βtWt, (55)

for all t ∈ {1, . . . , n}, where Wt , βtNt and (βt)
n
t=1 are

random signs independent of (Nt)
n
t=1 and, as it was shown

by Lemma 1, also independent of (Vt)
n
t=1. Then,

Z0 = g(βtV1, . . . , βtVn) + ε0, (56)

Zi = g(αi,1βtV1, . . . , αi,nβtVn) + εi, (57)

which can be written in a unified form as

Zi = g(γi1V1, . . . , γinVn) + ε0, (58)

where, for all t, γ0t , βt and, for all i 6= 0, γit , αi,tβt.

Now, as shown by Lemma 2, (γit)
m−1,n
i,t=0,1 is an i.i.d. collec-

tion of random signs, it is also independent of (Vt)
n
t=1.

By fixing a realization of (Vt)
n
t=1, called (vt)

n
t=1, we have

Z ′

i , g(γi1v1, . . . , γinvn) + εi, (59)

where (vt)
n
t=1 are deterministic constants. We continue our

investigation by conditioning on this fixed realization.

Random variables (g(γi1v1, . . . , γinvn))
m−1
i=0 are i.i.d., since

(γit)
m−1,n
i,t=0,1 are i.i.d. Moreover, since (εi)

m−1
i=0 are condition-

ally i.i.d. and continuous, given σ{(±Ni)
n
i=1}, random vari-

ables (Z ′

i)
m−1
i=0 are real-valued, i.i.d. and continuous (note

that constants (vt)
n
t=1 only provide information about the

realization of the noise sequence (Nt)
n
t=1 up to ±1 multi-

plications). Therefore, Lemma 4 can be applied to show
that variables (Z ′

i)
m−1
i=0 are uniformly ordered.

Since this uniform ordering can be obtained independently

of the realization of the sequence V , (Vt)
n
t=1, the state-

ment of the theorem follows. This last step can be made
more precise, as follows. First, let us decompose ε ,

(εi)
m−1
i=0 to the form of ε = r(V, δ), where r is a measurable

function and δ is a real-valued random variable, uniform on
(0, 1), independent of V . The validity of this decomposition
is supported by Theorem 6.10 of Kallenberg [2001]. Then,

let Q , (γ, δ), where γ , (γit)
m−1,n
i,t=0,1. As we have shown

above, if we fix a realization of V , then the probability of
a particular ordering of (Z ′

i)
m−1
i=0 is 1/(m!) independently

of the realization. By letting p(Z0, . . . , Zm−1) denote the
function that provides the ordering of the variables (cf.
Lemma 4), we can write this function as p̂(V,Q), because
the ordering only depends on V and Q. Finally, since V
and Q are independent, we can apply Lemma 3 to show
that the result also holds without fixing the realization. 2
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