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Overview

•Confidence regions (and hypothesis testing)
for parameters of GARCH processes
•ScoPe: works by permuting the residuals in
the score (gradient of the log-likelihood)
•Centered around the Quasi-Maximum
Likelihood Estimate (QMLE)
•Distribution-free (w.r.t. the driving noise;
even if it is heavy-tailed and skewed)
•Non-asymptotic (finite sample) guarantees
•Exact (user-chosen) coverage probabilities
•Applicable to nonstationary models, as well
•Confirmation on major stock market indices

Introduction

In many applications it is typical that larger dis-
turbances are more likely followed by larger distur-
bances, while smaller fluctuations tend to be fol-
lowed by smaller fluctuations. This phenomenon
can be modeled by GARCH processes. Here, we
extend the SPS method [1] to GARCH models.

GARCH Models

Formally, a GARCH(p, q) process, {Xt}, is defined
by the following two equations [2]
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where {εt} is a strong white noise, i.e., an i.i.d.
sequence of real random variables with zero mean
and unit variance; variable σ2

t defines the condi-
tional variance ofXt, given its own past up to t−1;
and ω∗ > 0 as well as α∗i , β∗j ≥ 0 are constants.

Quasi-Maximum Likelihood

GARCH models are typically estimated by Quasi-
Maximum Likelihood (QML) methods. They use
a Gaussian “working hypothesis”, but are guaran-
teed to work under mild statistical assumptions.
The conditional Gaussian quasi-likelihood is
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where x = (X1, . . . , Xn) is the sample and
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where θ ∈ Rp+q+1 is a generic vector encoding the
parameters, θ , (ω, α1, . . . , αp, β1, . . . , βq), while
the “true” parameter vector is denoted by θ∗.
The QMLE is any measurable solution of

θ̂n , arg max
θ∈Θ

Ln(θ;x).

Which is equivalent to minimizing (namely, take a
natural logarithm and drop constants)
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where 1/n is included for numerical stability.

Asymptotics of QMLE

Under mild regularity conditions (nondeg. noise &
identifiability), the QMLE is strongly consistent

θ̂n
as−→ θ∗ as n→∞.

It can also be proved, assuming E[ ε4
0 ] < ∞, that

the QMLE is asymptotically normal
√
n(θ̂n − θ∗) d−→ N (0,Γ) as n→∞,

for a covariance matrix Γ depending on ∇θ σ̂2
0(θ∗).

This can be used to define (asymptotic) confidence
ellipsoids. Assume Γn is an estimate of Γ, then
Θ̃n(s) ,
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where d , p+ q+ 1 and the probability that θ∗ ∈
Θ̃n is approximately Fχ2(d)(s), which is the CDF of
the χ2 distribution with d degrees of freedom.

Gaussian Score

The QMLE satisfies the likelihood equation
∇θ `n(θ̂n) = 0,

and the gradient of the (conditional) log-likelihood
function, the score function, can be written as
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where ε̂t(θ) , Xt/σ̂t(θ) is a reconstructed residual
for time t assuming parameter θ, and σ̂t(θ) is an
estimate of σt, which can be calculated recursively.

Score Permutation

Note that ε̂t(θ∗) = εt, for all t, assuming
(P1) The “true” system is in the model class.
(P2) The initial conditions are known.
Since {εt} is i.i.d., their joint distribution is main-
tained under arbitrary index permutation π(·),

{εt} d= {επ(t)}
Given a θ, the main idea is first to “invert” the
system to get {ε̂t(θ)} and then generate alternative
trajectories by randomly permutated residuals,

ε̂πi(1)(θ), . . . , ε̂πi(n)(θ),
for all i ∈ {1, . . . ,m−1}, wherem is user-chosen.
Let π0 be the identity permutation, i.e., π0(t) = t.
The original and the perturbed score functions are
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where the perturbed variances σ̄2
t (θ, πi) are
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which gives rise to an alternative trajectory
X̄t(θ, πi) , σ̄t(θ, πi) ε̂πi(t)(θ).

The rank of ‖B(θ, π0)‖2 within {‖B(θ, πi)‖2} is

Rm(θ) , 1 +
m−1∑
i=1

I
(
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where I(·) is an indicator function and � is > with
random tie-breaking. The ScoPe confidence set is

Θ̂n(m, r) , { θ ∈ Θ : Rm(θ) ≤ m− r } ,
where m > r > 0 are user-chosen integers.

Main Theorem

Assuming (P1) and (P2), we have that
P
(
θ∗ ∈ Θ̂n(m, r)

)
= 1− r

m
.

Experimental Results

The experiments focused on GARCH(1,1) models
Xt , σt εt,

σ2
t , ω∗ + α∗X2

t−1 + β∗σ2
t−1,

using both simulated and real-world datasets.
ScoPe was compared with asymptotic ellipsoids,
residual- and likelihood ratio bootstrap methods.
The daily closing prices of Nasdaq 100, S&P 500
and FTSE 100 were used from the entire period
of 2014. Models were fitted to the compound re-
turns, i.e., for each price sequence {Pt}, the data
were transformed by Rt = log(Pt/Pt−1).

Table 1: Relative Areas on Stock Market Indices (2014)

Method Nasdaq 100 S&P 500 FTSE 100

Asym.Ell. 0.3426 0.1679 0.1535
Res.Boots. 0.3791 0.2549 0.2850
LR.Boots. 0.8150 0.7919 0.8326
ScoPe 0.3801 0.2862 0.2412
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Figure 1: Logistic noise, n = 100, m = 100, r = 10; Exact
90% ScoPe confidence set for a stationary GARCH(1, 1).
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