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Abstract: System identification is the science of constructing models from data. A model
is never an exact description of reality, and it is desirable that the identified model comes
accompanied by certificates of quality able to describe the level of precision of the model and
its domain of validity. This paper is about certified system identification. Our contention is that
data contains more information than traditional identification methods can exploit, and, by
looking at classical identification problems with new eyes, methods can be developed carrying
precise quality guarantees that are valid under general assumptions. Taking the challenge of
developing these methods may lead to a paradigm shift in many contexts in which identification
is applied.
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1. INTRODUCTION

1.1 Model quality certification

System identification is the science of constructing models
from data.

A model is never an exact description of reality, and it is
desirable that the identified model comes accompanied by
certificates of quality able to describe the level of precision
of the model and its domain of validity. A certificate of
quality can e.g. be a statement of the type

‖θo − θ̂‖ ≤ 0.1,

where θo is the parameter being estimated and θ̂ is its
estimated value, or of the type

yt+1 ∈ region Ŷ with probability 99%,

when a region Ŷ is estimated from data for the purpose
of predicting the next value of a signal y. Certificates of
quality are relevant to the practice of system identification,
and are necessary for its scientific use.

System identification relies on data, and data is the real
wealth in a system identification procedure. Data is always
a limited resource, that is the data set has always a finite
size N . Correspondingly, system identification methods
should be able to squeeze out all the relevant information
contained in the data, for the purpose of constructing
models and of certifying their quality,

DATA SET of SIZE N ⇒
{

MODEL
CERTIFICATE of QUALITY.
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1.2 A common thread of this paper: from deterministic,
via probabilistic, to distribution-free certificates

Certificates of quality can be provided in various forms.
Deterministic certificates do not make any use of proba-
bility and assert facts, properties or results that are always
valid, given the assumed premises. In contrast, probabilistic
certificates affirm results that hold true with a given,
possibly high, probability, but not always. Typically, a de-
terministic certificate is established under quite stringent
assumptions, so that its applicability requires a deep prior
knowledge of the environment in which the identification
method is used. A probabilistic certificate does not require
as stringent assumptions. However, probabilistic priors
are normally used to infer the relevant properties of the
estimate.

Assumptions limit the applicability of a method in two
respects. First, the method is not applicable if the assump-
tions are not satisfied. Second, even if the assumptions
are satisfied, the user may not know that they are. When
knowledge is not sufficient to discriminate whether or not
a method is applicable, one may be tempted to use the
method anyhow if the assumptions do not seem implausi-
ble, but of course this is an awkward approach if one looks
for certified guarantees.

Besides deterministic and probabilistic certificates, a
third typology of certificates exists, which we here call
distribution-free certificates. A distribution-free certificate
is still a certificate of probabilistic nature, so that the
existence of a probability is assumed in the mathematical
formulation of the problem. Yet, probabilistic guarantees
are obtained without knowledge of the actual values of the
probability that describes the mechanism through which
data are generated. Thus, the existence of a probability
is assumed, but the probability values are not used in the
method to derive conclusions.

Our contention in this paper is that identification meth-
ods carrying distribution-free certificates can be developed
in various domains in which system identification is ap-
plied. These certificates are valid under little knowledge
of the data generation mechanism and are practically
useful. Working out distribution-free certificates, however,
requires in many cases a paradigm shift and we have to
look at traditional identification problems with new eyes.
The potential reward is worth the effort, we believe, and
this paper contains some preliminary ideas and results,
which we hope will stimulate the interest of others and will
foster the development of new research directions within
the system identification community.

1.3 Paper structure

We shall undertake a journey through some of the core
problems in system identification, namely,

• parameter estimation;
• prediction;
• filtering.

These problems will be dealt with in turn in Sections 2,
4, and 5. Ideas will be presented mainly through simple
examples. For one thing, we believe simple examples
provide a privileged entry point to get acquainted with

theories; for another thing, the material presented in this
paper is in many cases at the cutting edge of research, and
a systematic theory providing a full coverage of the topic
is not yet available.

2. PARAMETER ESTIMATION

2.1 A simple example

Consider the problem of estimating a parameter θ0 from
noisy measurements

yt = θo + nt. (1)

10 measurements are provided as follows

t 1 2 3 4 5 6 7 8 9 10

yt 0.56 −0.66 1.12 1.32 −0.14 2.25 −0.21 0.96 1.28 1.17
,

what can we say about θ0?

The deterministic man would claim he knows that noise
is bounded, say |nt| ≤ 2. Since the first measurement
is 0.56 and noise is in the interval [−2, 2], θ0 has to lie
in [−1.44, 2.56], see Figure 1. Turning to consider the

Figure 1. The interval compatible with the 1st measure-
ment.

other measurements, one eventually constructs a set Θ
by intersecting 10 line segments as depicted in Figure 2,
and the claim associated with this construction is that
certainly θ0 ∈ Θ. This is a deterministic certificate, and

Figure 2. Θ is the interval compatible with all measure-
ments.

the underlying logic of construction is pure intersection of
the domains in θ that are compatible with the seen data,
given the prior knowledge.

The deterministic man makes his construction on rigid
deterministic priors.

Prior knowledge is based on experience that has been
accrued in the past, and the probabilistic man believes
that experience can never set a final word. He thus starts
doubting the rigid prior that |nt| ≤ 2, and suggests that nt

can possibly take values larger than 2, even though rarely,
which leads in his mind to the concept of probabilistic
tail. One possible formalization he may suggest is that
nt ∼ Gaussian(0, 1). A unitary standard deviation makes
unlikely that |nt| > 2, and Gaussianity of the distribution
is because he believes the world has a tendency to be
Gaussian. Moreover, he adds the assumption that the
noise affecting the various measurements are independent
of each other, an assumption that he justifies by e.g.
noting that different measurements have been collected
with different sensors.
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The probabilistic man computes the least squares estimate

θ̂LS =
1

10

10
∑

t=1

yt = 0.76,

and observes that

θo−θ̂LS ∼ Gaussian

(

0,
1

10

)

.

He then suggests constructing a 90% confidence region Θ
for a Gaussian distribution with variance 1

10
centered in

θ̂LS , Figure 3. This Θ contains θ0 with probability 90%.

Figure 3. The 90% confidence region constructed by the
“probabilistic man”.

The deterministic man has introduced rigid hard priors.
They have been relaxed by the probabilistic man, who,
however, has assumed he knows the whole distribution of
noise. This means assigning infinite probability values, one
for each segment of the real line.

Let us try a paradigm shift. Noise still forms an indepen-
dent sequence, but now it is assumed to have an unknown
density with zero mean and a symmetric distribution
around zero. Having some prior knowledge about the mean
of the noise is necessary to be able to estimate θ0 since
the mean is added to θ0 in the measurements generation
mechanism (1). The density being symmetric is instead
a restrictive assumption we make. Thus, noise can e.g.
be Gaussian with any variance, or uniform, or triangular,
see Figure 4, and the actual density is not known when
identification is performed. Moreover, the density of noise

Figure 4. Possible noise densities

is allowed to change through time, so accommodating
nonstationary situations, see Figure 5.

To determine a set Θ for θ0, the following construction is
used. First a test parabola is constructed as follows:

Figure 5. The noise density can vary though time.

TEST PARABOLA =

[

10
∑

t=1

(yt − θ)

]2

.

This test parabola has vertex in θ̂LS . For the data at
hand, the test parabola is shown in Figure 6. Next, 9 other

Figure 6. The test parabola.

parabolas are constructed as follows

nth PARABOLA =

[

10
∑

t=1

±(yt − θ)

]2

, n = 1, 2, . . . , 9,

where ± are random signs obtained, for each parabola,
by flipping a coin as many times as there are data,
moreover, independent coin flippings are used for different
parabolas. We did this construction for the data at hand,
and obtained the parabolas displayed in Figure 7. The

Figure 7. Θ is a (almost) distribution-free 90% confidence
region.

interval Θ is where the test parabola is not at top. Figures
2, 3, and 7 are in scale, showing Θ intervals of similar size.
The following result holds for this construction.

Theorem 1. θ0 ∈ Θ with probability 90%, irrespective
of the noise density, provided that the noise density is
symmetric around zero. ∗

A sketch of the proof is given in Appendix A.

This theorem cannot be claimed to be a true distribution-
free result as noise has to be symmetrically distributed
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around zero. Yet, it shows that a construction is possible
leading to a set Θ that is guaranteed to contain θ0

with probability 90% with limited knowledge of the noise
characteristics. Moreover, 90% is not an upper bound, it
is an exact probability, and the construction is therefore
not conservative.

Additional properties hold for this construction. Here, we
have used N = 10 data points. As the number of data
points is let increase, N → ∞, one can show that, under
mild assumptions, the set Θ shrinks around θ0 at a rate
O(1/

√
N), which is the same as the rate obtained when

the noise distribution is known.

This example shows that

there is information in the data that
traditional methods do not exploit,

and

methods can be conceived that let data
speak beyond what traditional methods do.

2.2 Generalizations

In the previous section, we have presented a simple exam-
ple of a general theory. The corresponding identification
method, which we have called Sign Perturbed Sums (SPS),
can be applied to generic dynamical systems to construct
guaranteed confidence regions for the system parameters.
If, for example, the system has the following Finite Impulse
Response (FIR) structure

yt = θo
1ut−1 + θo

2ut−2 + nt,

the same construction as in the static example of the
previous section can be applied by simply substituting the
parabolas with the paraboloids

TEST PARABOLOID

=

∥

∥

∥

∥

∥

N
∑

t=1

[

ut−1

ut−2

]

(yt − θ1ut−1 − θ2ut−2)

∥

∥

∥

∥

∥

2

;

nth PARABOLOID

=

∥

∥

∥

∥

∥

N
∑

t=1

±
[

ut−1

ut−2

]

(yt − θ1ut−1 − θ2ut−2)

∥

∥

∥

∥

∥

2

,

and a result that replicates, mutatis mutandis, Theorem
1 holds true. Weighting matrices can also be introduced
in the paraboloids to optimize the shape of the region Θ.
Moreover, the theory can be carried over to more general
dynamical systems, such as AutoRegressive Moving Aver-
age (ARMA) systems

Ao(z−1)yt = Bo(z−1)ut + nt,

or Box-Jenkins systems

yt = Go(z−1)ut + Ho(z−1)nt.

The reader is referred to Csáji et al. (2012a) and to the
article in preparation Csáji et al. (2012b) for more details.

3. MID-PAPER CONCLUSIONS

Let us pause a moment, and analyze what we have seen
so far.

In the problem of estimating a parameter θ0 from noisy
measurements, the deterministic man constructs a set
Θ and certifies it with the claim that θ0 ∈ Θ. This
deterministic certificate is a set-theoretic result, no matter
what the noise sequence nt is in its domain of variability
characterized as the set where |nt| ≤ 2, the result holds
true.

Condition |nt| ≤ 2 is stiff, and the theory is deeply relying
on this condition. Quoting from Mark Twain:

“what gets us into trouble is not what we don’t know.
It’s what we know for sure that just ain’t so.”

Removing the stringent deterministic condition, the proba-
bilistic man does not aprioristically clip the noise to a given
value, and he also allows for noise sequences that take on
large values. As a result, it may happen that θ0 /∈ Θ.
Graphically, the situation becomes as illustrated in Figure
8. The set of noise sequences is partly depicted in white,

Figure 8. The “bad set”.

signifying that θ0 ∈ Θ if nt belongs to this white subset,
and partly in red, signifying the “bad subset” of noise
sequences where θ0 /∈ Θ. Since the result that θ0 ∈ Θ is no
longer set-theoretic and it only holds in a subset of the set
of noise sequences, the probabilistic man is facing a new
problem, that of being quantitative, he has to measure the
extension of the bad set. The tool used for measuring sets
is measure theory, and when the measure is interpreted
as chance of occurrence, the measure is called probability.
Thus, we see that

a probability is needed to tackle the
challenge of being quantitative.

The claim he makes is that θ0 ∈ Θ with probability 90%.

The probabilistic man assumes he has quite a bit of
knowledge about the data generation mechanism, to the
point that he is able to attribute a probability value to
each segment of the real line where noise takes value. Jan
Willems, one of the deepest thinkers of the systems theory
community, once noticed

“where would the numerical values of the probability
come from?”

This question is central in the probabilistic formulations
of identification theories.

Moving towards a distribution-free approach, the attempt
is to create a new paradigm where the probability that
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Θ contains θ0 is made as independent as possible of the
probabilistic characteristics of noise. Prior knowledge is
reduced to a minimum, and the identification algorithm is
required to squeeze out the information contained in the
data, without a-priori assuming what the data have to tell
us. In this context, a probability is assumed to exist, but
the probability values cease to play a role in the algorithm,
which only uses data.

4. PREDICTION

4.1 Interval prediction models: an example

We are presented with the N = 19 data points shown
in Figure 9 taken at random from a population of points
in R

2. Mathematically, the 19 data points are samples of

Figure 9. The data points.

variables independent and identically distributed (i.i.d.)
according to an unknown probability distribution on R

2.
From an application perspective, instead, each point rep-
resents a member of a population described by two at-
tributes, u and y, whose interpretation varies with the
application and can e.g. be u = “height” and y =
“weight”, u = “investment” and y = “return”, u =
“medical test result” and y = “level of a disease”. We
want to see u as a variable we use to predict y, and a
prediction model has to be constructed from the seen 19
observations.

Given the next value of u, say ū in Figure 10, our prediction
is given as an interval to which the next value ȳ is
expected to belong. How can we construct the prediction
interval? and, what kind of guarantee can we attach to our
construction?

Along a deterministic approach, one would argue that,
without additional information and unless we uselessly
take as prediction interval the whole real line of y, any
construction can be invalidated by the next value of y, that
is, our prediction is wrong. This is indeed true, as nothing
prevents ȳ from being outside the prediction interval,
whatever prediction interval we exhibit. The way out of
this problem he suggests is to introduce prior knowledge on
the underlying data generation mechanism. Among many
possibilities, let us assume for example that we know that
the data are generated according to the mechanism

y = f(u) + n,

Figure 10. The prediction interval for u = ū.

where function f has limited slope, say
∣

∣

∣

∂f
∂u

∣

∣

∣
≤ 1, and n

is bounded, say |n| ≤ 0.5. Then, an interval prediction
model is constructed as shown in Figure 11, and the
predicted interval in correspondence of ū is given by
the intersection of the vertical line starting from ū with
the interval prediction model. This prediction is always

Figure 11. The interval prediction model constructed along
a deterministic approach.

correct, provided the assumptions are true.

The deterministic assumptions are demanding, and, corre-
spondingly, the conclusion that y is certainly in the interval
is quite assertive. We next want to investigate whether the
deterministic assumptions can be relaxed by the adoption
of a probabilistic approach.

Can we make any sensible probabilistic claim with no
restrictive assumptions on the underlying probabilistic set-
up according to which data are generated? To rapidly
gain insight on this question, let us directly move to
the extreme point that the data are sampled from a
population whose probability distribution is completely
unknown to us. That is, let us take a distribution-free
approach. The following optimization program determines
the thinner layer centered around a tunable parabola and
that contains all the seen data

min
r,α,β,γ

r

subject to:
∣

∣yi − [α+βui+γu2
i ]

∣

∣ ≤ r, i = 1, . . . , N.
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For the data at hand, the layer is shown in Figure 12, this
layer is our interval prediction model. Tomorrow, a new

Figure 12. The probabilistic layer.

member (ū, ȳ) is sampled from the population according
to the same probability distribution as the seen data. We
are given ū, and we are asked to predict ȳ. As before, the
prediction interval is obtained by intersecting the vertical
line starting from ū with the interval prediction model.
What can we claim about this construction? The following
theorem provides a crisp answer.

Theorem 2. Suppose that the probability distribution on
R

2 admits density. Then, the prediction is correct, that
is, ȳ is in the interval, with probability 80%, whatever
the probability density on R

2 according to which data are
generated is. ∗

This theorem follows from the following more general
result whose proof is sketched in Appendix B.

Theorem 3. Let the centerline of the layer be linearly
parameterized in terms of k parameters, and suppose that
N data points are sampled in an i.i.d. fashion according to
a probability distribution on R

2 that admits density. Then,
the thinner layer that contains the data points predicts
correctly with exact probability p if

N =
k + p

1 − p
,

whatever the probability density on R
2 according to which

data are generated is. ∗

In our example, N = 19 equals k+p
1−p

= 3+0.8
1−0.8

.

4.2 Discussion

Theorem 3 is a distribution-free result applicable to all
distributions that admit a density, and shows that the
probability of an incorrect prediction is independent of the
probability density of the data. In other words, Theorem
3 provides a universal result.

To appreciate more concretely the significance of Theorem
3, suppose we are regressing the height of the individuals
belonging to a certain population against their weight.
Given the weight and the height of N individuals, the
layer constructed on these N observations is guaranteed
to correctly predict the height of the next individual given
his/her weight with a probability p. This probability is
exact, not a lower bound, so that no conservatism is present

in this probabilistic evaluation, and no a-priori knowledge
is required for this result to hold. Thus, knowing for
instance that the population is solely formed by female,
or solely by male, or that children are, or are not, present
does not help to improve the result.

One can wonder about the reason that makes this result
possible. The reason is that what is used for predicting,
a layer centered e.g. around a parabola or around a cubic
polynomial, is a simple object but, despite its simplicity,
it can reliably predict (i.e. it predicts correctly with high
probability) even complex data generation mechanisms.
An example is given in Figure 13, where the layer is
centered around a cubic polynomial. In Figure 13 (a),

Figure 13. A single layer is reliable for a wide class of
functions with increasing level of complexity.

the layer is always correct in predicting the output of
the function in black, as it can be seen by the fact that
the function is entirely contained in the layer. The same
layer, however, can predict with no error the output of the
functions in Figures 13 (b)-(d) that show an increasing
level of complexity. The fact that a simple layer can
reliably describe complex data generation mechanisms is
represented in Figure 14 by the arrow connecting “low
complexity” with “reliability”. The other arrow in this

Figure 14. Links between “low complexity”, “reliability”,
and “learnability”.

figure connecting “low complexity” with “learnability”
simply means that learning from a finite data set is possible
for model classes having low complexity. Putting together
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these two arrows we obtain a link between “reliability” and
“learnability”, which is represented by the third arrow in
the figure. This third arrow is interpreted that, in this
scheme, reliable models can be learned even for complex
data generation mechanisms.

As we have seen, prior knowledge does not count in
the reliability result announced in Theorem 3. So, does
this theory claim that prior knowledge is of no use?
Certainly, this is not so. Besides reliability, a layer has
a second, equally important, attribute, its thickness. A
thick layer provides wide prediction intervals, which are
of little use in practice. Theorem 3 only provides answers
about reliability, while it says nothing about thickness.
In the theorem, the centerline of the layer is required to
be linearly parameterized in terms of k parameters, while
the regression functions are left free, and the user should
spend his prior knowledge to determine suitable regression
functions so that the resulting layer is as thin as possible.

Further developing on the concepts of reliability and
thickness, notice that reliability is not a property of the
model since a model can be reliable for a data generation
mechanism and not reliable for another data generation
mechanism. Thus,

reliable is a property with two arguments:
the model and the data generation mechanism.

Instead,

thickness is a property with one argument
only, the model.

As a consequence, thickness can be inspected once the
model has been constructed, reliability can not. For this
very reason it is well acceptable that priors impact on the
thickness, which we can assess before we “buy” the model,
whereas it is important that reliability is guaranteed
by a theory that holds under the most general possible
assumptions, what we call a distribution-free theory.

4.3 Generalizations

The approach illustrated in the previous section can be
generalized in many directions, and the reader is referred
to Campi et al. (2009a) for an overview presentation. We
here limit ourselves to say that interval prediction models
can be constructed that have more general structure
than that of a layer, allowing e.g. for intervals whose
width is varying with the input, as shown in Figure 15.
Moreover, prediction with more inputs u1, . . . , up can be
accommodated within this framework. Also, observations
that are showing little conformity to the other observations
(outliers) can be excluded from the interval prediction
model as illustrated in Figure 16, and the theory assuring
the reliability of the model can be extended to cover this
situation, see Campi and Garatti (2011).

Another notable generalization is to classification prob-
lems. Supposing e.g. that the output is binary, 0 or 1, the
equivalent of an interval prediction model in this context
is a model that can output 0, 1, or {0, 1}, where {0, 1}
corresponds to abstention from a classification. The reader
is referred to Campi (2010) for a presentation of how clas-
sification problems can be dealt with along the approach

Figure 15. An interval prediction model whose width is
varying with the input.

Figure 16. Outliers removal.

of this section, which leads to classifiers having a known
and exact probability of correct classification.

The results outlined above hold for independent data. Ex-
tending these results to correlated data generated by a dy-
namical system presents interesting theoretical challenges.
Despite some preliminary results are given in Campi et al.
(2009a), the problem of working out distribution-free non-
conservative results in the correlated context is currently
an open issue.

5. FILTERING

5.1 An example of filtering for a system with scalar state

In this section, we sketch some ideas for constructing con-
fidence regions for the state of a system without knowing
the variances of the system noises.

Consider the following first order system

xt+1 = fxt + vt

yt = xt + wt, (2)
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where xt, yt, vt, wt are scalars, f is known, and vt and
wt are mutually independent sequences of independent
and identically distributed (i.i.d.) Gaussian random vari-
ables. Assuming that the noise variances σ2

v and σ2
w are

known, and so is an initial Gaussian distribution of the
system state, the problem of estimating xt+1 from output
measurements is optimally solved by the Kalman filter.
Moreover, based on the state estimate and the estimation
error variance, which is obtained by solving a Riccati equa-
tion, a confidence ellipsoid can be constructed carrying a
predefined probability to contain the true state.

Suppose instead that σ2
v and σ2

w are not known. Can
we still construct a region that contains xt+1 with an
exact probability? In addressing this question, we make an
attempt to move a step towards a novel filtering approach
that carries precise probabilistic guarantees under more
general assumptions than Kalman filtering.

Let us introduce the assumption that |f | < 1, and
that system (2) operates in steady-state, so that xt is a
stationary process. xt can also be represented by a state
equation running backwards in time, see e.g. Lemma 5.4.4
in Kailath et al. (2000),

xt = fxt+1 + v′t, (3)

where v′t is a new sequence of i.i.d. Gaussian random
variables with variance σ2

v. Using (3) and (2), the outputs
observed between time 1 and t can be expressed in terms
of xt+1 as follows













yt

yt−1

yt−2

...
y1













=













f
f2

f3

...
f t













xt+1+

+













1 0 0 · · ·
f 1 0 · · ·
f2 f 1 · · ·
...

...
...

. . .

f t−1 f t−2 f t−3 1

























v′t
v′t−1

v′t−2

...
v′1













+













wt

wt−1

wt−2

...
w1













.

(4)

Next we transform (4) such that the transformed noise
forms an independent sequence. Let

B =













1 0 0 · · ·
f 1 0 · · ·
f2 f 1 · · ·
...

...
...

. . .

f t−1 f t−2 f t−3 1













,

C = B−1 =













1 0 0 · · ·
−f 1 0 · · ·
0 −f 1 · · ·
...

...
. . .

. . .
−f 1













,

and let the singular value decomposition of CCT be given
by

V DV T = CCT ,

where V is a t× t matrix with the property that V T V = I
(the identity matrix), and D is a t× t diagonal matrix. It
follows that

V T CCT V = D.

By premultiplying (4) by V T C we obtain the equation













st

st−1

st−2

...
s1













=













a1

a2

a3

...
at













xt+1 +













nt

nt−1

nt−2

...
n1













, (5)

where
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st−1

st−2

...
s1













= V T C













yt

yt−1

yt−2

...
y1













, (6)
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a3

...
at













= V T C













f
f2

f3

...
f t













,













nt

nt−1

nt−2

...
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= V T













v′t
v′t−1

v′t−2

...
v′1













+ V T C













wt

wt−1

wt−2

...
w1













.

n1, . . . , nt are zero mean Gaussian random variables. It
turns out that these variables are also independent. The
proof of this fact is straightforward: the covariance matrix
of [nt, . . . , n1]

T is given by the diagonal matrix σ2
vI+σ2

wD,
showing that [nt, . . . , n1]

T has uncorrelated components.
Independence of n1, . . . , nt follows from the fact that
[nt, . . . , n1]

T is a Gaussian vector. Notice, however, that
n1, . . . , nt are not identically distributed.

From the backward representation (3) it is seen that xt+1,
which is constructed from v′i, i ≥ t + 1, is independent of
v′1, . . . , v

′

t. Since xt+1 is also independent of w1, . . . , wt, it
follows that xt+1 is independent of n1, . . . , nt. As a result,
xt+1 in equation (5) can be regarded as though it were a
deterministic quantity, which, in mathematical terms, is
achieved by conditioning (5) with respect to xt+1. Thus,
the problem of estimating xt+1 in (5) is an identification
problem where the parameter to be estimated is xt+1,
s1, . . . , st are the observations whose value is known from
equation (6) (notice that V and C only depend on the
known system state parameter f), and a1, . . . , at are also
known quantities. To this problem, the same technique
as that described in Section 2 can be applied in order to
construct an interval that contains xt+1 with guaranteed
probability. In this context, the test parabola is
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[

t
∑

i=1

ai(si − aix)

]2

,

and the other parabolas are constructed by adding ±
random signs. Adding ai in front of (si − aix) serves the
purpose of making all signs of x in the test parabola
negative, so that the test parabola has a curvature nar-
rower than the other parabolas and the interval for xt+1

is bounded. The fact that the noise n1, . . . , nt has varying
intensity does not represent a difficulty, as it was already
pointed out in Section 2.

There is a conceptual difference in the results that are
achieved along this approach as compared to Kalman
filtering that is worth noting. Assuming that σ2

v and σ2
w

are known, with the Kalman filter a confidence ellipsoid
can be constructed that contains the system state with
a given probability. The result that is obtained with
the approach of this section is of different nature. The
result is that, regardless of what the true state is, the
constructed confidence set will contain the true state with
a given probability. Thus, even states xt+1 that are only
rarely touched in the system evolution, if touched, they
will fall in the confidence set with the given probability.
This type of result is particularly relevant for monitoring
applications, where we are much more concerned about
obtaining reliable confidence sets when the state takes on
particular values, e.g. when the state is in or close to a
dangerous operating region.

In this section, we have briefly outlined some ideas of a
broad novel approach to filtering that is under construc-
tion. The reader is referred to Weyer and Campi (2011b)
for further comments and simulation results on the scalar
state estimation problem. The general case of multidimen-
sional state is currently under consideration, and some
preliminary results can be found in Weyer and Campi
(2011a). Many problems remain open at the present stage
of knowledge regarding the weighting of the observations,
as well as the use of the backward representation in the
multidimensional case.

6. BIBLIOGRAPHICAL NOTES

Deterministic identification has been pursued along many
lines of research e.g. in Milanese and Vicino (1991), Bai
et al. (1995, 1996), Vicino and Zappa (1996), Giarré
et al. (1997), Garulli et al. (2000, 2002). The developed
methods also cover the presence of unmodelled dynamics,
and the treatment of noise without requiring an explicit
description of the noise model, provided that upper bounds
are available on all the unknown quantities.

The literature on stochastic system identification is truly
vast. The reader is referred to the books Söderström and
Stoica (1989) and Ljung (1999) for a general presentation,
while the following is just a selection among many pa-
pers on the subject, Ljung (1978, 1985), Hjalmarsson and
Ljung (1992), Goodwin et al. (1992), Ninness and Good-
win (1995), Hakvoort and Van den Hof (1997), Pintelon
et al. (1997), Ninness et al. (1999), Gevers et al. (2001),
Ninness and Hjalmarsson (2004), Garatti et al. (2004,
2006), Hjalmarsson and Mårtensson (2011). The interest
in establishing finite sample results valid under general

assumptions was recognized as early as in Gosset (Student)
(1908). On the other hand, in stochastic system identifi-
cation almost all existing results leverage on asymptotic
results from statistics and are therefore applicable to data
sets of diverging size. Early works of the authors of this
paper on distribution-free finite sample results in system
identification are Campi and Weyer (2005), Dalai et al.
(2007), Campi et al. (2009b), Campi and Weyer (2010).

Deterministic prediction is the subject of e.g. Milanese and
Novara (2004, 2005).

Filtering is the subject of the textbooks Jazwinski (1970),
Anderson and Moore (1976), Kailath et al. (2000), while
the approach discussed in Section 5 has been introduced
in Weyer and Campi (2011a,b).

Appendix A. PROOF OF THEOREM 1

We first assume that, corresponding to θ = θ0, no tie
occurs, that is, no two parabolas have the same value.

For θ = θ0, the test parabola writes

[

10
∑

t=1

(yt − θo)

]2

=

[

10
∑

t=1

(θo + nt − θo)

]2

=

[

10
∑

t=1

nt

]2

,

while the nth parabola is

[

10
∑

t=1

±nt

]2

.

Since nt is an independent sequence with symmetric dis-

tribution,
[

∑10

t=1
nt

]2

and
[

∑10

t=1
±nt

]2

have the same

probability distribution, and each of the 10 parabolas has
the same chance to be at top as any other one. As a result,
setting Θ to be the region where the test parabola is not
at top leaves us with a probability 90% that θ0 ∈ Θ.

We have assumed that, corresponding to θ = θ0, no tie
occurs. A tie occurs when two parabolas have the same or
opposite random sign ± sequence, which can be avoided
by dropping a ± sequence when it occurs to be identical
to or opposite of a previously constructed sequence. Even
for different and not opposite ± sequences, a tie occurs if
summing noise terms with different signs leads to the same
value. Such circumstance has however probability zero if
the noise admits density, and it does not affect the result.

This issue of dealing with ties can be treated in other ways,
beyond what has been described here. However, this issue
only plays a marginal conceptual and applicative role, and
we do not dwell on further discussing it here.

Appendix B. PROOF OF THEOREM 3

Consider a set of N +1 points extracted one independently
of the others according to the probability density on R

2,
and construct the thinner layer that contains these N + 1
points. It can be shown, e.g. Garatti and Campi (2009),
that the number of points that touch the boundary of the
layer is equal to k+1 with probability 1. For instance, for a
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parabolic centerline as in Figure 12, the number of points
that touch the boundary is 4. If one of the k + 1 points
that touch the boundary is eliminated and the thinner
layer that contains the other points is constructed, this
constructed layer is thinner than the layer containing all
the points, and the eliminated point falls outside the layer.
If instead one of the points that do not touch the boundary
is eliminated and the thinner layer that contains the other
points is constructed, the eliminated point falls in the
layer.

We thus have

Probability of correct prediction

= [let pi = (ui, yi), i = 1, . . . , N ; pN+1 = (ū, ȳ)]

= Prob{pN+1 ∈ layer containing p1, . . . , pN}
= [1(·) = indicator function]

=

∫

1(pN+1 ∈ layer containing p1, . . . , pN )dProbN+1

= [since each point is equivalent to any other point]

=
1

N + 1

∫ N
∑

i=1

1(pi ∈ layer containing p1, . . . , pi−1,

pi+1, . . . , pN+1)dProbN+1

= [use the fact that k + 1 points, if eliminated, fall

outside the layer that contains the other points]

=
1

N + 1

∫

[(N + 1) − (k + 1)]dProbN+1

=
N − k

N + 1
. (B.1)

Letting

Probability of correct prediction = p,

and making (B.1) explicit with respect to N , the result in
Theorem 3 follows.
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