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Abstract: Sign-Perturbed Sums (SPS) is a finite sample system identification method that
can build exact confidence regions for the unknown parameters of linear systems under mild
statistical assumptions. Theoretical studies of the SPS method have assumed so far that the
order of the system model is known to the user. In this paper we discuss the implications of
this assumption for the applicability of the SPS method, and we propose an extension that,
under mild assumptions, i) still delivers guaranteed confidence regions when the model order is
correct, and ii) it is guaranteed to detect, in the long run, if the model order is wrong.
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1. INTRODUCTION

Estimating parameters of partially unknown systems
based on observations corrupted by noise is a fundamental
problem in system identification, signal processing, ma-
chine learning and statistics, (Lehmann and Casella, 1998;
Ljung, 1999; Hastie et al., 2009). Standard solutions such
as the Least Squares (LS) method or, more generally, pre-
diction error methods provide point estimates. In many sit-
uations, for example, when the safety, stability or quality
of a process has to be guaranteed, a point estimate should
be accompanied with a confidence region that certifies the
accuracy of the estimate. The Sign-Perturbed Sums (SPS)
method (Csáji et al., 2012b, 2014, 2015; Kolumbán et al.,
2015) constructs confidence regions which have an exact
coverage probability of the true system parameter based
only on a finite sample of observations and under very mild
statistical assumptions on the noise terms.

Consider an ARX system:

Yt+a
∗
1Yt−1+· · ·a∗na

Yt−na , b∗1Ut−1+· · ·b∗nb
Ut−nb

+Nt, (1)
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where Yt is the output, Nt is the noise, and Ut is a
measured input, at time t. This system can be written
in linear regression form as follows Yt = ϕ>t θ

∗ + Nt,
where the regressor vectors ϕt is defined as ϕt = [−Yt−1,
. . . ,−Yt−na

, Ut−1, . . . , Ut−nb
]>, and θ∗ = [ a∗1, . . . , a

∗
na
, b∗1,

. . . , b∗nb
]> is referred to as the true parameter.

Following (Csáji et al., 2015), we assume that the mea-
sured inputs {Ut} are deterministic, but all the results
here presented can be immediately generalised to random
inputs when they are independent of the noise. The SPS
algorithm builds exact confidence regions for the unknown
parameters under the assumption that the noise sequence
{Nt} is independent and symmetric (not necessarily iden-
tically distributed). 1 Given n observations Y1, . . . , Yn and
ϕ1, . . . , ϕn, SPS constructs confidence regions that contain

the LS estimate θ̂n, which is defined as the minimiser of
the sum of the squared prediction errors, that is

θ̂n , arg min
θ∈Rna+nb

n∑
t=1

(Yt − ϕ>t θ)2. (2)

In the construction of the SPS regions, a crucial role
is played by the fact that the system can be inverted,
and the symmetric noise sequence, {Nt}, can be correctly
recovered when the true parameter θ∗ is correctly guessed.
As a consequence of this fact, in order for the standard
SPS method to be rigorously guaranteed by the theory,
the knowledge of the “true” model order (or at least an
upper bound of it) must be available.

1 For a discussion of the robustness of SPS with respect to violations
of the symmetry assumptions, see (Carè et al., 2016).
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Model order selection is a standard topic in system iden-
tification and various tools are available to the user, see,
e.g., (Ljung, 1999; Stoica and Selen, 2004; Pillonetto et al.,
2013). However, it is still a challenging problem, and it is
realistic to assume that the selection procedure might end
up with a model order (n̂a, n̂b) smaller than the “true”
one, i.e., with n̂a < na and/or n̂b < nb. So far theoretical
studies of SPS did not consider this possibility, while a
simulation experiment on the effects of undermodelling
was carried out in (Csáji et al., 2015).

Finite sample methods for the case when the input signal
can be designed are available and can be used to obtain
guaranteed confidence regions when the user is interested
in estimating a subset of the parameters, see (Campi et al.,
2009). In principle, these techniques can be applied also
when the true model order is unknown but, arguably,
higher than the selected one. However, they are not aimed
at obtaining regions around the LS estimate, and they
can be applied only if the input satisfies certain statistical
properties, such as symmetry.

Aim of the paper
In this paper, we move a step towards SPS methods that
can be used in the presence of imperfect knowledge of the
true model order, or even of the true system structure. In
particular, we propose an approach to modify the existing
SPS method in such a way that:

• If the system is not undermodelled, the algorithm
builds exact confidence regions for the true model
parameter θ∗. This property holds true under the
same assumptions as for the original SPS.

• On the other hand, if the system is undermodelled,
the algorithm detects undermodelling as soon as a
sufficient amount of data is available. This property
holds true under some mild, additional assumptions.

Structure of the paper
In the following Section 2 the standard SPS method and
its main properties are briefly reviewed. The issues of stan-
dard SPS in the presence of undermodelling are discussed
in Section 3 and provide a motivation for a new algorithm,
which we call UD-SPS (SPS with Undermodelling Detec-
tion). UD-SPS is presented in Section 4.

The results of this paper deal with an FIR-oriented SPS
method, which is an archtypical case that allows us to
point out the main ideas without technical complications.
However, in Section 5 we argue that our ideas are applica-
ble to more general models. The properties of the new UD-
SPS algorithm are illustrated on some simulation examples
in Section 6, while conclusions are drawn in Section 7.

2. REVIEW OF THE STANDARD SPS ALGORITHM

The SPS algorithm in its standard form (Csáji et al., 2015,
2014) is summarised in this section.

We will assume that na = 0, that is, we restrict ourselves
to the FIR case where the regressors {ϕt} do not depend on
the noise {Nt}. 2 Recall that the LS estimate, see formula
(2), can be obtained by solving the normal equation,

2 Extensions to ARX and more general systems are available (Csáji
et al., 2012b,a; Kolumbán et al., 2015).

n∑
t=1

ϕt(Yt − ϕ>t θ) = 0, (3)

which, when
∑n
t=1 ϕtϕ

>
t is invertible (this will be always

assumed throughout this paper), has the analytic solution

θ̂n =

( n∑
t=1

ϕtϕ
>
t

)−1( n∑
t=1

ϕtYt

)
.

The fundamental step in SPS consists of generating m− 1
sign-perturbed sums by randomly perturbing the sign of
the prediction error in the normal equations (3), that is,
for i = 1, . . . ,m− 1, we define

Hi(θ) ,
n∑
t=1

ϕtαi,t(Yt − ϕ>t θ),

where {αi,t} are random signs, i.e., i.i.d. random variables
that take on the values ±1 with probability 1/2 each. For
a given θ, the reference sum is instead defined as

H0(θ) ,
n∑
t=1

ϕt(Yt − ϕ>t θ).

It is shown in (Csáji et al., 2015, 2014) that a suitable lin-
ear transformation of these sums ensures better properties,
and therefore we apply the following functions,

Si(θ) ,
1

n
R
− 1

2
n Hi(θ), i = 0, . . . ,m− 1,

where Rn = 1
n

∑n
t=1 ϕtϕ

>
t and “−

1
2 ” denotes the inverse

of its square root.

Denote by R(θ) the rank of ‖S0(θ)‖ in the ordering of
‖S0(θ)‖, ‖Si(θ)‖, i = 1, . . . ,m − 1, e.g., R(θ) = 1 means
that ‖S0(θ)‖ is the smallest one, and so on. In case of
ties, the rank is broken by randomisation, see (Csáji et al.,
2015) for details. The SPS region is formally defined as

Θ̂n ,
{
θ : R(θ) ≤ m

(
1− q

m

)}
,

and the following theorem holds true, (Csáji et al., 2015).

Theorem 1. (Exact confidence of SPS). If N1, . . . , Nn is a
sequence of independent random variables distributed sym-
metrically about zero, then it holds that

Pr{ θ∗ ∈ Θ̂n } = 1− q

m
. ∗

Moreover, under some mild additional assumptions, SPS

is strongly consistent, that is, for every ε > 0, Θ̂n is almost
surely contained in an ε-ball around the true parameter θ∗

for sufficiently large n (Csáji et al., 2014).

3. SPS IN THE PRESENCE OF UNDERMODELLING

In this section, we discuss the behaviour of the SPS
algorithm when the model chosen by the user does not
correspond to the true data-generation mechanism.

3.1 The user-chosen model

We assume that the user has decided to use the FIR model

Ŷt(θ) = ϕ>t θ (4)

for predicting Yt, where ϕt = [Ut−1, . . . , Ut−n̂b
] and θ =

[ b1, . . . , bn̂b
] is a generic parameter. This assumption is
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held throughout the paper, where all the applications of
the SPS algorithm use (4) as model structure. However, it
can be relaxed as discussed in Section 5.

3.2 The true data-generation mechanism

If data {Yt} are really generated according to a FIR system
of order nb = n̂b, that is

Yt = b∗1Ut−1 + b∗2Ut−2 + · · ·+ b∗n̂b
Ut−n̂b

+Nt, (5)

where {Nt} is independent and symmetric, then the stan-
dard SPS is guaranteed to deliver a confidence region for
θ that contains the true parameter, θ∗ = [ b∗1, . . . , b

∗
n̂b

],
with user-chosen probability. Moreover, under mild as-
sumptions, θ → θ∗ as n→∞, and the SPS regions shrinks
around θ∗, see Section 2 and references therein.

It is interesting to consider, instead, the situation where
data {Yt} are generated by a higher order FIR model or
even a more general linear system. Assume therefore that
Yt can be written as follows

Yt = ϕ>t θ
∗ + Et +Nt, (6)

where {Nt} is the usual, independent symmetric noise;
the (linear) effect of Ut−1, . . . , Ut−n̂b

is correctly described
by the term ϕ>t θ

∗; Et is an extra, non-zero compo-
nent that can depend linearly on all the past inputs
Ut−n̂b−1, Ut−n̂b−2, . . . and on all the past noise samples
Nt−1, Nt−2 . . .. For example, this situation includes the
case where the true system is ARX as in (1). In the special
case where the true system is an FIR of order nb > n̂b, Et
depends linearly on Ut−n̂b−1, . . . , Ut−nb

only.

3.3 The effect of undermodelling on standard SPS

Under (6), the conditions of Theorem 1 are not met
in general by the “noise” {Nt + Et}, so the confidence
region built by SPS is not guaranteed. The next theorem
characterises the asymptotic behaviour of the SPS region

in the case of undermodelling. Defining θ̂∞ as the limit of

the LS estimate θ̂n, the theorem states that, under some

mild assumptions, for every ε > 0, the SPS region Θ̂n will

remain inside an ε-ball centred around θ̂∞ for all n large

enough. Since θ̂∞ 6= θ∗ in general, the theorem implies
that the SPS region will not include θ∗ in the long run.

Theorem 2. (Asymptotic behaviour with undermodelling).
Assume that (6) is the true data-generating mechanism.
Define Rn = 1

n

∑n
t=1 ϕtϕ

>
t , and assume that det(Rn) 6= 0

and there exists a finite limit matrix R̄, R̄ � 0 such that

lim
n→∞

Rn = R̄ � 0. (7)

Assume also that there is a finite real vector Ē such that

lim
n→∞

1

n

n∑
t=1

ϕtE[Et] = Ē, (8)

and, moreover,
∞∑
t=1

‖ϕt‖4

t2
<∞,

∞∑
t=1

E[‖Nt‖2]2

t2
<∞,

∞∑
t=1

E[‖Et‖2]2

t2
<∞.

(9)
Then,

θ̂∞ , lim
n→∞

θ̂n = θ∗ + R̄−1Ē (w.p.1), (10)

and, for all ε > 0,

Pr

[ ∞⋃
n̄=1

∞⋂
n=n̄

{
Θ̂n ⊆ Bε(θ̂∞)

}]
= 1,

where Bε(θ) denotes an ε-ball centred around θ. ∗

Technically, the theorem states that the event that Θ̂n ⊆
Bε(θ∞) for all n larger than some (realisation-dependent)
value n̄ is a probability 1 tail-event. Thus, by (10), if Ē
is nonzero, that is, if the sequence of the residuals {Et} is
correlated with the sequence of the regressors {ϕt} (in the
sense of (8)), the region built by SPS by using the model

(4) shrinks around the “wrong” value θ̂∞ 6= θ∗.

By relying only on the standard SPS algorithm, there is
no way for the user to recognise that the assumptions are
not satisfied and the SPS region is going to exclude the
true parameter systematically. This is the motivation for
the work of this paper and for the SPS algorithm with
undermodelling detection, presented in the next section.

4. UD-SPS: A MODIFIED SPS METHOD

We now define the UD-SPS algorithm and discuss the main
ideas behind it. Explaining the connection between UD-
SPS and the standard SPS makes it easy to prove that UD-
SPS inherits the most important properties of standard
SPS when the system is correctly specified. Finally, we
study the undermodelling-detection property of UD-SPS.

4.1 Definition of UD-SPS

The UD-SPS algorithm is obtained from the standard SPS
algorithm by substituting the functions S0(θ), . . . , Sm−1(θ)
with the following ones

Q0(θ) ,

[
Rn Bn
B>n Dn

]− 1
2 1

n

n∑
t=1

[
ϕt
ψt

]
(Yt − ϕ>t θ),

Qi(θ) ,

[
Rn Bn
B>n Dn

]− 1
2 1

n

n∑
t=1

αi,t

[
ϕt
ψt

]
(Yt − ϕ>t θ),

for i = 1, . . . ,m− 1, (11)

where ψt is a vector that includes s extra input values
preceding the n̂b that are included in ϕt, i.e.,

ψt , [Ut−n̂b−1, · · · , Ut−n̂b−s ]>,

and

Bn ,
1

n

n∑
t=1

ϕtψ
>
t , Dn ,

1

n

n∑
t=1

ψtψ
>
t .

So, while the prediction error (Yt − ϕ>t θ) in (11) is the
usual prediction error for the user-chosen model class, the
regressor vector and the shaping matrix are larger than in
the standard SPS algorithm. s is a parameter that can be
chosen by the user and, clearly, it need not be equal to
the difference between the true order of the system, which
is unknown, and n̂b. The region built by UD-SPS will be

denoted by Θ̂o
n.

4.2 The idea of UD-SPS

The key idea is stated in the following Fact 1.
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Fact 1. The UD-SPS region Θ̂o
n for estimating θ∗ ∈ Rn̂b

can be interpreted as the restriction to a n̂b-dimensional

space of a full-fledged standard SPS region, say Θ̂′n, that
lives in the domain {θ′ ∈ Rn̂b+s}, which is the n̂b-
dimensional identification space augmented with s extra

components. More precisely, Θ̂o
n can be identified with the

first n̂b components of the set Θ̂′n ∩ (Rn̂b × {0}s). ∗

In order to see that Fact 1 is true, consider the functions
S′0(θ′), S′1(θ′), . . . , S′m−1(θ′) of θ′ ∈ Rn̂b+s defined as

S′0(θ′) = R′n
− 1

2
1

n

n∑
t=1

ϕ′t(Yt − ϕ′t
>
θ′),

S′i(θ
′) = R′n

− 1
2

1

n

n∑
t=1

αi,tϕ
′
t(Yt − ϕ′t

>
θ′),

for i = 1, . . . ,m− 1, (12)

where

R′n =

[
Rn Bn
B>n Dn

]
(13)

and

ϕ′>t =

[
ϕt
ψt

]>
= [Ut−1, . . . , Ut−n̂b

, Ut−n̂b−1, Ut−n̂b−s].

(14)

These are the standard Si-functions based on which the
standard SPS region, say Θ̂′n, can be built in the aug-
mented space Rn̂b+s for the user-chosen model ϕ′>t θ

′.
Comparing (12) with (11), it can be immediately observed
that functions (12) take the same values of functions (11)
whenever θ′ is restricted to Rn̂b × {0}s, i.e.,

S′i(θ
′)|θ′=[θ>,0>] = Qi(θ). (15)

Computational feasibility of the UD-SPS algorithm
There is no significant difference in the computational
complexity between UD-SPS and the standard SPS: on
the one hand, it is easy to check whether a certain value
of θ is inside or outside an SPS region, while on the other
hand computing and handling a complete and explicit
representation of the region becomes unpractical in a high
dimensional parameter space. For SPS, computationally
feasible approximations techniques have been studied that
rely on interval analysis, e.g. (Kieffer and Walter, 2013), or
on semidefinite programming (SDP), (Csáji et al., 2015).
We focus here on the latter option, which allows us to
compute outer ellipsoidal approximations of SPS regions.

Denote by Θ̃′n the outer-approximating ellipsoid of the

SPS region Θ̂′n in the augmented space Rn̂b+s (Fact 1).

In (Csáji et al., 2015), Θ̃′n is defined as the set {θ′ ∈
Rn̂b+s : ‖S′0(θ′)‖2 ≤ γ∗}, where γ∗ can be computed from
the solutions of some suitable (convex) SDP problems. In
virtue of Fact 1, the restriction of this ellipsoid to the

domain Rn̂b × {0}s, denoted by Θ̃o
n, can be written as

Θ̃o
n = { θ ∈ Rn̂b : ‖Q0(θ)‖2 ≤ γ∗ }, (16)

and contains Θ̂o
n.

Remark 1. With small modifications, it is possible to find

a smaller outer ellipsoidal approximation for Θ̂o
n than Θ̃o

n
as defined above. In fact, the optimisation space of the
SDP problems can be restricted to the domain Rn̂b ×

{0}s with no harm. In general, from this restriction a
smaller, but still valid, γ∗ to be used in (16) can be
obtained. Moreover, in this way, only n̂b decision variables
are involved in the optimisation problem instead of n̂b+s.

UD-SPS and the LS estimate It can be shown that
the LS estimate, θ̂n, is always included in the outer-

approximation ellipsoid, Θ̃o
n, whenever Θ̃o

n is not empty:

Theorem 3. If Θ̃o
n 6= ∅, then θ̂n ∈ Θ̃o

n. ∗

4.3 UD-SPS with correct system specification

Now, we study the case when the system and its order
are correctly specified, i.e., the true system is (5). In this
case, the most important properties of standard SPS carry
over to UD-SPS, by applying the standard SPS results (see
Section 2) in the θ′ space and then restricting the result
to the first n̂b coordinates (Fact 1). In particular, if (5) is

the true system, Θ̂′n is guaranteed to contain the “true”

parameter θ′∗ , [ θ∗>0 · · · 0 ]> with probability 1 − q
m , so

the following theorem is obtained.

Theorem 4. (Exact confidence of UD-SPS). If the FIR sys-
tem is correctly specified, i.e., (5) holds true, then

Pr{ θ∗ ∈ Θ̂o
n } = 1− q

m
. ∗

Moreover, UD-SPS is strongly consistent.

Theorem 5. (Strong consistency of UD-SPS). Assume that
(7)-(9) and the following statements hold true

B̄ , lim
n→∞

Bn <∞, D̄ , lim
n→∞

Dn <∞, (17)

with [
R̄ B̄
B̄> D̄

]
� 0; (18)

and

lim
n→∞

1

n

n∑
t=1

ψtE[Et] <∞,
∞∑
t=1

‖ψt‖4

t2
<∞. (19)

If the system is correctly specified, i.e., (5) holds true, then,
for all ε > 0, we have that

Pr

[ ∞⋃
n̄=1

∞⋂
n=n̄

{
Θ̂o
n ⊆ Bε(θ∗)

}]
= 1,

where Bε(θ) denotes an ε-ball centred around θ. ∗

The strong consistency of the outer approximation Θ̃o
n

follows by the strong consistency of Θ̃′n in the augmented
space, see (Csáji et al., 2015, 2014), and Fact 1.

4.4 UD-SPS in the presence of undermodelling

Consider now the case where the true data-generating

mechanism is system (6). In this case, the region Θ̂o
n is not

guaranteed. However, the following theorem guarantees
that, for n large enough, the region is empty.

Theorem 6. (Undermodelling detection). Assume that (6)
is the true system, and relations (7)-(9) and (17)-(19) hold
true. With the notation

R̄′ , lim
n→∞

[
Rn Bn
B>n Dn

]
, Ē′ , lim

n→∞

1

n

n∑
t=1

[
ϕt
ψt

]
E[Et],
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if
R̄′−1Ē′ /∈ Rn̂b × {0}s, (20)

then

Pr

[ ∞⋃
n̄=1

∞⋂
n=n̄

{
Θ̂o
n = ∅

}]
= 1. (21)

∗
The main statement of the theorem is (21), which is
formulated using the tail-event notation as in Theorems 2
and 5. Equation (21) means that, with probability 1, there
is a (realisation-dependent) value of n̄ such that the region

Θ̂o
n is empty for every n ≥ n̄. Condition (20) is a technical

detectability condition, which, in practice, is expected to
be met, unless Et does not depend on the input or there
are contrived correlation patterns in the input sequence. 3

In concluding, after a certain amount of data n̄ has been
observed, UD-SPS warns the user when the method is
working beyond its domain of applicability by building
empty confidence regions. The number n̄ depends on the
system and the degree of misspecification, as we will see
in the example in Section 6.

5. UD-SPS FOR MORE GENERAL SYSTEMS

The SPS algorithm has been generalised to ARX systems
(Csáji et al., 2012b) and general linear systems (Csáji
et al., 2012a; Kolumbán et al., 2015). It is possible to
extend the asymptotic results that hold true for the FIR
case to the ARX case. Relying on these extensions, the
main arguments in Section 4, which rely only on the strong
consistency of the SPS method, carry over to the ARX
setting.

6. NUMERICAL EXPERIMENTS

Consider the following ARX(1,1) generating system

Yt = a∗Yt−1 + b∗Ut−1 +Nt,

with zero initial conditions, where a∗ = 0.7 and b∗ = 1 are
the true system parameters and {Nt} is a sequence of i.i.d.
Laplacian random variables with zero mean and variance
0.1. The input signal is generated as Ut = 0.75Ut−1 +
Vt, where {Vt} is a sequence of i.i.d. Gaussian random
variables with zero mean and variance 1. The user-chosen
predictor is

Ŷt(θ) = ϕ>t θ = b Ut−1,

that is, the autoregressive part is missing, θ = [ b ] is the
model parameter, and ϕt = [Ut−1 ] is the input-dependent
regressor at time t.

We choose s = 1 in the UD-SPS algorithm, that is,
ψt = [Ut−2] in (11). We construct the outer approximation

ellipsoid Θ̃o
n for the 95 % confidence UD-SPS region Θ̂o

n
by using the algorithm of Section 4.3, see definition (16).

3 A notable situation where the detectability condition fails is when
the true system is a FIR system with nb > n̂b, the input is an
uncorrelated sequence and none of the inputs Ut−n̂b−1, . . . , Ut−nb

corresponding to a nonzero coefficient among b∗k, k = n̂b+1, . . . , nb is
included among the s extra components in the augmented regressor
ϕ′t. However, in this case, the LS estimate θ̂n will not be biased, i.e.,

θ̂n → θ∗. Moreover, if the input can be thought of as the realisation
of an independent and symmetric process, the region for θ∗ ∈ Rn̂b

will be still guaranteed for finite samples (Theorem 4).
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Fig. 1. In each of these pictures, the SPS ellipsoids Θ̃′n in the 2-
dimensional (augmented) space for n = 20 (light gray), n = 50
(gray), n = 100 (dark gray) are shown. The corresponding

outer-approximation of the UD-SPS region, Θ̃o
n, is obtained

by intersecting the ellipsoid Θ̃′n with the b-axis (horizontal
line). The “true” parameter b∗ is also represented in the 2-
dimensional space as (b∗, 0), together with the convergence

point (b∗, b̃∗) of the SPS region in the 2-dimensional space.
The circles on the b-axis denote the LS estimates of b∗, namely
θ̂20 (light gray), θ̂50 (gray), and θ̂100 (dark gray).
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Although this approximation algorithm can be refined in
line with Remark 1, it is here used for illustrative purposes
as it reflects in an intuitive manner the relation between
UD-SPS and standard SPS (i.e., the fact that UD-SPS
region can be obtained by restricting a higher-dimensional

SPS region). Note that, in this case, Θ̃o
n is an interval.

Although the normal use of the method is in the 1-
dimensional space where the model parameter θ = [ b ]
takes value, in Fig. 1 the augmented 2-dimensional space
is represented for explanatory purposes. In Fig. 1, the
b-axis corresponds to the unknown parameter that we
want to estimate and the b̃-axis is the extra coordinate
accounting for the extra input in ψt. In this space, the

SPS 2-dimensional ellipse Θ̃′n can be built according to
the standard algorithm in (Csáji et al., 2015). According

to Section 4.3, the interval Θ̃o
n can then be interpreted as

the intersection of Θ̃′n with the b-axis.

Note that, as expected, whenever the 1-dimensional inter-
section of the SPS ellipsoid with the b-axis is non-empty,

the LS estimate θ̂n is included in Θ̃o
n. When a∗ = 0 (Fig.

1a), the augmented SPS region shrinks around the true
parameter (b∗, 0) as n increases, and the corresponding
UD-SPS interval becomes smaller and smaller around b∗.
However, when a∗ 6= 0, the system is misspecified and, as
n increases, the augmented SPS region shrinks around a

parameter value that does not lie on the b axis, so that Θ̃o
n

becomes empty and undermodelling is detected. The limit

point of SPS in the augmented space, denoted by (b∗, b̃∗),
can be computed according to formula (10). Undermod-

elling is detected when Θ̃o
n is empty. This happens when n

is 100 in Fig.1b (a∗ = 0.15) and is 50 in Fig.1c (a∗ = 0.5).

Table 1.

n

UD-SPS
ellipsoid
coverage

(θ∗ ∈ Θ̃o
n)

Detection with
UD-SPS
ellipsoid

(Θ̃o
n = ∅)

Standard SPS
ellipsoid
coverage

(θ∗ ∈ Θ̃n)

a∗ = 0

20 99.8% 0.2% 98.7%

50 99.0% 0% 97.5%

100 98.6% 0.4% 97.7%

a∗ = 0.15

20 84.5% 2.4% 77.0%

50 29.5% 31.4% 41.5%

100 3.6% 72.2% 11.1%

a∗ = 0.5

20 13.3% 63.5% 37.1%

50 0% 99.9% 0.4%

100 0% 100% 0.1%

In Table 1, the results of 1000 Monte Carlo simulations
are shown for the same three values of a∗ and n that are
used in Fig.1. The empirical coverage of Θ̃o

n is compared
with the empirical coverage of the standard SPS outer

interval Θ̃n ⊆ R, computed as in (Csáji et al., 2015), and

the frequency with which Θ̃o
n is empty is also shown. In

the cases of misspecification (a∗ = 0.15 and a∗ = 0.5),

the frequency with which Θ̃o
n is empty estimates the

probability that undermodelling is detected; in the case
of correct system model (a∗ = 0), the same frequency can
be interpreted as an estimate of the probability of false
detection, which turned out to be very small.

7. CONCLUSIONS

In this paper we have studied the behaviour of SPS,
a guaranteed finite-sample system identification method,
in presence of undermodelled dynamics. In this case,
the confidence regions generated by the standard SPS
algorithm are not rigorously guaranteed, nor do they
provide any warning that the algorithm is working outside
of its applicability domain.

We have proposed an extension of SPS, the UD-SPS
algorithm, which is able to detect that the algorithm is
working outside of its applicability domain. We have shown
that UD-SPS provides guaranteed confidence regions if
the model order is correctly specified, otherwise it almost
surely detects undermodelling in the long run. Finally, we
demonstrated UD-SPS through numerical experiments.
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Csáji, B.Cs., Campi, M.C., and Weyer, E. (2012b). Non-
asymptotic confidence regions for the least-squares esti-
mate. In Procs. of the 16th IFAC Symposium on System
Identification, 227–232.
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